MAP9/MAPH-9 supports axonemal microtubule doublets and modulates motor movement
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
K99 GM131024
NIGMS NIH HHS - United States
R00 GM131024
NIGMS NIH HHS - United States
P40 OD010440
NIH HHS - United States
R35 GM130286
NIGMS NIH HHS - United States
F32 GM142181
NIGMS NIH HHS - United States
K99 GM135489
NIGMS NIH HHS - United States
R15 GM114727
NIGMS NIH HHS - United States
R01 GM133950
NIGMS NIH HHS - United States
T32 GM007276
NIGMS NIH HHS - United States
R15 GM135886
NIGMS NIH HHS - United States
R01 NS082208
NINDS NIH HHS - United States
R01 GM136902
NIGMS NIH HHS - United States
PubMed
38159567
PubMed Central
PMC11385174
DOI
10.1016/j.devcel.2023.12.001
PII: S1534-5807(23)00651-2
Knihovny.cz E-zdroje
- Klíčová slova
- C. elegans, MAP9, axoneme, cilia, dynein, kinesin, microtubule, microtubule doublet, microtubule-associated protein, polyglutamylation,
- MeSH
- axonema * metabolismus ultrastruktura MeSH
- Caenorhabditis elegans * metabolismus MeSH
- cilie metabolismus MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- pohyb MeSH
- savci MeSH
- tubulin metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Map9 protein, mouse MeSH Prohlížeč
- tubulin MeSH
Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.
Department of Biology Stanford University Stanford CA 94305 USA
Howard Hughes Medical Institute Department of Biology Stanford University Stanford CA 94305 USA
Institute of Biotechnology Czech Academy of Sciences BIOCEV 25250 Vestec Prague West Czech Republic
Zobrazit více v PubMed
Schmidt-Cernohorska M, Zhernov I, Steib E, Le Guennec M, Achek R, Borgers S, Demurtas D, Mouawad L, Lansky Z, Hamel V, and Guichard P. (2019). Flagellar microtubule doublet assembly in vitro reveals a regulatory role of tubulin C-terminal tails. Science 363, 285–288. 10.1126/science.aav2567. PubMed DOI
Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, and McIntosh JR (2006). The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948. 10.1126/science.1128618. PubMed DOI
Pigino G, Maheshwari A, Bui KH, Shingyoji C, Kamimura S, and Ishikawa T. (2012). Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins. J Struct Biol 178, 199–206. 10.1016/j.jsb.2012.02.012. PubMed DOI
Sui H, and Downing KH (2006). Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442, 475–478. 10.1038/nature04816. PubMed DOI
Yanagisawa HA, Mathis G, Oda T, Hirono M, Richey EA, Ishikawa H, Marshall WF, Kikkawa M, and Qin H. (2014). FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas. Mol Biol Cell 25, 1472–1483. 10.1091/mbc.E13-08-0464. PubMed DOI PMC
Owa M, Uchihashi T, Yanagisawa HA, Yamano T, Iguchi H, Fukuzawa H, Wakabayashi KI, Ando T, and Kikkawa M. (2019). Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat Commun 10, 1143. 10.1038/s41467-01909051-x. PubMed DOI PMC
Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, and Zhang R. (2019). Structure of the Decorated Ciliary Doublet Microtubule. Cell 179, 909–922 e912. 10.1016/j.cell.2019.09.030. PubMed DOI PMC
Dutcher SK, Morrissette NS, Preble AM, Rackley C, and Stanga J. (2002). Epsilon-tubulin is an essential component of the centriole. Molecular biology of the cell 13, 3859–3869. 10.1091/mbc.e02-04-0205. PubMed DOI PMC
Wang JT, Kong D, Hoerner CR, Loncarek J, and Stearns T. (2017). Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. eLife 6. 10.7554/eLife.29061. PubMed DOI PMC
Mottier-Pavie V, and Megraw TL (2009). Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. Mol Biol Cell 20, 2605–2614. 10.1091/mbc.E08-11-1115. PubMed DOI PMC
