Chloroplast Auxin Efflux Mediated by ABCB28 and ABCB29 Fine-Tunes Salt and Drought Stress Responses in Arabidopsis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA15-16520S
Czech Science Foundation
CIG 333844
The Marie Curie Action Career Integration Grants (CIG)
CZ.02.1.01/0.0/0.0/15_003/0000479
European Regional Development Fund-Project "REMAP"
GA20-22875S
Czech Science Foundation
project 31003A_165877/1
Swiss National Funds
PubMed
38202315
PubMed Central
PMC10780339
DOI
10.3390/plants13010007
PII: plants13010007
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporter, auxin, drought, hormone transport, photosynthesis, salinity, stress,
- Publikační typ
- časopisecké články MeSH
Photosynthesis is among the first processes negatively affected by environmental cues and its performance directly determines plant cell fitness and ultimately crop yield. Primarily sites of photosynthesis, chloroplasts are unique sites also for the biosynthesis of precursors of the growth regulator auxin and for sensing environmental stress, but their role in intracellular auxin homeostasis, vital for plant growth and survival in changing environments, remains poorly understood. Here, we identified two ATP-binding cassette (ABC) subfamily B transporters, ABCB28 and ABCB29, which export auxin across the chloroplast envelope to the cytosol in a concerted action in vivo. Moreover, we provide evidence for an auxin biosynthesis pathway in Arabidopsis thaliana chloroplasts. The overexpression of ABCB28 and ABCB29 influenced stomatal regulation and resulted in significantly improved water use efficiency and survival rates during salt and drought stresses. Our results suggest that chloroplast auxin production and transport contribute to stomata regulation for conserving water upon salt stress. ABCB28 and ABCB29 integrate photosynthesis and auxin signals and as such hold great potential to improve the adaptation potential of crops to environmental cues.
Zobrazit více v PubMed
Tognetti V.B., Mühlenbock P., Van Breusegem F. Stress homeostasis—The redox and auxin perspective. Plant Cell Environ. 2012;35:321–333. doi: 10.1111/j.1365-3040.2011.02324.x. PubMed DOI
Rolland N., Curien G., Finazzi G., Kuntz M., Maréchal E., Matringe M., Ravanel S., Seigneurin-Berny D. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu. Rev. Genet. 2012;46:233–264. doi: 10.1146/annurev-genet-110410-132544. PubMed DOI
Tognetti V.B., Van Aken O., Morreel K., Vandenbroucke K., van de Cotte B., De Clercq I., Chiwocha S., Fenske R., Prinsen E., Boerjan W., et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010;22:2660–2679. doi: 10.1105/tpc.109.071316. PubMed DOI PMC
Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. Auxin Metabolism in Plants. Cold Spring Harb. Perspect. Biol. 2021;13:a039867. doi: 10.1101/cshperspect.a039867. PubMed DOI PMC
Frick E.M., Strader L.C. Roles for IBA-derived auxin in plant development. J. Exp. Bot. 2018;69:169–177. doi: 10.1093/jxb/erx298. PubMed DOI PMC
Mano Y., Nemoto K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012;63:2853–2872. doi: 10.1093/jxb/ers091. PubMed DOI
Dai X., Mashiguchi K., Chen Q., Kasahara H., Kamiya Y., Ojha S., DuBois J., Ballou D., Zhao Y. The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. J. Biol. Chem. 2013;288:1448–1457. doi: 10.1074/jbc.M112.424077. PubMed DOI PMC
Ludwig-Müller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18512–18517. doi: 10.1073/pnas.1108434108. PubMed DOI PMC
Ludwig-Müller J., Sass S., Sutter E.G., Wodner M., Epstein E. Indole-3-butyric acid in Arabidopsis thaliana. Plant Growth Regul. 1993;13:179–187. doi: 10.1007/BF00024260. DOI
