Melissococcus plutonius Can Be Effectively and Economically Detected Using Hive Debris and Conventional PCR

. 2021 Feb 09 ; 12 (2) : . [epub] 20210209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33572468

Grantová podpora
IGA_2020_013 Univerzita Palackého v Olomouci

European foulbrood (EFB) is an infectious disease of honey bees caused by the bacterium Melissococcus plutonius. A method for DNA isolation and conventional PCR diagnosis was developed using hive debris, which was non-invasively collected on paper sheets placed on the bottom boards of hives. Field trials utilized 23 honey bee colonies with clinically positive symptoms and 21 colonies without symptoms. Bayes statistics were applied to calculate the comparable parameters for EFB diagnostics when using honey, hive debris, or samples of adult bees. The reliability of the conventional PCR was 100% at 6.7 × 103 Colony Forming Unit of M. plutonius in 1 g of debris. The sensitivity of the method for the sampled honey, hive debris, and adult bees was 0.867, 0.714, and 1.000, respectively. The specificity for the tested matrices was 0.842, 0.800, and 0.833. The predictive values for the positive tests from selected populations with 52% prevalence were 0.813, 0.833, and 0.842, and the real accuracies were 0.853, 0.750, and 0.912, for the honey, hive debris, and adult bees, respectively. It was concluded that hive debris can effectively be utilized to non-invasively monitor EFB in honey bee colonies.

Zobrazit více v PubMed

Goulson D., Nicholls E., Botias C., Rotheray E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 2015;347:1255957. doi: 10.1126/science.1255957. PubMed DOI

Forsgren E. European foulbrood in honey bees. J. Invertebr. Pathol. 2010;103(Suppl. 1):S5–S9. doi: 10.1016/j.jip.2009.06.016. PubMed DOI

de Graaf D.C., Alippi A.M., Antúnez K., Aronstein K.A., Budge G., De Koker D., De Smet L., Dingman D.W., Evans J.D., Foster L.J., et al. Standard methods for american foulbrood research. J. Apic. Res. 2013;52:1–28. doi: 10.3896/IBRA.1.52.1.11. DOI

World Organisation for Animal Health . Oie Terrestrial Manual. WOAH; Paris, France: 2018. European foulbrood of honey bees (infection of honey bees with Melissococcus plutonius)

World Organisation for Animal Health . Oie Terrestrial Manual. WOAH; Paris, France: 2018. American foulbrood of honey bees (infection of honey bees with Paenibacillus larvae)

Forsgren E., Locke B., Sircoulomb F., Schäfer M.O. Bacterial diseases in honeybees. Curr. Clin. Microbiol. Rep. 2018;5:18–25. doi: 10.1007/s40588-018-0083-0. DOI

Boncristiani H., Ellis J.D., Bustamante T., Graham J., Jack C., Kimmel C.B., Mortensen A., Schmehl D.R. World honey bee health: The global distribution of western honey bee (Apis mellifera L.) pests and pathogens. Bee World. 2021;98:2–6. doi: 10.1080/0005772X.2020.1800330. DOI

Andrea Cecchini P.H., Dietemann V., Charrière J.-D., Grossar D. The Influence of European Foulbrood on the Mortality of Adult Honeybees; Proceedings of the 7th European Conference of Apidology; Cluj-Napoca, Romania. 7–9 September 2016.

Bailey L. Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp.) J. Appl. Bacteriol. 1983;55:65–69. doi: 10.1111/j.1365-2672.1983.tb02648.x. DOI

Alippi A.M. Bacterial diseases of honey bees. In: Ritter W., editor. Bee Health and Veterinarians. World Organisation for Animal Health; Paris, France: 2014.