Wei Q, Zhang Y, Schouteden C, Zhang Y, Zhang Q, Dong J, Wonesch V, Ling K, Dammermann A, and Hu J. (2016). The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate. Nat Commun 7, 12437. 10.1038/ncomms12437. PubMed DOI PMC
Caspary T, Larkins CE, and Anderson KV (2007). The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12, 767–778. 10.1016/j.devcel.2007.03.004. PubMed DOI
Cevik S, Hori Y, Kaplan OI, Kida K, Toivenon T, Foley-Fisher C, Cottell D, Katada T, Kontani K, and Blacque OE (2010). Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol 188, 953–969. 10.1083/jcb.200908133. PubMed DOI PMC
Conkar D, and Firat-Karalar EN (2021). Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J 288, 786–798. 10.1111/febs.15473. PubMed DOI
Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, and Janke C. (2019). Microtubule-Associated Proteins: Structuring the Cytoskeleton. Trends Cell Biol 29, 804–819. 10.1016/j.tcb.2019.07.004. PubMed DOI
Saffin JM, Venoux M, Prigent C, Espeut J, Poulat F, Giorgi D, Abrieu A, and Rouquier S. (2005). ASAP, a human microtubule-associated protein required for bipolar spindle assembly and cytokinesis. Proc Natl Acad Sci U S A 102, 11302–11307. 10.1073/pnas.0500964102. PubMed DOI PMC
Forman OP, Hitti RJ, Boursnell M, Miyadera K, Sargan D, and Mellersh C. (2016). Canine genome assembly correction facilitates identification of a MAP9 deletion as a potential age of onset modifier for RPGRIP1-associated canine retinal degeneration. Mamm Genome 27, 237–245. 10.1007/s00335-016-9627-x. PubMed DOI
Fontenille L, Rouquier S, Lutfalla G, and Giorgi D. (2014). Microtubule-associated protein 9 (Map9/Asap) is required for the early steps of zebrafish development. Cell Cycle 13, 1101–1114. 10.4161/cc.27944. PubMed DOI PMC
Liu Q, Tan G, Levenkova N, Li T, Pugh EN Jr., Rux JJ, Speicher DW, and Pierce EA (2007). The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6, 1299–1317. 10.1074/mcp.M700054-MCP200. PubMed DOI PMC
Venoux M, Delmouly K, Milhavet O, Vidal-Eychenie S, Giorgi D, and Rouquier S. (2008). Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9). BMC Genomics 9, 406. 10.1186/1471-2164-9-406. PubMed DOI PMC
Jensen VL, Carter S, Sanders AA, Li C, Kennedy J, Timbers TA, Cai J, Scheidel N, Kennedy BN, Morin RD, et al. (2016). Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport. PLoS Genet 12, e1006469. 10.1371/journal.pgen.1006469. PubMed DOI PMC
Hao L, Thein M, Brust-Mascher I, Civelekoglu-Scholey G, Lu Y, Acar S, Prevo B, Shaham S, and Scholey JM (2011). Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 13, 790–798. 10.1038/ncb2268. PubMed DOI PMC
Nishida K, Tsuchiya K, Obinata H, Onodera S, Honda Y, Lai YC, Haruta N, and Sugimoto A. (2021). Expression Patterns and Levels of All Tubulin Isotypes Analyzed in GFP Knock-In C. elegans Strains. Cell Struct Funct 46, 51–64. 10.1247/csf.21022. PubMed DOI PMC
Garbrecht J, Laos T, Holzer E, Dillinger M, and Dammermann A. (2021). An acentriolar centrosome at the C. elegans ciliary base. Current biology : CB 31, 24182428 e2418. 10.1016/j.cub.2021.03.023. PubMed DOI
Magescas J, Eskinazi S, Tran MV, and Feldman JL (2021). Centriole-less pericentriolar material serves as a microtubule organizing center at the base of C. elegans sensory cilia. Curr Biol 31, 2410–2417 e2416. 10.1016/j.cub.2021.03.022. PubMed DOI PMC
Ward S, Thomson N, White JG, and Brenner S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. J Comp Neurol 160, 313–337. 10.1002/cne.901600305. PubMed DOI
Perkins LA, Hedgecock EM, Thomson JN, and Culotti JG (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117, 456–487. 10.1016/0012-1606(86)90314-3. PubMed DOI
Li Y, Zhang Q, Wei Q, Zhang Y, Ling K, and Hu J. (2012). SUMOylation of the small GTPase ARL-13 promotes ciliary targeting of sensory receptors. J Cell Biol 199, 589–598. 10.1083/jcb.201203150. PubMed DOI PMC
