Surgical radioguidance with beta-emitting radionuclides; challenges and possibilities: A position paper by the EANM
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, směrnice pro lékařskou praxi, přehledy
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
PubMed
38189911
PubMed Central
PMC11300492
DOI
10.1007/s00259-023-06560-2
PII: 10.1007/s00259-023-06560-2
Knihovny.cz E-zdroje
- Klíčová slova
- Beta emitting Radionuclides, Image guided surgery, Radiation exposure, Radioguidance, Radiotracers,
- MeSH
- beta částice * škodlivé účinky MeSH
- chirurgie s pomocí počítače * škodlivé účinky metody normy MeSH
- lidé MeSH
- nukleární lékařství * metody normy MeSH
- radiační ochrana metody normy MeSH
- radiofarmaka * aplikace a dávkování škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- směrnice pro lékařskou praxi MeSH
- Názvy látek
- radiofarmaka * MeSH
Radioguidance that makes use of β-emitting radionuclides is gaining in popularity and could have potential to strengthen the range of existing radioguidance techniques. While there is a strong tendency to develop new PET radiotracers, due to favorable imaging characteristics and the success of theranostics research, there are practical challenges that need to be overcome when considering use of β-emitters for surgical radioguidance. In this position paper, the EANM identifies the possibilities and challenges that relate to the successful implementation of β-emitters in surgical guidance, covering aspects related to instrumentation, radiation protection, and modes of implementation.
Department of Medical Physics Motol University Hospital Prague Czech Republic
Department of Medical Physics Ospedale U Parini Aosta Italy
Department of Nuclear Medicine Medizinische Hochschule Hannover Hannover Germany
Department of Radiology Memorial Sloan Kettering Cancer Center New York NY USA
Molecular Pharmacology Program Memorial Sloan Kettering Cancer Center New York NY USA
Nuclear Medicine Department Hospital Clinic Barcelona Barcelona Spain
Zobrazit více v PubMed
Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108:1501–16. 10.1021/cr0782426. 10.1021/cr0782426 PubMed DOI
Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev. 2014;66:90–100. 10.1016/j.addr.2013.09.007. 10.1016/j.addr.2013.09.007 PubMed DOI PMC
Filippi L, Chiaravalloti A, Schillaci O, Cianni R, Bagni O. Theranostic approaches in nuclear medicine: current status and future prospects. Expert Rev Med Devices. 2020;17:331–43. 10.1080/17434440.2020.1741348. 10.1080/17434440.2020.1741348 PubMed DOI
Camillocci ES, Baroni G, Bellini F, Bocci V, Collamati F, Cremonesi M, et al. A novel radioguided surgery technique exploiting β−decays. Sci Rep. 2014;4:1–5. 10.1038/srep04401.10.1038/srep04401 PubMed DOI PMC
Gulec SA, Hoenie E, Hostetter R, Schwartzentruber D. PET probe-guided surgery: applications and clinical protocol. World J Surg Oncol. 2007;5:1–7. 10.1186/1477-7819-5-65. 10.1186/1477-7819-5-65 PubMed DOI PMC
Grootendorst MR, Cariati M, Kothari A, Tuch DS, Purushotham A. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Transl Imaging. 2016;4:353–66. 10.1007/s40336-016-0183-x. 10.1007/s40336-016-0183-x PubMed DOI PMC
Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:1–63. 10.1186/1477-7819-7-11. 10.1186/1477-7819-7-11 PubMed DOI PMC
Tsuchimochi M, Hayama K. Intraoperative gamma cameras for radioguided surgery: technical characteristics, performance parameters, and clinical applications. Phys Med. 2013;29:126–38. 10.1016/j.ejmp.2012.05.002. 10.1016/j.ejmp.2012.05.002 PubMed DOI
Robu S, Schottelius M, Eiber M, Maurer T, Gschwend J, Schwaiger M, et al. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med. 2017;58:235–42. 10.2967/jnumed.116.178939. 10.2967/jnumed.116.178939 PubMed DOI
