Comparison of holotomographic microscopy and coherence-controlled holographic microscopy
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
393022
Charles University
Grantová Agentura České Republiky
Grantová Agentura Univerzity Karlovy
Ministerstvo Zdravotnictví České Republiky
Ministerstvo Školství, Mládeže a Tělovýchovy České Republiky
PubMed
38196346
DOI
10.1111/jmi.13260
Knihovny.cz E-zdroje
- Klíčová slova
- MDCK, Rat2, coherence-controlled holographic imaging/microscopy, dry mass content, holotomography, quantitative phase imaging/microscopy, single-cell segmentation,
- MeSH
- buněčné linie MeSH
- holografie * metody MeSH
- kvantitativní fázové zobrazování MeSH
- lasery MeSH
- mikroskopie * metody MeSH
- Publikační typ
- časopisecké články MeSH
Quantitative phase imaging (QPI) is a powerful tool for label-free visualisation of living cells. Here, we compare two QPI microscopes - the Telight Q-Phase microscope and the Nanolive 3D Cell Explorer-fluo microscope. Both systems provide unbiased information about cell morphology, such as individual cell dry mass, perimeter and area. The Q-Phase microscope uses artefact-free, coherence-controlled holographic imaging technology to visualise cells in real time with minimal phototoxicity. The 3D Cell Explorer-fluo employs laser-based holotomography to reconstruct 3D images of living cells, visualising their internal structures and dynamics. Here, we analysed the strengths and limitations of both microscopes when examining two morphologically distinct cell lines - the cuboidal epithelial MDCK cells which form multicellular clusters and solitary growing Rat2 fibroblasts. We focus mainly on the ability of the devices to generate images suitable for single-cell segmentation by the built-in software, and we discuss the segmentation results and quantitative data generated from the segmented images. We show that both microscopes offer slightly different advantages, and the choice between them depends on the specific requirements and goals of the user.
Zobrazit více v PubMed
Popescu, G., Park, Y., Lue, N., Best-Popescu, C., Deflores, L., Dasari, R. R., Feld, M. S., & Badizadegan, K. (2008). Optical imaging of cell mass and growth dynamics. American Journal of Physiology Cell Physiology, 295, C538-C544.
Strbkova, L., Zicha, D., Vesely, P., & Chmelik, R. (2017). Automated classification of cell morphology by coherence-controlled holographic microscopy. Journal of Biomedical Optics, 22, 1-9.
Nguyen, T. L., Pradeep, S., Judson-Torres, R. L., Reed, J., Teitell, M. A., & Zangle, T. A. (2022). Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine. ACS Nano, 16, 11516-11544.
Kollarova, V., Collakova, J., Dostal, Z., Vesely, P., & Chmelik, R. (2015). Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope. Journal of Biomedical Optics, 20, 111206.
Pastorek, L., Venit, T., & Hozák, P. (2018). Holography microscopy as an artifact-free alternative to phase-contrast. Histochemistry and Cell Biology, 149, 179-186.
Tolde, O., Gandalovičová, A., Křížová, A., Veselý, P., Chmelík, R., Rosel, D., & Brábek, J. (2018). Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Scientific Reports, 8(1), 1-13.
Čáslavský, J., Klímová, Z., & Vomastek, T. (2013). ERK and RSK regulate distinct steps of a cellular program that induces transition from multicellular epithelium to single cell phenotype. Cellular Signalling, 25, 2743-2751.
Chvalova, V., Venkadasubramanian, V., Klimova, Z., Vojtova, J., Benada, O., Vanatko, O., Vomastek, T., & Grousl, T. (2023). Characterization of RACK1-depleted mammalian cells by a palette of microscopy approaches reveals defects in cell cycle progression and polarity establishment. Experimental Cell Research, 430, 113695.
Klímová, Z., Bráborec, V., Maninová, M., Čáslavský, J., Weber, M. J., & Vomastek, T. (2016). Symmetry breaking in spreading RAT2 fibroblasts requires the MAPK/ERK pathway scaffold RACK1 that integrates FAK, p190A-RhoGAP and ERK2 signaling. Biochimica Et Biophysica Acta, 1863, 2189-2200.
Ramaniuk, O., Klímová, Z., Groušl, T., & Vomastek, T. (2020). Quantitative phase imaging of spreading fibroblasts identifies the role of focal adhesion kinase in the stabilization of the cell rear. Biomolecules, 10, 1-23.
Bergaglio, T., Bhattacharya, S., Thompson, D., & Nirmalraj, P. N. (2023). Label-free digital holotomography reveals ibuprofen-induced morphological changes to red blood cells. ACS Nanoscience Au, 3, 241-255.
Filali, S., Noack, M., Géloën, A., Pirot, F., & Miossec, P. (2023). Effects of pro-inflammatory cytokines and cell interactions on cell area and cytoskeleton of rheumatoid arthritis synoviocytes and immune cells. European Journal of Cell Biology, 102, 151303.
Odermatt, P. D., Miettinen, T. P., Lemière, J., Kang, J. H., Bostan, E., Manalis, S. R., Huang, K. C., & Chang, F. (2021). Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast. Elife, 10, e64901.