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI
Heilmann B., Hartung W., Gimmler H. Subcellular compartmentation of indole-3-acetic acid in mesophyll cells of spinacia oleracea. Z. Für Naturforschung C. 1981;36:679–685. doi: 10.1515/znc-1981-7-828. DOI
Sitbon F., Edlund A., Gardeström P., Olsson O., Sandberg G. Compartmentation of indole-3-acetic acid metabolism in protoplasts isolated from leaves of wild-type and IAA-overproducing transgenic tobacco plants. Planta. 1993;191:274–279. doi: 10.1007/BF00199760. DOI
Sandberg G., Jensen E., Crozier A. Biosynthesis of indole-3-acetic acid in protoplasts, chloroplasts and a cytoplasmic fraction from barley (Hordeum vulgare L.) Planta. 1982;156:541–545. doi: 10.1007/BF00392778. PubMed DOI
Fregeau J.A., Wightman F. Natural occurrence and biosynthesis of auxins in chloroplast and mitochondrial fractions from sunflower leaves. Plant Sci. Lett. 1983;32:23–34. doi: 10.1016/0304-4211(83)90095-0. DOI
McQueen-Mason S.J., Hamilton R.H. The Biosynthesis of Indole-3-acetic Acid from D-tryptophan in Alaska Pea Plastids. Plant Cell Physiol. 1989;30:999–1005. doi: 10.1093/oxfordjournals.pcp.a077845. DOI
Lane T.S., Rempe C.S., Davitt J., Staton M.E., Peng Y., Soltis D.E., Melkonian M., Deyholos M., Leebens-Mack J.H., Chase M., et al. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol. 2016;16:47. doi: 10.1186/s12896-016-0277-6. PubMed DOI PMC
Do T.H.T., Martinoia E., Lee Y. Functions of ABC transporters in plant growth and development. Curr. Opin. Plant Biol. 2018;41:32–38. doi: 10.1016/j.pbi.2017.08.003. PubMed DOI
Lefèvre F., Boutry M. Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol. 2018;178:18–39. doi: 10.1104/pp.18.00325. PubMed DOI PMC
Kang J., Park J., Choi H., Burla B., Kretzschmar T., Lee Y., Martinoia E. Plant ABC Transporters. Arab. Book. 2011;9:e0153. doi: 10.1199/tab.0153. PubMed DOI PMC
Verrier P.J., Bird D., Burla B., Dassa E., Forestier C., Geisler M., Klein M., Kolukisaoglu Ü., Lee Y., Martinoia E., et al. Plant ABC proteins—A unified nomenclature and updated inventory. Trends Plant Sci. 2008;13:151–159. doi: 10.1016/j.tplants.2008.02.001. PubMed DOI
Hao P., Xia J., Liu J., Di Donato M., Pakula K., Bailly A., Jasinski M., Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J. Biol. Chem. 2020;295:13094–13105. doi: 10.1074/jbc.RA120.014104. PubMed DOI PMC
Chen J., Hu Y., Hao P., Tsering T., Xia J., Zhang Y., Roth O., Njo M.F., Sterck L., Hu Y., et al. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep. 2023;24:e56271. doi: 10.15252/embr.202256271. PubMed DOI PMC
Ferro M., Brugière S., Salvi D., Seigneurin-Berny D., Court M., Moyet L., Ramus C., Miras S., Mellal M., Le Gall S., et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteom. MCP. 2010;9:1063–1084. doi: 10.1074/mcp.M900325-MCP200. PubMed DOI PMC
Gutierrez-Carbonell E., Takahashi D., Lattanzio G., Rodríguez-Celma J., Kehr J., Soll J., Philippar K., Uemura M., Abadía J., López-Millán A.F. The distinct functional roles of the inner and outer chloroplast envelope of Pea (Pisum sativum) as revealed by proteomic approaches. J. Proteome Res. 2014;13:2941–2953. doi: 10.1021/pr500106s. PubMed DOI
Bouchnak I., Brugière S., Moyet L., Gall S.L., Salvi D., Kuntz M., Tardif M., Rolland N. Unravelling hidden components of the chloroplast envelope proteome: Opportunities and limits of better MS sensitivity. Mol. Cell. Proteom. 2019;18:1285–1306. doi: 10.1074/mcp.RA118.000988. PubMed DOI PMC
Huang M., Friso G., Nishimura K., Qu X., Olinares P.D.B., Majeran W., Sun Q., van Wijk K.J. Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. J. Proteome Res. 2013;12:491–504. doi: 10.1021/pr300952g. PubMed DOI