Alex J, Krag D. Gamma-probe guided localization of lymph nodes. Surg Oncol. 1993;2:137–43. 10.1016/0960-7404(93)90001-F. 10.1016/0960-7404(93)90001-F PubMed DOI
Alex JC. Candidate’s thesis: the application of sentinel node radiolocalization to solid tumors of the head and neck: a 10-year experience. Laryngoscope. 2004;114:2–19. 10.1097/00005537-200401000-00002. 10.1097/00005537-200401000-00002 PubMed DOI
Valdes Olmos RA, Vidal-Sicart S, Manca G, Mariani G, Leon-Ramirez LF, Rubello D, et al. Advances in radioguided surgery in oncology. Q J Nucl Med Mol Imaging. 2017;61:247–70. 10.23736/S1824-4785.17.02995-8. 10.23736/S1824-4785.17.02995-8 PubMed DOI
Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging. 2014;41:17–25. 10.1007/s00259-013-2542-4.10.1007/s00259-013-2542-4 PubMed DOI
Maurer T, Robu S, Schottelius M, Schwamborn K, Rauscher I, van den Berg NS, et al. 99mTechnetium-based prostate-specific membrane antigen–radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75:659–66. 10.1016/j.eururo.2018.03.013. 10.1016/j.eururo.2018.03.013 PubMed DOI
Mix M, Schultze-Seemann W, von Büren M, Sigle A, Omrane MA, Grabbert MT, et al. 99mTc-labelled PSMA ligand for radio-guided surgery in nodal metastatic prostate cancer: proof of principle. EJNMMI Res. 2021;11:1–9. 10.1186/s13550-021-00762-1. 10.1186/s13550-021-00762-1 PubMed DOI PMC
Darr C, Harke NN, Radtke JP, Yirga L, Kesch C, Grootendorst MR, et al. Intraoperative 68Ga-PSMA Cerenkov luminescence imaging for surgical margins in radical prostatectomy: a feasibility study. J Nucl Med. 2020;61:1500–6. 10.2967/jnumed.119.240424. 10.2967/jnumed.119.240424 PubMed DOI PMC
Wilhelm AJ, Mijnhout GS, Franssen EJ. Radiopharmaceuticals in sentinel lymph-node detection–an overview. Eur J Nucl Med. 1999;26:S36–42. 10.1007/PL00014793. 10.1007/PL00014793 PubMed DOI
Heuveling DA, Karagozoglu KH, Van Lingen A, Hoekstra OS, Van Dongen GAMS, De Bree R. Feasibility of intraoperative detection of sentinel lymph nodes with 89zirconium-labelled nanocolloidal albumin PET-CT and a handheld high-energy gamma probe. EJNMMI Res. 2018;8:15. 10.1186/s13550-018-0368-6. 10.1186/s13550-018-0368-6 PubMed DOI PMC
Yılmaz B, Şahin S, Ergül N, Çolakoğlu Y, Baytekin HF, Sökmen D, et al. 99mTc-PSMA targeted robot-assisted radioguided surgery during radical prostatectomy and extended lymph node dissection of prostate cancer patients. Ann Nucl Med. 2022:1–13. doi:10.1007/s12149-022-01741-9. PubMed
Mahieu R, Krijger GC, Ververs F, de Roos R, de Bree R, de Keizer B. [68Ga] Ga-tilmanocept PET/CT lymphoscintigraphy: a novel technique for sentinel lymph node imaging. Eur J Nucl Med Mol Imaging. 2021;48:963–5. 10.1007/s00259-020-05101-5. 10.1007/s00259-020-05101-5 PubMed DOI
Mueller JJ, Dauer LT, Murali R, Iasonos A, Pandit-Taskar N, Abu-Rustum NR, et al. Positron lymphography via intracervical 18F-FDG injection for presurgical lymphatic mapping in cervical and endometrial malignancies. J Nucl Med. 2020;61:1123–30. 10.2967/jnumed.119.230714. 10.2967/jnumed.119.230714 PubMed DOI PMC
olde Heuvel J, de Wit-van der Veen BJ, van der Poel HG, Bekers EM, Grootendorst MR, Vyas KN, et al. 68Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: first-in-man series. Eur J Nucl Med Mol Imaging. 2020;47:2624-32. doi:10.1007/s00259-020-04783-1. PubMed PMC
Ilhan H, Todica A, Lindner S, Boening G, Gosewisch A, Wängler C, et al. First-in-human 18F-SiFAlin-TATE PET/CT for NET imaging and theranostics. Eur J Nucl Med Mol Imaging. 2019;46:2400–1. 10.1007/s00259-019-04448-8. 10.1007/s00259-019-04448-8 PubMed DOI
