The separation of cyclic diadenosine diphosphorothioate and the diastereomers of its difluorinated derivative and the estimation of the binding constants and ionic mobilities of their complexes with 2-hydroxypropyl-β-cyclodextrin by affinity capillary electrophoresis

. 2024 Jun ; 45 (11-12) : 1000-1009. [epub] 20240109

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38195812

Grantová podpora
20-03899S Czech Science Foundation
RVO 61388963 Czech Academy of Sciences

The incorporation of phosphorothioate linkages has recently been extensively employed in therapeutic oligonucleotides. For their separation and quality control, new high-efficient and high-sensitive analytical methods are needed. In this work, a new affinity capillary electrophoresis method has been developed and applied for the separation of a potential anticancer drug, 2',3'-cyclic diadenosine diphosphorothioate (Rp, Rp) (ADU-S100), and three recently newly synthesized diastereomers of its difluorinated derivative, 3',3'-cyclic di(2'-fluoro, 2'-deoxyadenosine phosphorothioate). The separation was performed in the various background electrolytes (BGEs) within a pH range 5-9 using several native and derivatized cyclodextrins (CDs) as chiral additives of the BGE. Relatively good separations were obtained with β-, γ-, and 2-hydroxypropyl-γ-CDs in some of the BGEs tested. However, the best separation was achieved using the 2-hydroxypropyl-β-CD chiral selector at 43.5 mM average concentration in the BGE composed of 40 mM Tris, 40 mM tricine, pH 8.1. Under these conditions, all the previous four cyclic dinucleotides (CDNs) were baseline separated within 4 min. Additionally, the average apparent binding constants and the average actual ionic mobilities of the complexes of all four CDNs with 2-hydroxypropyl-β-CD in the above BGE were determined. The formed complexes were found to be relatively weak, with the average apparent binding constants in the range of 12.2-94.1 L mol-1 and with the actual ionic mobilities spanning the interval (-7.8 to -12.7) × 10-9 m2 V-1 s-1. The developed method can be applied for the separation, analysis, and characterization of the above and similar CDNs.

Zobrazit více v PubMed

Shang MD, Lu K, Guan WL, Cao SJ, Ren MT, Zhou CZ. 2 ‘,3 ’‐Cyclic GMP‐AMP dinucleotides for STING‐mediated immune modulation: principles, immunotherapeutic potential, and synthesis. ChemMedChem. 2022;17:e202100671.

Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucl Acid Ther. 2014;24:374–387.

Meric‐Bernstam F, Sweis RF, Hodi FS, Messersmith WA, Andtbacka RHI, Ingham M, et al. Phase I dose‐escalation trial of MIW815 (ADU‐S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin Cancer Res. 2022;28:677–688.

Meric‐Bernstam F, Sweis RF, Kasper S, Hamid O, Bhatia S, Dummer R, et al. Combination of the STING agonist MIW815 (ADU‐S100) and PD‐1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open‐label, multicenter, phase Ib study. Clin Cancer Res. 2023;29:110–121.

Polidarova MP, Brehova P, Kaiser MM, Smola M, Dracinsky M, Smith J, et al. Synthesis and biological evaluation of phosphoester and phosphorothioate prodrugs of STING agonist 3 ‘,3 ’‐c‐di(2 ‘ F,2 ’ dAMP). J Med Chem. 2021;64:7596–7616.

Chen T, Tang SJ, Fu YG, Napolitano JG, Zhang K. Analytical techniques for characterizing diastereomers of phosphorothioated oligonucleotides. J Chromatogr A. 2022;1678:463349.

Schutzner W, Fanali S, Rizzi A, Kenndler E. Separation of diastereomers by capillary zone electrophoresis in free solution with polymer additive and organic solvent component effect of pH and solvent composition. J Chromatogr A. 1996;719:411–420.

Gilar M, Belensky A, Cohen AS. Polymer solutions as a pseudostationary phase for capillary electrochromatographic separation of DNA diastereomers. Electrophoresis. 2000;21:2999–3009.

Koval D, Kasicka V, Jiracek J, Collinsova M. Separation of diastereomers of phosphinic pseudopeptides by capillary zone electrophoresis and reverse phase high‐performance liquid chromatography. J Sep Sci. 2003;26:653–660.

Koval D, Kasicka V, Jiracek J, Collinsova M. Determination of pK(a) values of diastereomers of phosphinic pseudopeptides by CZE. Electrophoresis. 2006;27:4648–4657.

Yu J, Liang XL, Wang ZK, Guo X, Sun TM, Guo XJ. Separation of folinic acid diastereomers in capillary electrophoresis using a new cationic beta‐cyclodextrin derivative. PLoS ONE. 2015;10:e0120216.

Ghassemi KM, Demelenne A, Crommen J, Servais AC, Fillet M. Improvement of chemo‐ and stereoselectivity for phosphorothioate oligonucleotides in capillary electrophoresis by addition of cyclodextrins. J Chromatogr A. 2022;1676:463270.

Vespalec R, Bocek P. Chiral separations in capillary electrophoresis. Chem Rev. 2000;100:3715–3753.

Krait S, Konjaria ML, Scriba GKE. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017–2020). Electrophoresis. 2021;42:1709–1725.