Grossar D., Kilchenmann V., Forsgren E., Charriere J.D., Gauthier L., Chapuisat M., Dietemann V. Putative determinants of virulence in Melissococcus plutonius, the bacterial agent causing european foulbrood in honey bees. Virulence. 2020;11:554–567. doi: 10.1080/21505594.2020.1768338. PubMed DOI PMC

Arai R., Tominaga K., Wu M., Okura M., Ito K., Okamura N., Onishi H., Osaki M., Sugimura Y., Yoshiyama M., et al. Diversity of Melissococcus plutonius from honeybee larvae in japan and experimental reproduction of european foulbrood with cultured atypical isolates. PLoS ONE. 2012;7:e33708. doi: 10.1371/journal.pone.0033708. PubMed DOI PMC

Nakamura K., Okumura K., Harada M., Okamoto M., Okura M., Takamatsu D. Different impacts of pmp19 on the virulence of Melissococcus plutonius strains with different genetic backgrounds. Environ. Microbiol. 2020;22:2756–2770. doi: 10.1111/1462-2920.14999. PubMed DOI

Lewkowski O., Erler S. Virulence of Melissococcus plutonius and secondary invaders associated with European foulbrood disease of the honey bee. Microbiol. Open. 2019;8:e00649. doi: 10.1002/mbo3.649. PubMed DOI PMC

Takamatsu D., Sato M., Yoshiyama M. Infection of Melissococcus plutonius clonal complex 12 strain in european honeybee larvae is essentially confined to the digestive tract. J. Vet. Med. Sci. 2016;78:29–34. doi: 10.1292/jvms.15-0405. PubMed DOI PMC

Erler S., Lewkowski O., Poehlein A., Forsgren E. The curious case of achromobacter eurydice, a gram-variable pleomorphic bacterium associated with european foulbrood disease in honeybees. Microb. Ecol. 2017;75:1–6. doi: 10.1007/s00248-017-1007-x. PubMed DOI

CABI European Foulbrood. [(accessed on 12 January 2021)]; Available online: https://www.cabi.org/isc/datasheet/109547#tooverview.

Pejchar P. V Česku byl po 20 Letech Opět Prokázán Případ Hniloby Včelího Plodu. State Veterinary Administration; Prague, Czech Republic: 2015. [(accessed on 12 January 2021)]. Available online: https://www.svscr.cz/v_cesku_byl_po_20_letech_opet_prokazan_pripad/

Nakamura K., Yamazaki Y., Shiraishi A., Kobayashi S., Harada M., Yoshiyama M., Osaki M., Okura M., Takamatsu D. Virulence differences among Melissococcus plutonius strains with different genetic backgrounds in Apis mellifera larvae under an improved experimental condition. Sci. Rep. 2016;6:33329. doi: 10.1038/srep33329. PubMed DOI PMC

Forsgren E., Budge G.E., Charrière J.-D., Hornitzky M.A.Z. Standard methods for European foulbrood research. J. Apic. Res. 2013;52:1–14. doi: 10.3896/IBRA.1.52.1.12. DOI

Schafer M.O., Genersch E., Funfhaus A., Poppinga L., Formella N., Bettin B., Karger A. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell Maldi-Tof Mass Spectrometry. Vet. Microbiol. 2014;170:291–297. doi: 10.1016/j.vetmic.2014.02.006. PubMed DOI

Sopko B., Zitek J., Nesvorna M., Markovic M., Kamler M., Titera D., Erban T., Hubert J. Detection and quantification of Melissococcus plutonius in honey bee workers exposed to European foulbrood in czechia through conventional PCR, qPCR, and barcode sequencing. J. Apic. Res. 2019;59:503–514. doi: 10.1080/00218839.2019.1685148. DOI

Polachova V., Pastucha M., Mikusova Z., Mickert M.J., Hlavacek A., Gorris H.H., Skladal P., Farka Z. Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus Plutonius. Nanoscale. 2019;11:8343–8351. doi: 10.1039/C9NR01246J. PubMed DOI

Farka Z., Jurik T., Kovar D., Trnkova L., Skladal P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017;117:9973–10042. doi: 10.1021/acs.chemrev.7b00037. PubMed DOI

Mikušová Z., Farka Z., Pastucha M., Poláchová V., Obořilová R., Skládal P. Amperometric immunosensor for rapid detection of honeybee pathogen Melissococcus Plutonius. Electroanalysis. 2019;31:1969–1976. doi: 10.1002/elan.201900252. DOI

Tomkies V., Flint J., Johnson G., Waite R., Wilkins S., Danks C., Watkins M., Cuthbertson A.G.S., Carpana E., Marris G., et al. Development and validation of a novel field test kit for European foulbrood. Apidologie. 2008;40:63–72. doi: 10.1051/apido:2008060. DOI

Owen R. Role of human action in the spread of honey bee (hymenoptera: Apidae) pathogens. J. Econ. Èntomol. 2017;110:797–801. doi: 10.1093/jee/tox075. PubMed DOI

Jacques A., Laurent M., Consortium E., Ribiere-Chabert M., Saussac M., Bougeard S., Budge G.E., Hendrikx P., Chauzat M.P. A pan-european epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS ONE. 2017;12:e0172591. doi: 10.1371/journal.pone.0172591. PubMed DOI PMC

Budge G.E., Barrett B., Jones B., Pietravalle S., Marris G., Chantawannakul P., Thwaites R., Hall J., Cuthbertson A.G., Brown M.A. The occurrence of Melissococcus plutonius in healthy colonies of Apis mellifera and the efficacy of European foulbrood control measures. J. Invertebr. Pathol. 2010;105:164–170. doi: 10.1016/j.jip.2010.06.004. PubMed DOI

von Buren R.S., Oehen B., Kuhn N.J., Erler S. High-resolution maps of swiss apiaries and their applicability to study spatial distribution of bacterial honey bee brood diseases. PeerJ. 2019;7:e6393. doi: 10.7717/peerj.6393. PubMed DOI PMC

Fries I., Camazine S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 2001;32:199–214. doi: 10.1051/apido:2001122. DOI

Bzdil J. Detection of Paenibacillus larvae spores in the debris and wax of honey bee by the tween 80 method. Acta Vet. BRNO. 2007;76:643–648. doi: 10.2754/avb200776040643. DOI

Ryba S., Titera D., Haklova M., Stopka P. A PCR method of detecting American foulbrood (Paenibacillus larvae) in winter beehive wax debris. Vet. Microbiol. 2009;139:193–196. doi: 10.1016/j.vetmic.2009.05.009. PubMed DOI

Ryba S., Kindlmann P., Titera D., Haklova M., Stopka P. A new low-cost procedure for detecting nucleic acids in low-incidence samples: A case study of detecting spores of Paenibacillus larvae from bee debris. J. Econ. Entomol. 2012;105:1487–1491. doi: 10.1603/EC12010. PubMed DOI

Rossi F., Amadoro C., Ruberto A., Ricchiuti L. Evaluation of quantitative PCR (qPCR) Paenibacillus larvae targeted assays and definition of optimal conditions for its detection/quantification in honey and hive debris. Insects. 2018;9:165. doi: 10.3390/insects9040165. PubMed DOI PMC

Ward L., Brown M., Neumann P., Wilkins S., Pettis J., Boonham N. A DNA method for screening hive debris for the presence of small hive beetle (Aethina tumida) Apidologie. 2007;38:272–280. doi: 10.1051/apido:2007004. DOI

Ponting S., Tomkies V., Stainton K. Rapid identification of the invasive small hive beetle (Aethina tumida) using lamp. Pest Manag. Sci. 2021;77:1476–1481. doi: 10.1002/ps.6168. PubMed DOI

Govan V.A., Brozel V., Allsopp M.H., Davison S. A pcr detection method for rapid identification of Melissococcus pluton in honeybee larvae. Appl. Environ. Microbiol. 1998;64:1983–1985. doi: 10.1128/AEM.64.5.1983-1985.1998. PubMed DOI PMC

Evans J.D., Schwarz R.S., Chen Y.P., Budge G., Cornman R.S., De la Rua P., de Miranda J.R., Foret S., Foster L., Gauthier L., et al. Standard methods for molecular research in Apis Mellifera. J. Apic. Res. 2013;52:1–54. doi: 10.3896/IBRA.1.52.4.11. DOI

Roetschi A., Berthoud H., Kuhn R., Imdorf A. Infection rate based on quantitative real-time PCR of Melissococcus plutonius, the causal agent of European foulbrood, in honeybee colonies before and after apiary sanitation. Apidologie. 2008;39:362–371. doi: 10.1051/apido:200819. DOI

Hall T.A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucleic Acids Symp. Ser. 1999;41:95–98.

Dainat B., Grossar D., Ecoffey B., Haldemann C. Triplex real-time PCR method for the qualitative detection of European and american foulbrood in honeybee. J. Microbiol. Methods. 2018;146:61–63. doi: 10.1016/j.mimet.2018.01.018. PubMed DOI

Metz C.E. Basic principles of roc analysis. Semin. Nucl. Med. 1978;8:283–298. doi: 10.1016/S0001-2998(78)80014-2. PubMed DOI

Pagano M., Gauvreau K. Principles of Biostatistics. 2nd ed. Chapman and Hall/CRC; New York, NY, USA: 2018.

vanEngelsdorp D., Lengerich E., Spleen A., Dainat B., Cresswell J., Baylis K., Nguyen B.K., Soroker V., Underwood R., Human H., et al. Standard epidemiological methods to understand and improve Apis mellifera health. J. Apic. Res. 2013;52:1–16. doi: 10.3896/IBRA.1.52.1.08. DOI

Erban T., Ledvinka O., Kamler M., Hortova B., Nesvorna M., Tyl J., Titera D., Markovic M., Hubert J. Bacterial community associated with worker honey bees (Apis mellifera) affected by European foulbrood. PeerJ. 2017;5:e3816. doi: 10.7717/peerj.3816. PubMed DOI PMC

Alippi A.M., Lopez A.C., Aguilar O.M. A PCR-based method that permits specific detection of Paenibacillus larvae subsp. Larvae, the cause of American foulbrood of honey bees, at the subspecies level. Lett. Appl. Microbiol. 2004;39:25–33. doi: 10.1111/j.1472-765X.2004.01535.x. PubMed DOI

Forsgren E., Lundhagen A.C., Imdorf A., Fries I. Distribution of Melissococcus plutonius in honeybee colonies with and without symptoms of European foulbrood. Microb. Ecol. 2005;50:369–374. doi: 10.1007/s00248-004-0188-2. PubMed DOI

Forsgren E., Laugen A.T. Prognostic value of using bee and hive debris samples for the detection of American foulbrood disease in honey bee colonies. Apidologie. 2013;45:10–20. doi: 10.1007/s13592-013-0225-6. DOI

Bloch D.A. Comparing two diagnostic tests against the same “gold standard” in the same sample. Biometrics. 1997;53:73–85. doi: 10.2307/2533098. PubMed DOI

Umemneku Chikere C.M., Wilson K., Graziadio S., Vale L., Allen A.J. Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard—An update. PLoS ONE. 2019;14:e0223832. doi: 10.1371/journal.pone.0223832. PubMed DOI PMC

Pereira M.R., Rocha-Silva F., Graciele-Melo C., Lafuente C.R., Magalhaes T., Caligiorne R.B. Comparison between conventional and real-time PCR assays for diagnosis of visceral leishmaniasis. Biomed Res. Int. 2014;2014:1–4. doi: 10.1155/2014/639310. PubMed DOI PMC

Xia Z., Johansson M.L., Gao Y., Zhang L., Haffner G.D., MacIsaac H.J., Zhan A. Conventional versus real-time quantitative pcr for rare species detection. Ecol. Evol. 2018;8:11799–11807. doi: 10.1002/ece3.4636. PubMed DOI PMC

Belloy L., Imdorf A., Fries I., Forsgren E., Berthoud H., Kuhn R., Charrière J.-D. Spatial distribution of Melissococcus plutonius in adult honey bees collected from apiaries and colonies with and without symptoms of European foulbrood. Apidologie. 2007;38:136–140. doi: 10.1051/apido:2006069. DOI

Cremer S., Armitage S.A., Schmid-Hempel P. Social immunity. Curr. Biol. 2007;17:R693–R702. doi: 10.1016/j.cub.2007.06.008. PubMed DOI

Simone-Finstrom M. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites. Bee World. 2017;94:21–29. doi: 10.1080/0005772X.2017.1307800. DOI

Spivak M., Reuter G.S. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie. 2001;32:555–565. doi: 10.1051/apido:2001103. DOI

Swanson J.A., Torto B., Kells S.A., Mesce K.A., Tumlinson J.H., Spivak M. Odorants that induce hygienic behavior in honeybees: Identification of volatile compounds in chalkbrood-infected honeybee larvae. J. Chem. Ecol. 2009;35:1108–1116. doi: 10.1007/s10886-009-9683-8. PubMed DOI

Palacio M.A., Rodriguez E., Goncalves L., Bedascarrasbure E., Spivak M. Hygienic behaviors of honey bees in response to brood experimentally pin-killed or infected with Ascosphaera apis. Apidologie. 2010;41:602–612. doi: 10.1051/apido/2010022. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...