Bruley C., Dupierris V., Salvi D., Rolland N., Ferro M. AT_CHLORO: A Chloroplast Protein Database Dedicated to Sub-Plastidial Localization. Front. Plant Sci. 2012;3:205. doi: 10.3389/fpls.2012.00205. PubMed DOI PMC
Finkemeier I., Laxa M., Miguet L., Howden A.J.M., Sweetlove L.J. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol. 2011;155:1779–1790. doi: 10.1104/pp.110.171595. PubMed DOI PMC
Taylor N.L., Heazlewood J.L., Millar A.H. The Arabidopsis thaliana 2-D gel mitochondrial proteome: Refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications. Proteomics. 2011;11:1720–1733. doi: 10.1002/pmic.201000620. PubMed DOI
Fan C., Rees D.C. Glutathione binding to the plant AtAtm3 transporter and implications for the conformational coupling of ABC transporters. eLife. 2022;11:e76140. doi: 10.7554/eLife.76140. PubMed DOI PMC
Schaedler T.A., Thornton J.D., Kruse I., Schwarzländer M., Meyer A.J., van Veen H.W., Balk J. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. J. Biol. Chem. 2014;289:23264–23274. doi: 10.1074/jbc.M114.553438. PubMed DOI PMC
Pottosin I., Shabala S. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions. Mol. Plant. 2016;9:356–370. doi: 10.1016/j.molp.2015.10.006. PubMed DOI
Froehlich J.E., Wilkerson C.G., Ray W.K., McAndrew R.S., Osteryoung K.W., Gage D.A., Phinney B.S. Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J. Proteome Res. 2003;2:413–425. doi: 10.1021/pr034025j. PubMed DOI
Armenteros J.J.A., Salvatore M., Emanuelsson O., Winther O., Heijne G., von Elofsson A., Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance. 2019;2:e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC
Richter S., Lamppa G.K. Determinants for removal and degradation of transit peptides of chloroplast precursor proteins. J. Biol. Chem. 2002;277:43888–43894. doi: 10.1074/jbc.M206020200. PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC
Machettira A.B., Groß L.E., Tillmann B., Weis B.L., Englich G., Sommer M.S., Königer M., Schleiff E. Protein-induced modulation of chloroplast membrane morphology. Front. Plant Sci. 2011;2:118. doi: 10.3389/fpls.2011.00118. PubMed DOI PMC
Choi Y.-R., Kim I., Kumar M., Shim J., Kim H.-U. Chloroplast Localized FIBRILLIN11 Is Involved in the Osmotic Stress Response during Arabidopsis Seed Germination. Biology. 2021;10:368. doi: 10.3390/biology10050368. PubMed DOI PMC
Delfosse K., Wozny M.R., Barton K.A., Mathur N., Griffiths N., Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. Front. Plant Sci. 2018;9:754. doi: 10.3389/fpls.2018.00754. PubMed DOI PMC
Breuers F., Braeutigam A., Geimer S., Welzel U., Stefano G., Renna L., Brandizzi F., Weber A. Dynamic Remodeling of the Plastid Envelope Membranes—A Tool for Chloroplast Envelope in vivo Localizations. Front. Plant Sci. 2012;3:7. doi: 10.3389/fpls.2012.00007. PubMed DOI PMC
Nelson B.K., Cai X., Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. Cell Mol. Biol. 2007;51:1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI
Hanson M.R., Köhler R.H. GFP imaging: Methodology and application to investigate cellular compartmentation in plants. J. Exp. Bot. 2001;52:529–539. doi: 10.1093/jexbot/52.356.529. PubMed DOI
Fourrier N., Bédard J., Lopez-Juez E., Barbrook A., Bowyer J., Jarvis P., Warren G., Thorlby G. A role for SENSITIVE TO FREEZING2 in protecting chloroplasts against freeze-induced damage in Arabidopsis. Plant J. Cell Mol. Biol. 2008;55:734–745. doi: 10.1111/j.1365-313X.2008.03549.x. PubMed DOI
Teng Y.-S., Su Y., Chen L.-J., Lee Y.J., Hwang I., Li H. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell. 2006;18:2247–2257. doi: 10.1105/tpc.106.044305. PubMed DOI PMC