Povoski SP, Hall NC, Murrey DA Jr, Chow AZ, Gaglani JR, Bahnson EE, et al. Multimodal imaging and detection approach to 18F-FDG-directed surgery for patients with known or suspected malignancies: a comprehensive description of the specific methodology utilized in a single-institution cumulative retrospective experience. World J Surg Oncol. 2011;9:152. 10.1186/1477-7819-9-152. 10.1186/1477-7819-9-152 PubMed DOI PMC
Huang B, Tsai YY, Cartucho J, Vyas K, Tuch D, Giannarou S, et al. Tracking and visualization of the sensing area for a tethered laparoscopic gamma probe. Int J Comput Assist Radiol Surg. 2020;15:1389–97. 10.1007/s11548-020-02205-z. 10.1007/s11548-020-02205-z PubMed DOI PMC
van Oosterom MN, Simon H, Mengus L, Welling MM, van der Poel HG, van den Berg NS, et al. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am J Nucl Med Mol Imaging. 2016;6:1. PubMed PMC
Van Oosterom MN, Rietbergen DD, Welling MM, Van Der Poel HG, Maurer T, Van Leeuwen FW. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices. 2019;16:711–34. 10.1080/17434440.2019.1642104. 10.1080/17434440.2019.1642104 PubMed DOI
Pitre S, Ménard L, Ricard M, Solal M, Garbay J-R, Charon Y. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience. Eur J Nucl Med. 2003;30:339–43. 10.1007/s00259-002-1064-2.10.1007/s00259-002-1064-2 PubMed DOI
Hubalewska-Dydejczyk A, Kulig J, Szybinski P, Mikolajczak R, Pach D, Sowa-Staszczak A, et al. Radio-guided surgery with the use of [99mTc-EDDA/HYNIC] octreotate in intra-operative detection of neuroendocrine tumours of the gastrointestinal tract. Eur J Nucl Med Mol Imaging. 2007;34:1545–55. 10.1007/s00259-007-0476-4. 10.1007/s00259-007-0476-4 PubMed DOI
Nieweg OE, Tanis PJ, Kroon BB. The definition of a sentinel node. Ann Surg Oncol. 2001;8:538. 10.1007/s10434-001-0538-y. 10.1007/s10434-001-0538-y PubMed DOI
Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40:1932–47. 10.1007/s00259-013-2544-2. 10.1007/s00259-013-2544-2 PubMed DOI
Bluemel C, Herrmann K, Giammarile F, Nieweg OE, Dubreuil J, Testori A, et al. EANM practice guidelines for lymphoscintigraphy and sentinel lymph node biopsy in melanoma. Eur J Nucl Med Mol Imaging. 2015;42:1750–66. 10.1007/s00259-015-3135-1. 10.1007/s00259-015-3135-1 PubMed DOI
Patel A, Pain S, Britton P, Sinnatamby R, Warren R, Bobrow L, et al. Radioguided occult lesion localisation (ROLL) and sentinel node biopsy for impalpable invasive breast cancer. Eur J Surg Oncol. 2004;30:918–23. 10.1016/j.ejso.2004.07.008. 10.1016/j.ejso.2004.07.008 PubMed DOI
Lovrics PJ, Goldsmith CH, Hodgson N, McCready D, Gohla G, Boylan C, et al. A multicentered, randomized, controlled trial comparing radioguided seed localization to standard wire localization for nonpalpable, invasive and in situ breast carcinomas. Ann Surg Oncol. 2011;18:3407–14. 10.1245/s10434-011-1699-y. 10.1245/s10434-011-1699-y PubMed DOI
Travagli J, Cailleux A, Ricard M, Baudin E, Caillou B, Parmentier C, et al. Combination of radioiodine (131I) and probe-guided surgery for persistent or recurrent thyroid carcinoma. J Clin Endocrinol Metab. 1998;83:2675–80. 10.1210/jcem.83.8.5014. 10.1210/jcem.83.8.5014 PubMed DOI
García-Talavera P, Ruano R, Rioja M, Cordero J, Razola P, Vidal-Sicart S. Radioguided surgery in neuroendocrine tumors. A review of the literature. Rev Esp Med Nucl Imagen Mol. 2014;33:358–65. 10.1016/j.remn.2014.07.004. 10.1016/j.remn.2014.07.004 PubMed DOI
Maurer T, Graefen M, van der Poel H, Hamdy F, Briganti A, Eiber M, et al. Prostate-specific membrane antigen–guided surgery. J Nucl Med. 2020;61:6–12. 10.2967/jnumed.119.232330. 10.2967/jnumed.119.232330 PubMed DOI
Lindner T, Altmann A, Krämer S, Kleist C, Loktev A, Kratochwil C, et al. Design and development of 99mTc-labeled FAPI tracers for SPECT imaging and 188Re therapy. J Nucl Med. 2020;61:1507–13. 10.2967/jnumed.119.239731. 10.2967/jnumed.119.239731 PubMed DOI PMC
van Leeuwen FW, Schottelius M, Brouwer OR, Vidal-Sicart S, Achilefu S, Klode J, et al. Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance. J Nucl Med. 2020;61:13–9. 10.2967/jnumed.119.228684. 10.2967/jnumed.119.228684 PubMed DOI
Azhdarinia A, Ghosh P, Ghosh S, Wilganowski N, Sevick-Muraca EM. Dual-labeling strategies for nuclear and fluorescence molecular imaging: a review and analysis. Mol Imaging Biol. 2012;14:261–76. 10.1007/s11307-011-0528-9. 10.1007/s11307-011-0528-9 PubMed DOI PMC
Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med. 2008;49:169–72. 10.2967/jnumed.107.043331. 10.2967/jnumed.107.043331 PubMed DOI
Kubeil M, Martínez IIS, Bachmann M, Kopka K, Tuck KL, Stephan H. Dual-labelling strategies for nuclear and fluorescence molecular imaging: current status and future perspectives. Pharmaceuticals. 2022;15:432. 10.3390/ph15040432. 10.3390/ph15040432 PubMed DOI PMC
Brouwer OR, Buckle T, Vermeeren L, Klop WMC, Balm AJ, van der Poel HG, et al. Comparing the hybrid fluorescent–radioactive tracer indocyanine green–99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med. 2012;53:1034–40. 10.2967/jnumed.112.103127. 10.2967/jnumed.112.103127 PubMed DOI
Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81. 10.1053/j.semnuclmed.2010.12.004. 10.1053/j.semnuclmed.2010.12.004 PubMed DOI
Collamati F, van Oosterom MN, De Simoni M, Faccini R, Fischetti M, Mancini Terracciano C, et al. A DROP-IN beta probe for robot-assisted 68Ga-PSMA radioguided surgery: first ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res. 2020;10:1–10. 10.1186/s13550-020-00682-6. 10.1186/s13550-020-00682-6 PubMed DOI PMC
Mester C, Bruschini C, Magro P, Demartines N, Dunet V, Grigoriev E, et al. A handheld probe for β+-emitting radiotracer detection in surgery, biopsy and medical diagnostics based on Silicon Photomultipliers. IEEE Nuclear Science Symposium Conference Record. 2011;2011:253–7. 10.1109/NSSMIC.2011.6154491.10.1109/NSSMIC.2011.6154491 DOI
Gulec SA, Daghighian F, Essner R. PET-Probe: evaluation of technical performance and clinical utility of a handheld high-energy gamma probe in oncologic surgery. Ann Surg Oncol. 2016;23:9020–7. 10.1245/ASO.2006.05.047. 10.1245/ASO.2006.05.047 PubMed DOI
Collamati F, Bocci V, Castellucci P, De Simoni M, Fanti S, Faccini R, et al. Radioguided surgery with β radiation: a novel application with Ga68. Sci Rep. 2018;8:1–9. 10.1038/s41598-018-34626-x. 10.1038/s41598-018-34626-x PubMed DOI PMC
Russomando A, Bellini F, Bocci V, Collamati F, De Lucia E, Faccini R, et al. An intraoperative β-detecting probe for radio-guided surgery in tumour resection. IEEE Trans Nucl Sci. 2016;63:2533–9. 10.1109/ANIMMA.2015.7465290.10.1109/ANIMMA.2015.7465290 DOI
Daghighian F, Mazziotta JC, Hoffman EJ, Shenderov P, Eshaghian B, Siegel S, et al. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21:153–7. 10.1118/1.597240. 10.1118/1.597240 PubMed DOI
Mancini-Terracciano C, Donnarumma R, Bencivenga G, Bocci V, Cartoni A, Collamati F, et al. Feasibility of beta-particle radioguided surgery for a variety of “nuclear medicine” radionuclides. Phys Med. 2017;43:127–33. 10.1016/j.ejmp.2017.10.012. 10.1016/j.ejmp.2017.10.012 PubMed DOI
Yamamoto S, Matsumoto K, Sakamoto S, Tarutani K, Minato K, Senda M. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19:23–8. 10.1007/bf02986331. 10.1007/bf02986331 PubMed DOI
Daghighian F, Fong Y, et al. Detectors for intraoperative molecular imaging: from probes to scanners. In: Fong YGP, Lewis J, et al., editors. Imaging and visualization in the modern operating room. New York, NY: Springer; 2015. p. 55–67.
Dell’Oglio P, Meershoek P, Maurer T, Wit EM, van Leeuwen PJ, van der Poel HG, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur Urol. 2021;79:124–32. 10.1016/j.eururo.2020.10.031. 10.1016/j.eururo.2020.10.031 PubMed DOI
Sabet H, Stack BC, Nagarkar VV. A hand-held, intra-operative positron imaging probe for surgical applications. IEEE Trans Nucl Sci. 2015;62:1927–34. 10.1109/TNS.2015.2446434.10.1109/TNS.2015.2446434 DOI
Spadola S, Verdier M-A, Pinot L, Esnault C, Dinu N, Charon Y, et al. Design optimization and performances of an intraoperative positron imaging probe for radioguided cancer surgery. J Instrum. 2016;11:P12019. 10.1088/1748-0221/11/12/P12019.10.1088/1748-0221/11/12/P12019 DOI
Verdier M-A, Spadola S, Pinot L, Esnault C, Charon Y, Duval M-A, et al. Gamma-background rejection method for a dual scintillator positron probe dedicated to radio-guided surgery. Nucl Instrum Methods Phys Res A. 2018;912:315–9. 10.1016/j.nima.2017.12.001.10.1016/j.nima.2017.12.001 DOI
Chen L, Gobar LS, Knowles NG, Liu Z, Gmitro AF, Barrett HH. Direct imaging of radionuclide-produced electrons and positrons with an ultrathin phosphor. J Nucl Med. 2008;49:1141. 10.2967/jnumed.107.040568. 10.2967/jnumed.107.040568 PubMed DOI PMC
Lauria A, Mettivier G, Montesi MC, Aloj L, Lastoria S, Aurilio M, et al. Experimental study for an intraoperative probe for 18F imaging with a silicon pixel detector. Nucl Instrum Methods Phys Res A. 2007;576:198–203. 10.1016/j.nima.2007.01.152.10.1016/j.nima.2007.01.152 DOI
Wang Q, Tous J, Liu Z, Ziegler S, Shi K. Evaluation of Timepix silicon detector for the detection of 18F positrons. J Instrum. 2014;9:C05067. 10.1088/1748-0221/9/05/C05067.10.1088/1748-0221/9/05/C05067 DOI
Yamamoto S, Higashi T, Matsumoto K, Senda M. Development of a positron-imaging detector with background rejection capability. Ann Nucl Med. 2006;20:655–62. 10.1007/BF02984676. 10.1007/BF02984676 PubMed DOI
Llopart X, Campbell M, Dinapoli R, Segundo DS, Pernigotti E. Medipix2: A 64-k pixel readout chip with 55-/spl mu/m square elements working in single photon counting mode. IEEE Trans Nucl Sci. 2002;49:2279–83. 10.1109/TNS.2002.803788.10.1109/TNS.2002.803788 DOI
Llopart X, Ballabriga R, Campbell M, Tlustos L, Wong W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl Instrum Methods Phys Res A. 2007;581:485–94. 10.1016/j.nima.2007.08.079.10.1016/j.nima.2007.08.079 DOI
Russo P, Lauria A, Mettivier G, Montesi MC, Marotta M, Aloj L, et al. 18F-FDG positron autoradiography with a particle counting silicon pixel detector. Phys Med Biol. 2008;53:6227–43. 10.1088/0031-9155/53/21/022. 10.1088/0031-9155/53/21/022 PubMed DOI
Wang Q, Liu Z, Ziegler SI, Shi K. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine. Phys Med Biol. 2015;60:5261–78. 10.1088/0031-9155/60/13/5261. 10.1088/0031-9155/60/13/5261 PubMed DOI
Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:1–17. 10.1186/s40658-016-0144-5. 10.1186/s40658-016-0144-5 PubMed DOI PMC
Ruggiero A, Holland JP, Lewis JS, Grimm J. Cerenkov luminescence imaging of medical isotopes. J Nucl Med. 2010;51:1123–30. 10.2967/jnumed.110.076521. 10.2967/jnumed.110.076521 PubMed DOI PMC
Das S, Thorek DL, Grimm J. Cerenkov imaging. Adv Cancer Res. 2014;124:213–34. 10.1016/B978-0-12-411638-2.00006-9. 10.1016/B978-0-12-411638-2.00006-9 PubMed DOI PMC
Mc Larney B, Zhang Q, Pratt EC, Skubal M, Isaac E, Hsu HT, et al. Shortwave infrared detection of medical radioisotope Cerenkov luminescence. J Nucl Med. 2022. 10.2967/jnumed.122.264079. 10.2967/jnumed.122.264079 PubMed DOI PMC
Darr C, Krafft U, Fendler W, Costa PF, Barbato F, Praus C, et al. First-in-man intraoperative Cerenkov luminescence imaging for oligometastatic prostate cancer using 68Ga-PSMA-11. Eur J Nucl Med Mol Imaging. 2020;47:3194–5. 10.1007/s00259-020-04778-y. 10.1007/s00259-020-04778-y PubMed DOI
Hu H, Cao X, Kang F, Wang M, Lin Y, Liu M, et al. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25:1814–22. 10.1007/s00330-014-3574-2. 10.1007/s00330-014-3574-2 PubMed DOI
Grootendorst MR, Cariati M, Pinder SE, Kothari A, Douek M, Kovacs T, et al. Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging: a first-in-human feasibility study. J Nucl Med. 2017;58:891–8. 10.2967/jnumed.116.181032. 10.2967/jnumed.116.181032 PubMed DOI
olde Heuvel J, de Wit-van der Veen BJ, Vyas KN, Tuch DS, Grootendorst MR, Stokkel MPM, et al. Performance evaluation of Cerenkov luminescence imaging: a comparison of 68Ga with 18F. EJNMMI Phys. 2019;6:17. doi:10.1186/s40658-019-0255-x. PubMed PMC
Zhang Z, Cai M, Bao C, Hu Z, Tian J. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. Nanomed. 2019;17:62–70. 10.1016/j.nano.2018.12.017.10.1016/j.nano.2018.12.017 PubMed DOI
Chin PT, Welling MM, Meskers SC, Valdes Olmos RA, Tanke H, van Leeuwen FW. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40:1283–91. 10.1007/s00259-013-2408-9. 10.1007/s00259-013-2408-9 PubMed DOI
Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54:N355–65. 10.1088/0031-9155/54/16/n01. 10.1088/0031-9155/54/16/n01 PubMed DOI PMC
Pratt EC, Skubal M, Mc Larney B, Causa-Andrieu P, Das S, Sawan P, et al. Prospective testing of clinical Cerenkov luminescence imaging against standard-of-care nuclear imaging for tumour location. Nat Biomed Eng. 2022;6:559–68. 10.1038/s41551-022-00876-4. 10.1038/s41551-022-00876-4 PubMed DOI PMC
Brouwer OR, Buckle T, Bunschoten A, Kuil J, Vahrmeijer AL, Wendler T, et al. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys Med Biol. 2012;57:3123. 10.1088/0031-9155/57/10/3123. 10.1088/0031-9155/57/10/3123 PubMed DOI
van Oosterom MN, van der Poel HG, Navab N, van de Velde CJ, van Leeuwen FW. Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions. Curr Opin Urol. 2018;28:205–13. 10.1097/MOU.0000000000000478. 10.1097/MOU.0000000000000478 PubMed DOI
Wendler T, Traub J, Ziegler SI, Navab N. Medical image computing and computer-assisted intervention – MICCAI 2006. In: Larsen R, Nielsen M, Sporring J, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. Berlin, Heidelberg: Springer; 2006. p. 561–9. PubMed
Vogel J, Lasser T, Gardiazabal J, Navab N. Trajectory optimization for intra-operative nuclear tomographic imaging. Med Image Anal. 2013;17:723–31. 10.1016/j.media.2013.04.009. 10.1016/j.media.2013.04.009 PubMed DOI
Vetter C, Lasser T, Okur A, Navab N. 1D–3D registration for intra-operative nuclear imaging in radio-guided surgery. IEEE Trans Med Imaging. 2015;34:608–17. 10.1109/TMI.2014.2363551. 10.1109/TMI.2014.2363551 PubMed DOI
Shakir DI, Okur A, Hart A, Matthies P, Ziegler SI, Essler M, et al. Towards intra-operative PET for head and neck cancer: lymph node localization using high-energy probes. In: Ayache N, Delingette, H., Golland, P., Mori, K., editor. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. 2013/01/05 ed. Berlin, Heidelberg: Springer; 2012 430–7. PubMed
Costa PF, Püllen L, Sandach P, Moraitis A, Heß J, Tschirdewahn S, et al. Comparison of CLI with microPET/CT for the detection of PSMA foci in the prostatectomy specimen: a feasibility study. J Nucl Med. 2022;63(supplement 2):4002.
Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, Van Holen R, Karp JS. Performance evaluation of the MOLECUBES β-CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol. 2018;63: 155013. 10.1088/1361-6560/aacec3. 10.1088/1361-6560/aacec3 PubMed DOI PMC
Debacker JM, Schelfhout V, Brochez L, Creytens D, D'Asseler Y, Deron P, et al. High-resolution 18F-FDG PET/CT for assessing three-dimensional intraoperative margins status in malignancies of the head and neck, a proof-of-concept. J Clin Med. 2021;10. 10.3390/jcm10163737. PubMed PMC
Okur A, Hennersperger C, Runyan B, Gardiazaball J, Keicher M, Paepke S, et al. FhSPECT-US guided needle biopsy of sentinel lymph nodes in the axilla: is it feasible? In: Golland P, Hata, N., Barillot, C., Hornegger, J., Howe, R., editor. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. 2014/10/22 ed: Springer, Cham; 2014 577–84. PubMed
van den Berg NS, Simon H, Kleinjan GH, Engelen T, Bunschoten A, Welling MM, et al. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery. Eur J Nucl Med Mol Imaging. 2015;42:1639–47. 10.1007/s00259-015-3109-3. 10.1007/s00259-015-3109-3 PubMed DOI
Bugby SL, Lees JE, Perkins AC. Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clin Transl Imaging. 2017;5:323–41. 10.1007/s40336-017-0235-x. 10.1007/s40336-017-0235-x PubMed DOI PMC
Lees JE, Bugby SL, Alqahtani MS, Jambi LK, Dawood NS, McKnight WR, et al. A Multimodality hybrid gamma-optical camera for intraoperative imaging. Sensors. 2017;17:554. 10.3390/s17030554. 10.3390/s17030554 PubMed DOI PMC
Frisch B. Combining endoscopic ultrasound with Time-Of-Flight PET: the EndoTOFPET-US Project. Nucl Instrum Methods Phys Res A. 2013;732:577–80. 10.1016/j.nima.2013.05.027.10.1016/j.nima.2013.05.027 DOI
Esposito M, Busam B, Hennersperger C, Rackerseder J, Lu A, Navab N, et al. Cooperative robotic gamma imaging: enhancing US-guided needle biopsy. In: Navab N, Hornegger, J., Wells, W., Frangi, A., editor. Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 MICCAI 2015: Springer, Cham; 2015 611–8.
Povoski SP, Chapman GJ, Murrey DA, Lee R, Martin EW, Hall NC. Intraoperative detection of 18F-FDG-avid tissue sites using the increased probe counting efficiency of the K-alpha probe design and variance-based statistical analysis with the three-sigma criteria. BMC Cancer. 2013;13:98. 10.1186/1471-2407-13-98. 10.1186/1471-2407-13-98 PubMed DOI PMC
Metser U, McVey R, Ferguson S, Halankar J, Bernardini M. Intraoperative lymph node evaluation using 18F-FDG and a hand-held gamma probe in endometrial cancer surgery–a pilot study. Eur J Gynaecol Oncol. 2016;37:362–6. 10.12892/ejgo3102.2016. 10.12892/ejgo3102.2016 PubMed DOI
Thorek DLJ, Riedl C, Grimm J. Clinical Cerenkov Luminescence Imaging of 18F-FDG. J Nucl Med. 2014;113:127266. 10.2967/jnumed.113.127266.10.2967/jnumed.113.127266 PubMed DOI PMC
Bertani E, Collamati F, Colandrea M, Faccini R, Fazio N, Ferrari ME, et al. First ex vivo results of β−-radioguided surgery in small intestine neuroendocrine tumors with 90Y-DOTATOC. Cancer Biother Radiopharm. 2021;36:397–406. 10.1089/cbr.2020.4487. 10.1089/cbr.2020.4487 PubMed DOI
Bahler CD, Green M, Hutchins GD, Cheng L, Magers MJ, Fletcher J, et al. Prostate specific membrane antigen targeted positron emission tomography of primary prostate cancer: assessing accuracy with whole mount pathology. Urol J. 2020;203:92–9. 10.1097/JU.0000000000000501.10.1097/JU.0000000000000501 PubMed DOI
Collamati F, Mirabelli R, Muraglia L, Luzzago S, Morganti S, Mistretta FA, et al. First in human validation of innovative beta radio guided surgery technique in prostate cancer. J Nucl Med. 2023;64(supplement 1):P1481.
Muraglia L, Mattana F, Travaini LL, Musi G, Bertani E, Renne G, et al. First live-experience session with PET/CT specimen imager: a pilot analysis in prostate cancer and neuroendocrine tumor. Biomedicines. 2023;11:645. 10.3390/biomedicines11020645. 10.3390/biomedicines11020645 PubMed DOI PMC
Van de Sande L, Menekse G. Peri-operative 18F-FDG-PET-CT specimen imaging for margin assessment in breast malignancies: a proof-of-concept study. Eur J Surg Oncol. 2022;48: e87. 10.1016/j.ejso.2021.12.116.10.1016/j.ejso.2021.12.116 DOI
Delacroix D, Guerre JP, Leblanc P, Hickman C. Radionuclide and radiation protection data handbook 2002. Radiat Prot Dosim. 2002;98:1–168. 10.1093/oxfordjournals.rpd.a006705.10.1093/oxfordjournals.rpd.a006705 PubMed DOI
Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union. 2014;L 013:1–73.