Orlandini S, Hancu G, Szabo ZI, Modroiu A, Papp LA, Gotti R, et al. New trends in the quality control of enantiomeric drugs: quality by design‐compliant development of chiral capillary electrophoresis methods. Molecules. 2022;27:7058.

Kandula JS, Rayala VPK, Pullapanthula R. Chirality: an inescapable concept for the pharmaceutical, bio‐pharmaceutical, food, and cosmetic industries. Sep Sci Plus. 2023;6:2200131.

Qian HL, Xu ST, Yan XP. Recent advances in separation and analysis of chiral compounds. Anal Chem. 2023;95:304–318.

Bernardo‐Bermejo S, Sanchez‐Lopez E, Castro‐Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Anal Chem. 2020;124:115807.

de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis. 2021;42:38–57.

Chankvetadze B, Scriba GKE. Cyclodextrins as chiral selectors in capillary electrophoresis: recent trends in mechanistic studies. Trends Anal Chem. 2023;160:116987.

Scriba GKE. Chiral recognition in separation sciences. Part I: polysaccharide and cyclodextrin selectors. Trends Anal Chem. 2019;120:115639.

Haginaka J. Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors. J Chromatogr A. 2000;875:235–254.

Ratih R, Watzig H, Stein M, El Deeb S. Investigation of the enantioselective interaction between selected drug enantiomers and human serum albumin by mobility shift‐affinity capillary electrophoresis. J Sep Sci. 2020;43:3960–3968.

Tickle DC, Okafo GN, Camilleri P, Jones RFD, Kirby AJ. Glucopyranoside‐based surfactants as pseudostationary phases for chiral separations in capillary electrophoresis. Anal Chem. 1994;66:4121–4126.

Tano C, Son SH, Furukawa J, Furuike T, Sakairi N. Dodecyl thioglycopyranoside sulfates: novel sugar‐based surfactants for enantiomeric separations by micellar electrokinetic capillary chromatography. Electrophoresis. 2008;29:2869–2875.

Hancu G, Papp LA, Szekely‐Szentmiklosi B, Kelemen H. The use of antibiotics as chiral selectors in capillary electrophoresis: a review. Molecules. 2022;27:3601.

Greno M, Marina ML, Castro‐Puyana M. Enantioseparation by capillary electrophoresis using ionic liquids as chiral selectors. Crit Rev Anal Chem. 2018;48:429–446.

Fanali S, Chankvetadze B. Some thoughts about enantioseparations in capillary electrophoresis. Electrophoresis. 2019;40:2420–2437.

Peluso P, Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: structures, features, application, and molecular modeling. Electrophoresis. 2021;42:1676–1708.

Fejos I, Kalydi E, Malanga M, Benkovics G, Beni S. Single isomer cyclodextrins as chiral selectors in capillary electrophoresis. J Chromatogr A. 2020;1627:461375.

Stepanova S, Kasicka V. Capillary electrophoretic methods applied to the investigation of peptide complexes. J Sep Sci. 2015;38:2708–2721.

Yu FZ, Zhao Q, Zhang DP, Yuan Z, Wang HL. Affinity interactions by capillary electrophoresis: binding, separation, and detection. Anal Chem. 2019;91:372–387.

Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020. Anal Chem. 2021;93:295–310.

Dubsky P, Dvorak M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem. 2016;408:8623–8641.

Mlcochova H, Ratih R, Michalcova L, Watzig H, Glatz Z, Stein M. Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis. 2022;43:1724–1734.

Ruzicka M, Koval D, Vavra J, Reyes‐Gutierrez PE, Teply F, Kasicka V. Interactions of helquats with chiral acidic aromatic analytes investigated by partial‐filling affinity capillary electrophoresis. J Chromatogr A. 2016;1467:417–426.

Solinova V, Zakova L, Jiracek J, Kasicka V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta. 2019;1052:170–178.

Olabi M, Stein M, Watzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods. 2018;146:76–92.

Solinova V, Mikyskova H, Kaiser MM, Janeba Z, Holy A, Kasicka V. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with ‐cyclodextrin by affinity capillary electrophoresis. Electrophoresis. 2016;37:239–247.

Hruzikova A, Cechova LM, Stepanova S, Tuckova L, Tichotova M, Ruzicka A, et al. A study of azopyrimidine photoswitches and their interactions with cyclodextrins: when the guest governs the type of accommodation at the host. Dyes Pigments. 2023;212:111099.

Solinova V, Kasicka V, Sazelova P, Holy A. Chiral analysis of anti‐acquired immunodeficiency syndrome drug, 9‐(R)‐[2‐(phosphonomethoxy)propyl]adenine (tenofovir), and related antiviral acyclic nucleoside phosphonates by CE using beta‐CD as chiral selector. Electrophoresis. 2009;30:2245–2254.

Stepanova S, Prochazkova E, Cechova LT, Zurek J, Janeba Z, Dracinsky M, et al. Separation of rotamers of 5‐nitrosopyrimidines and estimation of binding constants of their complexes with beta‐cyclodextrin by capillary electrophoresis. J Chromatogr A. 2018;1570:164–171.

Dubsky P, Ordogova M, Maly M, Riesova M. CEval: all‐in‐one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A. 2016;1445:158–165.

Solinova V, Kasicka V. Determination of acidity constants and ionic mobilities of polyprotic peptide hormones by CZE. Electrophoresis. 2013;34:2655–2665.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...