Lee Y.J., Kim D.H., Kim Y.-W., Hwang I. Identification of a Signal That Distinguishes between the Chloroplast Outer Envelope Membrane and the Endomembrane System in Vivo. Plant Cell. 2001;13:2175–2190. doi: 10.1105/tpc.010232. PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Shintre C.A., Pike A.C.W., Li Q., Kim J.-I., Barr A.J., Goubin S., Shrestha L., Yang J., Berridge G., Ross J., et al. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc. Natl. Acad. Sci. USA. 2013;110:9710–9715. doi: 10.1073/pnas.1217042110. PubMed DOI PMC
Srinivasan V., Pierik A.J., Lill R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science. 2014;343:1137–1140. doi: 10.1126/science.1246729. PubMed DOI
Lilley R.M., Fitzgerald M.P., Rienits K.G., Walker D.A. Criteria of Intactness and the Photosynthetic Activity of Spinach Chloroplast Preparations. New Phytol. 1975;75:1–10. doi: 10.1111/j.1469-8137.1975.tb01365.x. DOI
Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC
Thieme C.J., Rojas-Triana M., Stecyk E., Schudoma C., Zhang W., Yang L., Miñambres M., Walther D., Schulze W.X., Paz-Ares J., et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants. 2015;1:15025. doi: 10.1038/nplants.2015.25. PubMed DOI
Reed R.C., Brady S.R., Muday G.K. Inhibition of Auxin Movement from the Shoot into the Root Inhibits Lateral Root Development in Arabidopsis. Plant Physiol. 1998;118:1369–1378. doi: 10.1104/pp.118.4.1369. PubMed DOI PMC
Malamy J.E., Benfey P.N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Dev. Camb. Engl. 1997;124:33–44. doi: 10.1242/dev.124.1.33. PubMed DOI
Yang H., Yang X., Heskel M., Sun S., Tang J. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Sci. Rep. 2017;7:1267. doi: 10.1038/s41598-017-01260-y. PubMed DOI PMC
Stirbet A. Govindjee, null On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B. 2011;104:236–257. doi: 10.1016/j.jphotobiol.2010.12.010. PubMed DOI
Buckley T.N., Mott K.A. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ. 2013;36:1691–1699. doi: 10.1111/pce.12140. PubMed DOI
Baker N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI
Hwang J.-U., Song W.-Y., Hong D., Ko D., Yamaoka Y., Jang S., Yim S., Lee E., Khare D., Kim K., et al. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant’s Lifestyle. Mol. Plant. 2016;9:338–355. doi: 10.1016/j.molp.2016.02.003. PubMed DOI
Larsen P.B., Cancel J., Rounds M., Ochoa V. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta. 2007;225:1447–1458. doi: 10.1007/s00425-006-0452-4. PubMed DOI
Kim D.-Y., Bovet L., Kushnir S., Noh E.W., Martinoia E., Lee Y. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol. 2006;140:922–932. doi: 10.1104/pp.105.074146. PubMed DOI PMC
Chen S., Sánchez-Fernández R., Lyver E.R., Dancis A., Rea P.A. Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J. Biol. Chem. 2007;282:21561–21571. doi: 10.1074/jbc.M702383200. PubMed DOI
Peer W.A., Cheng Y., Murphy A.S. Evidence of oxidative attenuation of auxin signalling. J. Exp. Bot. 2013;64:2629–2639. doi: 10.1093/jxb/ert152. PubMed DOI
Porco S., Pěnčík A., Rashed A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC
Zhang J., Lin J.E., Harris C., Campos Mastrotti Pereira F., Wu F., Blakeslee J.J., Peer W.A. DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2016;113:11010–11015. doi: 10.1073/pnas.1604769113. PubMed DOI PMC
Hull A.K., Vij R., Celenza J.L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA. 2000;97:2379–2384. doi: 10.1073/pnas.040569997. PubMed DOI PMC