Cevik S, Sanders AA, Van Wijk E, Boldt K, Clarke L, van Reeuwijk J, Hori Y, Horn N, Hetterschijt L, Wdowicz A, et al. (2013). Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet 9, e1003977. 10.1371/journal.pgen.1003977. PubMed DOI PMC
Warburton-Pitt SR, Silva M, Nguyen KC, Hall DH, and Barr MM (2014). The nphp-2 and arl-13 genetic modules interact to regulate ciliogenesis and ciliary microtubule patterning in C. elegans. PLoS Genet 10, e1004866. 10.1371/journal.pgen.1004866. PubMed DOI PMC
Nechipurenko IV, Berciu C, Sengupta P, and Nicastro D. (2017). Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans. Elife 6. 10.7554/eLife.25686. PubMed DOI PMC
Li W, Yi P, Zhu Z, Zhang X, Li W, and Ou G. (2017). Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. The EMBO journal 36, 2553–2566. 10.15252/embj.201796883. PubMed DOI PMC
Gadadhar S, Bodakuntla S, Natarajan K, and Janke C. (2017). The tubulin code at a glance. J Cell Sci 130, 1347–1353. 10.1242/jcs.199471. PubMed DOI
Wloga D, Joachimiak E, and Fabczak H. (2017). Tubulin Post-Translational Modifications and Microtubule Dynamics. Int J Mol Sci 18. 10.3390/ijms18102207. PubMed DOI PMC
Genova M, Grycova L, Puttrich V, Magiera MM, Lansky Z, Janke C, and Braun M. (2023). Tubulin polyglutamylation differentially regulates microtubule-interacting proteins. EMBO J 42, e112101. 10.15252/embj.2022112101. PubMed DOI PMC
Mirvis M, Stearns T, and James Nelson W. (2018). Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J 475, 2329–2353. 10.1042/BCJ20170453. PubMed DOI PMC
Kimura Y, Kurabe N, Ikegami K, Tsutsumi K, Konishi Y, Kaplan OI, Kunitomo H, Iino Y, Blacque OE, and Setou M. (2010). Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J Biol Chem 285, 22936–22941. 10.1074/jbc.C110.128280. PubMed DOI PMC
O’Hagan R, Silva M, Nguyen KCQ, Zhang W, Bellotti S, Ramadan YH, Hall DH, and Barr MM (2017). Glutamylation Regulates Transport, Specializes Function, and Sculpts the Structure of Cilia. Curr Biol 27, 3430–3441 e3436. 10.1016/j.cub.2017.09.066. PubMed DOI PMC
Yu I, Garnham CP, and Roll-Mecak A. (2015). Writing and Reading the Tubulin Code. J Biol Chem 290, 17163–17172. 10.1074/jbc.R115.637447. PubMed DOI PMC
Monroy BY, Tan TC, Oclaman JM, Han JS, Simo S, Niwa S, Nowakowski DW, McKenney RJ, and Ori-McKenney KM (2020). A Combinatorial MAP Code Dictates Polarized Microtubule Transport. Developmental cell 53, 60–72 e64. 10.1016/j.devcel.2020.01.029. PubMed DOI PMC
Prevo B, Mangeol P, Oswald F, Scholey JM, and Peterman EJ (2015). Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia. Nat Cell Biol 17, 1536–1545. 10.1038/ncb3263. PubMed DOI
Evans JE, Snow JJ, Gunnarson AL, Ou G, Stahlberg H, McDonald KL, and Scholey JM (2006). Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans. J Cell Biol 172, 663–669. 10.1083/jcb.200509115. PubMed DOI PMC
Lipton J, Kleemann G, Ghosh R, Lints R, and Emmons SW (2004). Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci 24, 7427–7434. 10.1523/JNEUROSCI.1746-04.2004. PubMed DOI PMC
Liu KS, and Sternberg PW (1995). Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron 14, 79–89. 10.1016/0896-6273(95)90242-2. PubMed DOI
Barr MM, and Sternberg PW (1999). A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389. 10.1038/43913. PubMed DOI
Simon JM, and Sternberg PW (2002). Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 99, 1598–1603. 10.1073/pnas.032225799. PubMed DOI PMC
Doroquez DB, Berciu C, Anderson JR, Sengupta P, and Nicastro D. (2014). A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. Elife 3, e01948. 10.7554/eLife.01948. PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50, D439–D444. 10.1093/nar/gkab1061. PubMed DOI PMC
Kiesel P, Alvarez Viar G, Tsoy N, Maraspini R, Gorilak P, Varga V, Honigmann A, and Pigino G. (2020). The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat Struct Mol Biol 27, 1115–1124. 10.1038/s41594-020-0507-4. PubMed DOI PMC
Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T, Pittler SJ, Chiu W, and Wensel TG (2012). Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 151, 1029–1041. 10.1016/j.cell.2012.10.038. PubMed DOI PMC
Konno A, Ikegami K, Konishi Y, Yang HJ, Abe M, Yamazaki M, Sakimura K, Yao I, Shiba K, Inaba K, and Setou M. (2016). Ttll9−/− mice sperm flagella show shortening of doublet 7, reduction of doublet 5 polyglutamylation and a stall in beating. J Cell Sci 129, 2757–2766. 10.1242/jcs.185983. PubMed DOI
Deane JA, Verghese E, Martelotto LG, Cain JE, Galtseva A, Rosenblum ND, Watkins DN, and Ricardo SD (2013). Visualizing renal primary cilia. Nephrology (Carlton) 18, 161–168. 10.1111/nep.12022. PubMed DOI
Moutin MJ, Bosc C, Peris L, and Andrieux A. (2021). Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 81, 253–272. 10.1002/dneu.22774. PubMed DOI PMC
Magiera MM, and Janke C. (2014). Post-translational modifications of tubulin. Curr Biol 24, R351–354. 10.1016/j.cub.2014.03.032. PubMed DOI
Edde B, Rossier J, Le Caer JP, Desbruyeres E, Gros F, and Denoulet P. (1990). Posttranslational glutamylation of alpha-tubulin. Science 247, 83–85. 10.1126/science.1967194. PubMed DOI
Viar GA, Klena N, Martino F, Nievergelt A, and Pigino G. (2023). The Tubulin Nano-Code: a protofilament-specific pattern of tubulin post-translational modifications regulates ciliary beating mechanics. bioRxiv, 2023.2006.2028.546853. 10.1101/2023.06.28.546853. DOI
Khalifa AAZ, Ichikawa M, Dai D, Kubo S, Black CS, Peri K, McAlear TS, Veyron S, Yang SK, Vargas J, et al. (2020). The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. Elife 9. 10.7554/eLife.52760. PubMed DOI PMC
Dymek EE, Lin J, Fu G, Porter ME, Nicastro D, and Smith EF (2019). PACRG and FAP20 form the inner junction of axonemal doublet microtubules and regulate ciliary motility. Mol Biol Cell 30, 1805–1816. 10.1091/mbc.E19-01-0063. PubMed DOI PMC
Li Y, Wei Q, Zhang Y, Ling K, and Hu J. (2010). The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J Cell Biol 189, 1039–1051. 10.1083/jcb.200912001. PubMed DOI PMC
Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, and Ori-McKenney KM (2018). Competition between microtubule-associated proteins directs motor transport. Nat Commun 9, 1487. 10.1038/s41467-018-03909-2. PubMed DOI PMC
Dixit R, Ross JL, Goldman YE, and Holzbaur EL (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089. 10.1126/science.1152993. PubMed DOI PMC
Lipka J, Kapitein LC, Jaworski J, and Hoogenraad CC (2016). Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 35, 302–318. 10.15252/embj.201592929. PubMed DOI PMC
Ecklund KH, Morisaki T, Lammers LG, Marzo MG, Stasevich TJ, and Markus SM (2017). She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain. Nat Commun 8, 2151. 10.1038/s41467-017-02004-2. PubMed DOI PMC
Scholey JM (2013). Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 29, 443–469. 10.1146/annurev-cellbio-101512-122335. PubMed DOI
Zhang C, Han B, Guo Y, Guan H, Chen Z, Liu B, Sun W, Li W, Sun W, and Wang S. (2022). MAP9 Exhibits Protumor Activities and Immune Escape toward Bladder Cancer by Mediating TGF-beta1 Pathway. J Oncol 2022, 3778623. 10.1155/2022/3778623. PubMed DOI PMC
Wang S, Huang J, Li C, Zhao L, Wong CC, Zhai J, Zhou Y, Deng W, Zeng Y, Gao S, et al. (2020). MAP9 Loss Triggers Chromosomal Instability, Initiates Colorectal Tumorigenesis, and Is Associated with Poor Survival of Patients with Colorectal Cancer. Clin Cancer Res 26, 746–757. 10.1158/1078-0432.CCR-19-1611. PubMed DOI
Liu W, Xiao H, Wu S, Liu H, and Luo B. (2018). MAP9 single nucleotide polymorphism rs1058992 is a risk of EBV-associated gastric carcinoma in Chinese population. Acta Virol 62, 435–440. 10.4149/av_2018_412. PubMed DOI
Dickinson DJ, Ward JD, Reiner DJ, and Goldstein B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10, 1028–1034. 10.1038/nmeth.2641. PubMed DOI PMC
Dickinson DJ, Pani AM, Heppert JK, Higgins CD, and Goldstein B. (2015). Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette. Genetics 200, 1035–1049. 10.1534/genetics.115.178335. PubMed DOI PMC
Sallee MD, Zonka JC, Skokan TD, Raftrey BC, and Feldman JL (2018). Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS Biol 16, e2005189. 10.1371/journal.pbio.2005189. PubMed DOI PMC
Mangeol P, Prevo B, and Peterman EJ (2016). KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Mol Biol Cell 27, 1948–1957. 10.1091/mbc.E15-060404. PubMed DOI PMC
Sulston JE, and Brenner S. (1974). The DNA of Caenorhabditis elegans. Genetics 77, 95–104. 10.1093/genetics/77.1.95. PubMed DOI PMC
Siahaan V, Tan R, Humhalova T, Libusova L, Lacey SE, Tan T, Dacy M, Ori-McKenney KM, McKenney RJ, Braun M, and Lansky Z. (2022). Microtubule lattice spacing governs cohesive envelope formation of tau family proteins. Nat Chem Biol 18, 1224–1235. 10.1038/s41589-022-01096-2. PubMed DOI PMC
Fink G, Hajdo L, Skowronek KJ, Reuther C, Kasprzak AA, and Diez S. (2009). The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11, 717–723. 10.1038/ncb1877. PubMed DOI
Walther P, and Ziegler A. (2002). Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208, 3–10. 10.1046/j.1365-2818.2002.01064.x. PubMed DOI
Buser C, and Walther P. (2008). Freeze-substitution: the addition of water to polar solvents enhances the retention of structure and acts at temperatures around −60 degrees C. J Microsc 230, 268–277. 10.1111/j.1365-2818.2008.01984.x. PubMed DOI
Sato T. (1968). A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 17, 158–159. PubMed
Kremer JR, Mastronarde DN, and McIntosh JR (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 71–76. 10.1006/jsbi.1996.0013. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Laine RF, Tosheva KL, Gustafsson N, Gray RDM, Almada P, Albrecht D, Risa GT, Hurtig F, Lindas AC, Baum B, et al. (2019). NanoJ: a high-performance open- source super-resolution microscopy toolbox. J Phys D Appl Phys 52, 163001. 10.1088/1361-6463/ab0261. PubMed DOI PMC
Edgar RC (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113. 10.1186/1471-2105-5-113. PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DM, Clamp M, and Barton GJ (2009). Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191. 10.1093/bioinformatics/btp033. PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, and Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307–321. 10.1093/sysbio/syq010. PubMed DOI
Lefort V, Longueville JE, and Gascuel O. (2017). SMS: Smart Model Selection in PhyML. Mol Biol Evol 34, 2422–2424. 10.1093/molbev/msx149. PubMed DOI PMC
Arshadi C, Gunther U, Eddison M, Harrington KIS, and Ferreira TA (2021). SNT: a unifying toolbox for quantification of neuronal anatomy. Nat Methods 18, 374–377. 10.1038/s41592-021-01105-7. PubMed DOI
Snow JJ, Ou G, Gunnarson AL, Walker MR, Zhou HM, Brust-Mascher I, and Scholey JM (2004). Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6, 1109–1113. 10.1038/ncb1186. PubMed DOI
Mukhopadhyay S, Lu Y, Qin H, Lanjuin A, Shaham S, and Sengupta P. (2007). Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J 26, 2966–2980. 10.1038/sj.emboj.7601717. PubMed DOI PMC