Nalley C, Wiebeck K, Bartel TB, Bodenner D, Stack BC Jr. Intraoperative radiation exposure with the use of 18F-FDG–guided thyroid cancer surgery. Otolaryngol Head Neck Surg. 2010;142:281–3. 10.1016/j.otohns.2009.11.005. 10.1016/j.otohns.2009.11.005 PubMed DOI
Piert M, Burian M, Meisetschläger G, Stein HJ, Ziegler S, Nährig J, et al. Positron detection for the intraoperative localisation of cancer deposits. Eur J Nucl Med Mol Imaging. 2007;34:1534–44. 10.1007/s00259-007-0430-5. 10.1007/s00259-007-0430-5 PubMed DOI PMC
Costa PF, Fendler WP, Herrmann K, Sandach P, Grafe H, Grootendorst M, et al. Radiation protection and occupational exposure on [68Ga]Ga-PSMA-11 based Cerenkov luminescence imaging procedures in robot-assisted prostatectomy. J Nucl Med. 2021. 10.2967/jnumed.121.263175. 10.2967/jnumed.121.263175 PubMed DOI PMC
Camillocci ES, Schiariti M, Bocci V, Carollo A, Chiodi G, Colandrea M, et al. First ex vivo validation of a radioguided surgery technique with β-radiation. Phys Med. 2016;32:1139–44. 10.1016/j.ejmp.2016.08.018. 10.1016/j.ejmp.2016.08.018 PubMed DOI
Russomando A, Schiariti M, Bocci V, Colandrea M, Collamati F, Cremonesi M, et al. The β-radio-guided surgery: method to estimate the minimum injectable activity from ex-vivo test. Phys Med. 2019;58:114–20. 10.1016/j.ejmp.2019.02.004. 10.1016/j.ejmp.2019.02.004 PubMed DOI
Morche J, Renner D, Pietsch B, Kaiser L, Broenneke J, Gruber S, et al. International comparison of minimum volume standards for hospitals. Health Policy. 2018;122:1165–76. 10.1016/j.healthpol.2018.08.016. 10.1016/j.healthpol.2018.08.016 PubMed DOI
Bauer H, Honselmann KC. Minimum volume standards in surgery-are we there yet. Visc Med. 2017;33:106–16. 10.1159/000456041. 10.1159/000456041 PubMed DOI PMC
(NAR) D-NR. Nuklearmedizinische Betriebe: Strahlenschutzberechnungen. Beuth Verlag GmbH; 2020.
Bunschoten A, van den Berg NS, Valdés Olmos RA, Blokland JAK, van Leeuwen FWB. Tracers applied in radioguided surgery. In: Herrmann K, Nieweg OE, Povoski SP, editors. Radioguided Surgery: Current Applications and Innovative Directions in Clinical Practice: Springer, Cham; 2016 75–101.
Vanhavere F, Carinou E, Donadille L, Ginjaume M, Jankowski J, Rimpler A, et al. An overview on extremity dosimetry in medical applications. Radiat Prot Dosimetry. 2008;129:350–5. 10.1093/rpd/ncn149. 10.1093/rpd/ncn149 PubMed DOI
Saha S, Jacklin R, Siddika A, Clayton G, Dua S, Smith S. Safety of radioactive sentinel node biopsy for breast cancer and the pregnant surgeon - a review. Int J Surg. 2016;36:298–304. 10.1016/j.ijsu.2016.11.019. 10.1016/j.ijsu.2016.11.019 PubMed DOI
Endo A. Operational quantities and new approach by ICRU. Ann ICRP. 2016;45:178–87. 10.1177/014664531562434. 10.1177/014664531562434 PubMed DOI
Sundell-Bergman S, De la Cruz I, Avila R, Hasselblad S. A new approach to assessment and management of the impact from medical liquid radioactive waste. J Environ Radioact. 2008;99:1572–7. 10.1016/j.jenvrad.2007.12.005. 10.1016/j.jenvrad.2007.12.005 PubMed DOI
Buck AK, Herrmann K, Stargardt T, Dechow T, Krause BJ, Schreyögg J. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Technol. 2010;38:6–17. 10.2967/jnmt.108.059584. 10.2967/jnmt.108.059584 PubMed DOI
Joint Federal Committee. Guideline of the Joint Federal Committee on outpatient specialist care in accordance with § 116b SGB V (Richtlinie des Gemeinsamen Bundesausschusses über die ambulante spezialfachärztliche Versorgung nach § 116b SGB V) - Attachements. https://www.g-ba.de/richtlinien/80/. Accessed 5 May 2023.
National Association of Statutory Health Insurance Physicians (Kassenärztliche Bundesvereinigung). F-18-Fluorodesoxyglukose-PET/CT des Körperstammes. https://www.kbvde/tools/ebm/html/34701_202904386860173988269792.html. Accessed 5 May 2023.
Joint Federal Committee. Guideline of the Joint Federal Committee on outpatient specialist care in accordance with § 116b SGB V (Richtlinie des Gemeinsamen Bundesausschusses über die ambulante spezialfachärztliche Versorgung nach § 116b SGB V). BAnz AT 19.07.2013 B1: Bundesanzeiger; 2013.
National Association of Statutory Health Insurance Physicians (Kassenärztliche Bundesvereinigung). Zuschlag SPECT, Zwei- oder Mehrkopf. https://www.kbv.de/tools/ebm/html/17363_2904448811748695661888.html. Accessed 5 May 2023.
European Commission Directorate-General for Environment. Guidance on medical exposures in medical and biomedical research: Publications Office; 1999.