Lehmann T., Janowitz T., Sánchez-Parra B., Alonso M.-M.P., Trompetter I., Piotrowski M., Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. Front. Plant Sci. 2017;8:36. doi: 10.3389/fpls.2017.00036. PubMed DOI PMC
Olinares P.D.B., Ponnala L., van Wijk K.J. Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol. Cell. Proteomics MCP. 2010;9:1594–1615. doi: 10.1074/mcp.M000038-MCP201. PubMed DOI PMC
Helm S., Dobritzsch D., Rödiger A., Agne B., Baginsky S. Protein identification and quantification by data-independent acquisition and multi-parallel collision-induced dissociation mass spectrometry (MS(E)) in the chloroplast stroma proteome. J. Proteom. 2014;98:79–89. doi: 10.1016/j.jprot.2013.12.007. PubMed DOI
Cutler S.R., Somerville C.R. Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death. BMC Plant Biol. 2005;5:4. doi: 10.1186/1471-2229-5-4. PubMed DOI PMC
Niehaus T.D., Patterson J.A., Alexander D.C., Folz J.S., Pyc M., MacTavish B.S., Bruner S.D., Mullen R.T., Fiehn O., Hanson A.D. The metabolite repair enzyme Nit1 is a dual-targeted amidase that disposes of damaged glutathione in Arabidopsis. Biochem. J. 2019;476:683–697. doi: 10.1042/BCJ20180931. PubMed DOI
Sugawara S., Hishiyama S., Jikumaru Y., Hanada A., Nishimura T., Koshiba T., Zhao Y., Kamiya Y., Kasahara H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:5430–5435. doi: 10.1073/pnas.0811226106. PubMed DOI PMC
Zhao Y. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Mol. Plant. 2012;5:334–338. doi: 10.1093/mp/ssr104. PubMed DOI PMC
Stepanova A.N., Yun J., Robles L.M., Novak O., He W., Guo H., Ljung K., Alonso J.M. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011;23:3961–3973. doi: 10.1105/tpc.111.088047. PubMed DOI PMC
Won C., Shen X., Mashiguchi K., Zheng Z., Dai X., Cheng Y., Kasahara H., Kamiya Y., Chory J., Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18518–18523. doi: 10.1073/pnas.1108436108. PubMed DOI PMC
Zhao Y., Hull A.K., Gupta N.R., Goss K.A., Alonso J., Ecker J.R., Normanly J., Chory J., Celenza J.L. Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 2002;16:3100–3112. doi: 10.1101/gad.1035402. PubMed DOI PMC
Sergeeva E., Liaimer A., Bergman B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta. 2002;215:229–238. doi: 10.1007/s00425-002-0749-x. PubMed DOI
Hussain A., Shah S.T., Rahman H., Irshad M., Iqbal A. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front. Plant Sci. 2015;6:46. doi: 10.3389/fpls.2015.00046. PubMed DOI PMC
Funakoshi M., Sekine M., Katane M., Furuchi T., Yohda M., Yoshikawa T., Homma H. Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase—D-aspartate behavior during germination. FEBS J. 2008;275:1188–1200. doi: 10.1111/j.1742-4658.2008.06279.x. PubMed DOI
Mitchell P. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism. Nature. 1961;191:144. doi: 10.1038/191144a0. PubMed DOI
Widhalm J.R., Gutensohn M., Yoo H., Adebesin F., Qian Y., Guo L., Jaini R., Lynch J.H., McCoy R.M., Shreve J.T., et al. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat. Commun. 2015;6:8142. doi: 10.1038/ncomms9142. PubMed DOI PMC
Liu G., Pfeifer J., de Brito Francisco R., Emonet A., Stirnemann M., Gübeli C., Hutter O., Sasse J., Mattheyer C., Stelzer E., et al. Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils. New Phytol. 2018;217:784–798. doi: 10.1111/nph.14847. PubMed DOI PMC
Lepistö A., Kangasjärvi S., Luomala E.-M., Brader G., Sipari N., Keränen M., Keinänen M., Rintamäki E. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol. 2009;149:1261–1276. doi: 10.1104/pp.108.133777. PubMed DOI PMC
Casimiro I., Marchant A., Bhalerao R.P., Beeckman T., Dhooge S., Swarup R., Graham N., Inzé D., Sandberg G., Casero P.J., et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13:843–852. doi: 10.1105/tpc.13.4.843. PubMed DOI PMC
