Simultaneous PCR detection of Paenibacillus larvae targeting insertion sequence IS256 and Melissococcus plutonius targeting pMP1 plasmid from hive specimens

. 2024 Apr ; 69 (2) : 415-421. [epub] 20240105

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38180723

Grantová podpora
QK1710228 Ministerstvo Zemědělství
LX22NPO5103 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 38180723
PubMed Central PMC11003898
DOI 10.1007/s12223-023-01125-0
PII: 10.1007/s12223-023-01125-0
Knihovny.cz E-zdroje

Paenibacillus larvae and Melissococcus plutonius represent the most threatening bacterial diseases of honeybee (Apis mellifera)-American and European foulbrood, respectively. For efficient control of those diseases, rapid and accurate detection of the pathogens is crucial. Therefore, we developed a novel multiplex PCR method simultaneously detecting both pathogens. To design and optimize multiplex PCR reaction, four strains of P. larvae representing four ERIC genotypes I-IV (strain DSM 7030-ERIC I, DSM 25430-ERIC II, LMG 16252-ERIC III, DSM 3615-ERIC IV) were selected. Those strains were fully sequenced using long-read sequencing (Sequel I, Pacific Biosciences). For P. larvae, the multicopy insertion sequence IS256 identified in all genotypes of P. larvae was selected to provide high sensitivity. M. plutonius was detected by plasmid pMP1 sequence and the virulence verified by following detection of ETX/MTX2 toxin responsible for pore formation in the cell membrane. As an internal control, a gene encoding for major royal jelly protein 1 specific for honeybees was selected. The method was validated on 36 clinical specimens collected from the colonies suffering from American and European foulbrood in the Czech Republic. Based on the results, sensitivity of PCR was calculated to 93.75% and specificity to 100% for P. larvae diagnosed from hive debris and 100% sensitivity and specificity for honeybee workers and larval scales as well as for diseased brood infected by M. plutonius.

Zobrazit více v PubMed

Ahmed N, Mohanty AK, Mukhopadhyay U, Batish VR, Grover S. PCR-based rapid detection of Mycobacterium tuberculosis in blood from immunocompetent patients with pulmonary tuberculosis. J Clin Microbiol. 1998;36:3094–3095. doi: 10.1128/JCM.36.10.3094-3095.1998. PubMed DOI PMC

Alippi AM, Lopez AC, Aguilar OM. Differentiation of Paenibacillus larvae subsp. larvae, the cause of American foulbrood of honeybees, by using PCR and restriction fragment analysis of genes encoding 16S rRNA. Appl Environ Microbiol. 2002;68:3655–3660. doi: 10.1128/aem.68.7.3655-3660.2002. PubMed DOI PMC

Alippi AM, Lopez AC, Aguilar OM. A PCR-based method that permits specific detection of Paenibacillus larvae subsp. larvae, the cause of American foulbrood of honey bees, at the subspecies level. Lett Appl Microbiol. 2004;39:25–33. doi: 10.1111/j.1472-765x.2004.01535.x. PubMed DOI

Arai R, Miyoshi-Akiyama T, Okumura K, Morinaga Y, Wu M, Sugimura Y, Yoshiyama M, Okura M, Kirikae T, Takamatsu D. Development of duplex PCR assay for detection and differentiation of typical and atypical Melissococcus plutonius strains. J Vet Med Sci. 2014;76:491–498. doi: 10.1292/jvms.13-0386. PubMed DOI PMC

Berg JA, Merrill BD, Breakwell DP, Hope S, Grose JH. A PCR-based method for distinguishing between two common beehive bacteria Paenibacillus larvae and Brevibacillus laterosporus. Appl Environ Microbiol. 2018;84:e01886. doi: 10.1128/aem.01886-18. PubMed DOI PMC

Biová J, Charrière JD, Dostálková S, Škrabišová M, Petřivalský M, Bzdil J, Danihlík J. Melissococcus plutonius can be effectively and economically detected using hive debris and conventional PCR. InSects. 2021;12:150. doi: 10.3390/insects12020150. PubMed DOI PMC

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, 3rd, Stevens R, Vonstein V, Wattam AR, Xia F. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365. doi: 10.1038/srep08365. PubMed DOI PMC

Chagas SS, Vaucher RA, Brandelli A. (2010) Detection of Paenibacillus larvae by real-time PCR. Acta Sci Vet 38:251–256. 10.22456/1679-9216.17058.

de Graaf DC, De Vos P, Heyndrickx M, Van Trappen S, Peiren N, Jacobs FJ. Identification of Paenibacillus larvae to the subspecies level: an obstacle for AFB diagnosis. J Invertebr Pathol. 2006;91:115–123. doi: 10.1016/j.jip.2005.10.010. PubMed DOI

Dobbelaere W, de Graaf DC, Peeters JE, Jacobs FJ. Development of a fast and reliable diagnostic method for American foulbrood disease (Paenibacillus larvae subsp. larvae) using a 16S rRNA gene based PCR. Apidologie. 2001;32:363–370. doi: 10.1051/apido:2001136. DOI

Ebeling J, Knispel H, Hertlein G, Fünfhaus A, Genersch E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol. 2016;100:7387–7395. doi: 10.1007/s00253-016-7716-0. PubMed DOI

Forsgren E, Budge GE, Charrière JD, Hornitzky MAZ. Standard methods for European foulbrood research. J Apicult Res. 2013;52:1–14. doi: 10.3896/IBRA.1.52.1.12. DOI

Forsgren E, Stevanovic J, Fries I. Variability in germination and in temperature and storage resistance among Paenibacillus larvae genotypes. Vet Microbiol. 2008;129:342–349. doi: 10.1016/j.vetmic.2007.12.001. PubMed DOI

Garrido-Bailón E, Higes M, Martínez-Salvador A, Antúnez K, Botías C, Meana A, Prieto L, Martín-Hernández R. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay. Microb Biotechnol. 2013;6:731–739. doi: 10.1111/1751-7915.12070. PubMed DOI PMC

Genersch E, Forsgren E, Pentikäinen J, Ashiralieva A, Rauch S, Kilwinski J, Fries I. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol. 2006;56:501–511. doi: 10.1099/ijs.0.63928-0. PubMed DOI

Genersch E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol. 2010;103:10–19. doi: 10.1016/j.jip.2009.06.015. PubMed DOI

Govan VA, Allsopp MH, Davison S. A PCR detection method for rapid identification of Paenibacillus larvae. Appl Environ Microbiol. 1999;65:2243–2245. doi: 10.1128/AEM.65.5.2243-2245.1999. PubMed DOI PMC

Han SH, Lee DB, Lee DW, Kim EH, Yoon BS. Ultra-rapid real-time PCR for the detection of Paenibacillus larvae, the causative agent of American foulbrood (AFB) J Invertebr Pathol. 2008;99:8–13. doi: 10.1016/j.jip.2008.04.010. PubMed DOI

Hansen H, Brødsgaard CJ. American foulbrood: a review of its biology, diagnosis and control. Bee World. 1999;80:5–23. doi: 10.1080/0005772x.1999.11099415. DOI

Kopcakova A, Salamunova S, Javorsky P, Sabo R, Legath J, Ivorova S, Piknova M, Pristas P. The application of MALDI-TOF MS for a variability study of Paenibacillus larvae. Vet Sci. 2022;9:521. doi: 10.3390/vetsci9100521. PubMed DOI PMC

Lauro FM, Favaretto M, Covolo L, Rassu M, Bertoloni G. Rapid detection of Paenibacillus larvae from honey and hive samples with a novel nested PCR protocol. Int J Food Microbiol. 2003;81:195–201. doi: 10.1016/s0168-1605(02)00257-x. PubMed DOI

Lindström A, Korpela S, Fries I. Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie. 2008;39:515–522. doi: 10.1051/apido:2008032. DOI

Martínez J, Simon V, Gonzalez B, Conget P. A real-time PCR-based strategy for the detection of Paenibacillus larvae vegetative cells and spores to improve the diagnosis and the screening of American foulbrood. Lett Appl Microbiol. 2010;50:603–610. doi: 10.1111/j.1472-765x.2010.02840.x. PubMed DOI

Okamoto M, Furuya H, Sugimoto I, Kusumoto M, Takamatsu D. A novel multiplex PCR assay to detect and distinguish between different types of Paenibacillus larvae and Melissococcus plutonius, and a survey of foulbrood pathogen contamination in Japanese honey. J Vet Med Sci. 2022;84:390–399. doi: 10.1292/jvms.21-0629. PubMed DOI PMC

Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31:e00088–e117. doi: 10.1128/CMR.00088-17. PubMed DOI PMC

Piccini C, D’Alessandro B, Antunez K, Zunino P. Detection of Paenibacillus larvae subspecies larvae spores in naturally infected bee larvae and artificially contaminated honey by PCR. World J Microbiol Biotechnol. 2002;18:761–765. doi: 10.1023/A:1020435703165. DOI

Poppinga L, Genersch E. Molecular pathogenesis of American foulbrood: how Paenibacillus larvae kills honey bee larvae. Curr Opin Insect Sci. 2015;10:29–36. doi: 10.1016/j.cois.2015.04.013. PubMed DOI

Reynaldi FJ, Alippi AM. Optimization of the growth of Paenibacillus larvae in semi-selective media. Rev Argent Microbiol. 2006;38:69–72. PubMed

Rossi F, Amadoro C, Ruberto A, Ricchiuti L. Evaluation of quantitative PCR (qPCR) Paenibacillus larvae targeted assays and definition of optimal conditions for its detection/quantification in honey and hive debris. InSects. 2018;9:165. doi: 10.3390/insects9040165. PubMed DOI PMC

Ryba S, Titera D, Haklova M, Stopka P. A PCR method of detecting American foulbrood (Paenibacillus larvae) in winter beehive wax debris. Vet Microbiol. 2009;139:193–196. doi: 10.1016/j.vetmic.2009.05.009. PubMed DOI

Sopko B, Zitek J, Nesvorna M, Markovic M, Kamler M, Titera D, Erban T, Hubert J. Detection and quantification of Melissococcus plutonius in honey bee workers exposed to European foulbrood in Czechia through conventional PCR, qPCR, and barcode sequencing. J Apicultural Res. 2019;59:1–11. doi: 10.1080/00218839.2019.1685148. DOI

Tsourkas PK. Paenibacillus larvae bacteriophages: obscure past, promising future. Microb Genom. 2020;6:e000329. doi: 10.1099/mgen.0.000329. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...