Ljung K., Hull A.K., Celenza J., Yamada M., Estelle M., Normanly J., Sandberg G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 2005;17:1090–1104. doi: 10.1105/tpc.104.029272. PubMed DOI PMC
Wu G., Lewis D.R., Spalding E.P. Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell. 2007;19:1826–1837. doi: 10.1105/tpc.106.048777. PubMed DOI PMC
Kirchsteiger K., Ferrández J., Pascual M.B., González M., Cejudo F.J. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Plant Cell. 2012;24:1534–1548. doi: 10.1105/tpc.111.092304. PubMed DOI PMC
Ge L., Peer W., Robert S., Swarup R., Ye S., Prigge M., Cohen J.D., Friml J., Murphy A., Tang D., et al. Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 is required for polar auxin transport. Plant Cell. 2010;22:1749–1761. doi: 10.1105/tpc.110.074195. PubMed DOI PMC
Serrato A.J., Pérez-Ruiz J.M., Spínola M.C., Cejudo F.J. A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J. Biol. Chem. 2004;279:43821–43827. doi: 10.1074/jbc.M404696200. PubMed DOI
Wang L., Patena W., Van Baalen K.A., Xie Y., Singer E.R., Gavrilenko S., Warren-Williams M., Han L., Harrigan H.R., Hartz L.D., et al. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell. 2023;186:3499–3518.e14. doi: 10.1016/j.cell.2023.06.008. PubMed DOI
Pan T., Liu Y., Hu X., Li P., Lin C., Tang Y., Tang W., Liu Y., Guo L., Kim C., et al. Stress-induced endocytosis from chloroplast inner envelope membrane is mediated by CHLOROPLAST VESICULATION but inhibited by GAPC. Cell Rep. 2023;42:113208. doi: 10.1016/j.celrep.2023.113208. PubMed DOI
Wang S., Blumwald E. Stress-Induced Chloroplast Degradation in Arabidopsis Is Regulated via a Process Independent of Autophagy and Senescence-Associated Vacuoles. Plant Cell. 2014;26:4875–4888. doi: 10.1105/tpc.114.133116. PubMed DOI PMC
Guo L., Devaiah S.P., Narasimhan R., Pan X., Zhang Y., Zhang W., Wang X. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase DΔ to Transduce Hydrogen Peroxide Signals in the Arabidopsis Response to Stress. Plant Cell. 2012;24:2200–2212. doi: 10.1105/tpc.111.094946. PubMed DOI PMC
Kim S.-C., Guo L., Wang X. Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nat. Commun. 2020;11:3439. doi: 10.1038/s41467-020-17311-4. PubMed DOI PMC
Moreno J.C., Rojas B.E., Vicente R., Gorka M., Matz T., Chodasiewicz M., Peralta-Ariza J.S., Zhang Y., Alseekh S., Childs D., et al. Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism. EMBO J. 2021;40:e106800. doi: 10.15252/embj.2020106800. PubMed DOI PMC
Rivero R.M., Shulaev V., Blumwald E. Cytokinin-Dependent Photorespiration and the Protection of Photosynthesis during Water Deficit. Plant Physiol. 2009;150:1530–1540. doi: 10.1104/pp.109.139378. PubMed DOI PMC
Voss I., Sunil B., Scheibe R., Raghavendra A.S. Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol. 2013;15:713–722. doi: 10.1111/j.1438-8677.2012.00710.x. PubMed DOI
Sade N., Umnajkitikorn K., Rubio Wilhelmi M., Rubio Wilhelmi M.D.M., Wright M., Wang S., Blumwald E. Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice. J. Exp. Bot. 2018;69:867–878. doi: 10.1093/jxb/erx247. PubMed DOI PMC
Do T.H.T., Choi H., Palmgren M., Martinoia E., Hwang J.-U., Lee Y. Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc. Natl. Acad. Sci. USA. 2019;116:12540–12549. doi: 10.1073/pnas.1902010116. PubMed DOI PMC
Polley H.W. Implications of Atmospheric and Climatic Change for Crop Yield and Water Use Efficiency. Crop Sci. 2002;42:131–140. doi: 10.2135/cropsci2002.1310. PubMed DOI
Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J., Hernandez J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy. 2017;7:18. doi: 10.3390/agronomy7010018. DOI
Daszkowska-Golec A., Szarejko I. Open or Close the Gate—Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Front. Plant Sci. 2013;4:138. doi: 10.3389/fpls.2013.00138. PubMed DOI PMC
Medeiros D.B., Barros J.A.S., Fernie A.R., Araújo W.L. Eating Away at ROS to Regulate Stomatal Opening. Trends Plant Sci. 2020;25:220–223. doi: 10.1016/j.tplants.2019.12.023. PubMed DOI
Wang Z., Wang F., Hong Y., Huang J., Shi H., Zhu J.-K. Two Chloroplast Proteins Suppress Drought Resistance by Affecting ROS Production in Guard Cells1. Plant Physiol. 2016;172:2491–2503. doi: 10.1104/pp.16.00889. PubMed DOI PMC
Yoo C.Y., Pence H.E., Jin J.B., Miura K., Gosney M.J., Hasegawa P.M., Mickelbart M.V. The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD1[W][OA] Plant Cell. 2010;22:4128–4141. doi: 10.1105/tpc.110.078691. PubMed DOI PMC
Tanaka Y., Sugano S.S., Shimada T., Hara-Nishimura I. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol. 2013;198:757–764. doi: 10.1111/nph.12186. PubMed DOI
Hepworth C., Doheny-Adams T., Hunt L., Cameron D.D., Gray J.E. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol. 2015;208:336–341. doi: 10.1111/nph.13598. PubMed DOI PMC
Machado R.M.A., Serralheiro R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae. 2017;3:30. doi: 10.3390/horticulturae3020030. DOI
Leng G., Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019;654:811–821. doi: 10.1016/j.scitotenv.2018.10.434. PubMed DOI PMC
Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Karimi M., Inzé D., Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–195. doi: 10.1016/S1360-1385(02)02251-3. PubMed DOI
Nakamura S., Mano S., Tanaka Y., Ohnishi M., Nakamori C., Araki M., Niwa T., Nishimura M., Kaminaka H., Nakagawa T., et al. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci. Biotechnol. Biochem. 2010;74:1315–1319. doi: 10.1271/bbb.100184. PubMed DOI
Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell Mol. Biol. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Beeckman T., Engler G. An easy technique for the clearing of histochemically stained plant tissue. Plant Mol. Biol. Report. 1994;12:37–42. doi: 10.1007/BF02668662. DOI
Henrichs S., Wang B., Fukao Y., Zhu J., Charrier L., Bailly A., Oehring S.C., Linnert M., Weiwad M., Endler A., et al. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 2012;31:2965–2980. doi: 10.1038/emboj.2012.120. PubMed DOI PMC
Littlejohn G.R., Love J. A simple method for imaging Arabidopsis leaves using perfluorodecalin as an infiltrative imaging medium. J. Vis. Exp. 2012;59:e3394. doi: 10.3791/3394. PubMed DOI PMC
Hino T., Tanaka Y., Kawamukai M., Nishimura K., Mano S., Nakagawa T. Two Sec13p homologs, AtSec13A and AtSec13B, redundantly contribute to the formation of COPII transport vesicles in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2011;75:1848–1852. doi: 10.1271/bbb.110331. PubMed DOI
Yoo S.-D., Cho Y.-H., Sheen J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007;2:1565–1572. doi: 10.1038/nprot.2007.199. PubMed DOI
Lichtenthaler H.K. Methods in Enzymology. Volume 148. Academic Press; Cambridge, MA, USA: 1987. biomembranes; pp. 350–382. Plant Cell Membranes.
Wu J., Neimanis S., Heber U. Photorespiration is More Effective than the Mehler Reaction in Protecting the Photosynthetic Apparatus against Photoinhibition. Bot. Acta. 1991;104:283–291. doi: 10.1111/j.1438-8677.1991.tb00231.x. DOI
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. Cell Mol. Biol. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI