Chloroplast Auxin Efflux Mediated by ABCB28 and ABCB29 Fine-Tunes Salt and Drought Stress Responses in Arabidopsis

. 2023 Dec 19 ; 13 (1) : . [epub] 20231219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38202315

Grantová podpora
GA15-16520S Czech Science Foundation
CIG 333844 The Marie Curie Action Career Integration Grants (CIG)
CZ.02.1.01/0.0/0.0/15_003/0000479 European Regional Development Fund-Project "REMAP"
GA20-22875S Czech Science Foundation
project 31003A_165877/1 Swiss National Funds

Photosynthesis is among the first processes negatively affected by environmental cues and its performance directly determines plant cell fitness and ultimately crop yield. Primarily sites of photosynthesis, chloroplasts are unique sites also for the biosynthesis of precursors of the growth regulator auxin and for sensing environmental stress, but their role in intracellular auxin homeostasis, vital for plant growth and survival in changing environments, remains poorly understood. Here, we identified two ATP-binding cassette (ABC) subfamily B transporters, ABCB28 and ABCB29, which export auxin across the chloroplast envelope to the cytosol in a concerted action in vivo. Moreover, we provide evidence for an auxin biosynthesis pathway in Arabidopsis thaliana chloroplasts. The overexpression of ABCB28 and ABCB29 influenced stomatal regulation and resulted in significantly improved water use efficiency and survival rates during salt and drought stresses. Our results suggest that chloroplast auxin production and transport contribute to stomata regulation for conserving water upon salt stress. ABCB28 and ABCB29 integrate photosynthesis and auxin signals and as such hold great potential to improve the adaptation potential of crops to environmental cues.

Zobrazit více v PubMed

Tognetti V.B., Mühlenbock P., Van Breusegem F. Stress homeostasis—The redox and auxin perspective. Plant Cell Environ. 2012;35:321–333. doi: 10.1111/j.1365-3040.2011.02324.x. PubMed DOI

Rolland N., Curien G., Finazzi G., Kuntz M., Maréchal E., Matringe M., Ravanel S., Seigneurin-Berny D. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu. Rev. Genet. 2012;46:233–264. doi: 10.1146/annurev-genet-110410-132544. PubMed DOI

Tognetti V.B., Van Aken O., Morreel K., Vandenbroucke K., van de Cotte B., De Clercq I., Chiwocha S., Fenske R., Prinsen E., Boerjan W., et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010;22:2660–2679. doi: 10.1105/tpc.109.071316. PubMed DOI PMC

Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. Auxin Metabolism in Plants. Cold Spring Harb. Perspect. Biol. 2021;13:a039867. doi: 10.1101/cshperspect.a039867. PubMed DOI PMC

Frick E.M., Strader L.C. Roles for IBA-derived auxin in plant development. J. Exp. Bot. 2018;69:169–177. doi: 10.1093/jxb/erx298. PubMed DOI PMC

Mano Y., Nemoto K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012;63:2853–2872. doi: 10.1093/jxb/ers091. PubMed DOI

Dai X., Mashiguchi K., Chen Q., Kasahara H., Kamiya Y., Ojha S., DuBois J., Ballou D., Zhao Y. The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. J. Biol. Chem. 2013;288:1448–1457. doi: 10.1074/jbc.M112.424077. PubMed DOI PMC

Ludwig-Müller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI

Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18512–18517. doi: 10.1073/pnas.1108434108. PubMed DOI PMC

Ludwig-Müller J., Sass S., Sutter E.G., Wodner M., Epstein E. Indole-3-butyric acid in Arabidopsis thaliana. Plant Growth Regul. 1993;13:179–187. doi: 10.1007/BF00024260. DOI

Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI

Heilmann B., Hartung W., Gimmler H. Subcellular compartmentation of indole-3-acetic acid in mesophyll cells of spinacia oleracea. Z. Für Naturforschung C. 1981;36:679–685. doi: 10.1515/znc-1981-7-828. DOI

Sitbon F., Edlund A., Gardeström P., Olsson O., Sandberg G. Compartmentation of indole-3-acetic acid metabolism in protoplasts isolated from leaves of wild-type and IAA-overproducing transgenic tobacco plants. Planta. 1993;191:274–279. doi: 10.1007/BF00199760. DOI

Sandberg G., Jensen E., Crozier A. Biosynthesis of indole-3-acetic acid in protoplasts, chloroplasts and a cytoplasmic fraction from barley (Hordeum vulgare L.) Planta. 1982;156:541–545. doi: 10.1007/BF00392778. PubMed DOI

Fregeau J.A., Wightman F. Natural occurrence and biosynthesis of auxins in chloroplast and mitochondrial fractions from sunflower leaves. Plant Sci. Lett. 1983;32:23–34. doi: 10.1016/0304-4211(83)90095-0. DOI

McQueen-Mason S.J., Hamilton R.H. The Biosynthesis of Indole-3-acetic Acid from D-tryptophan in Alaska Pea Plastids. Plant Cell Physiol. 1989;30:999–1005. doi: 10.1093/oxfordjournals.pcp.a077845. DOI

Lane T.S., Rempe C.S., Davitt J., Staton M.E., Peng Y., Soltis D.E., Melkonian M., Deyholos M., Leebens-Mack J.H., Chase M., et al. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol. 2016;16:47. doi: 10.1186/s12896-016-0277-6. PubMed DOI PMC

Do T.H.T., Martinoia E., Lee Y. Functions of ABC transporters in plant growth and development. Curr. Opin. Plant Biol. 2018;41:32–38. doi: 10.1016/j.pbi.2017.08.003. PubMed DOI

Lefèvre F., Boutry M. Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol. 2018;178:18–39. doi: 10.1104/pp.18.00325. PubMed DOI PMC

Kang J., Park J., Choi H., Burla B., Kretzschmar T., Lee Y., Martinoia E. Plant ABC Transporters. Arab. Book. 2011;9:e0153. doi: 10.1199/tab.0153. PubMed DOI PMC

Verrier P.J., Bird D., Burla B., Dassa E., Forestier C., Geisler M., Klein M., Kolukisaoglu Ü., Lee Y., Martinoia E., et al. Plant ABC proteins—A unified nomenclature and updated inventory. Trends Plant Sci. 2008;13:151–159. doi: 10.1016/j.tplants.2008.02.001. PubMed DOI

Hao P., Xia J., Liu J., Di Donato M., Pakula K., Bailly A., Jasinski M., Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J. Biol. Chem. 2020;295:13094–13105. doi: 10.1074/jbc.RA120.014104. PubMed DOI PMC

Chen J., Hu Y., Hao P., Tsering T., Xia J., Zhang Y., Roth O., Njo M.F., Sterck L., Hu Y., et al. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep. 2023;24:e56271. doi: 10.15252/embr.202256271. PubMed DOI PMC

Ferro M., Brugière S., Salvi D., Seigneurin-Berny D., Court M., Moyet L., Ramus C., Miras S., Mellal M., Le Gall S., et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteom. MCP. 2010;9:1063–1084. doi: 10.1074/mcp.M900325-MCP200. PubMed DOI PMC

Gutierrez-Carbonell E., Takahashi D., Lattanzio G., Rodríguez-Celma J., Kehr J., Soll J., Philippar K., Uemura M., Abadía J., López-Millán A.F. The distinct functional roles of the inner and outer chloroplast envelope of Pea (Pisum sativum) as revealed by proteomic approaches. J. Proteome Res. 2014;13:2941–2953. doi: 10.1021/pr500106s. PubMed DOI

Bouchnak I., Brugière S., Moyet L., Gall S.L., Salvi D., Kuntz M., Tardif M., Rolland N. Unravelling hidden components of the chloroplast envelope proteome: Opportunities and limits of better MS sensitivity. Mol. Cell. Proteom. 2019;18:1285–1306. doi: 10.1074/mcp.RA118.000988. PubMed DOI PMC

Huang M., Friso G., Nishimura K., Qu X., Olinares P.D.B., Majeran W., Sun Q., van Wijk K.J. Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. J. Proteome Res. 2013;12:491–504. doi: 10.1021/pr300952g. PubMed DOI

Bruley C., Dupierris V., Salvi D., Rolland N., Ferro M. AT_CHLORO: A Chloroplast Protein Database Dedicated to Sub-Plastidial Localization. Front. Plant Sci. 2012;3:205. doi: 10.3389/fpls.2012.00205. PubMed DOI PMC

Finkemeier I., Laxa M., Miguet L., Howden A.J.M., Sweetlove L.J. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol. 2011;155:1779–1790. doi: 10.1104/pp.110.171595. PubMed DOI PMC

Taylor N.L., Heazlewood J.L., Millar A.H. The Arabidopsis thaliana 2-D gel mitochondrial proteome: Refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications. Proteomics. 2011;11:1720–1733. doi: 10.1002/pmic.201000620. PubMed DOI

Fan C., Rees D.C. Glutathione binding to the plant AtAtm3 transporter and implications for the conformational coupling of ABC transporters. eLife. 2022;11:e76140. doi: 10.7554/eLife.76140. PubMed DOI PMC

Schaedler T.A., Thornton J.D., Kruse I., Schwarzländer M., Meyer A.J., van Veen H.W., Balk J. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. J. Biol. Chem. 2014;289:23264–23274. doi: 10.1074/jbc.M114.553438. PubMed DOI PMC

Pottosin I., Shabala S. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions. Mol. Plant. 2016;9:356–370. doi: 10.1016/j.molp.2015.10.006. PubMed DOI

Froehlich J.E., Wilkerson C.G., Ray W.K., McAndrew R.S., Osteryoung K.W., Gage D.A., Phinney B.S. Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J. Proteome Res. 2003;2:413–425. doi: 10.1021/pr034025j. PubMed DOI

Armenteros J.J.A., Salvatore M., Emanuelsson O., Winther O., Heijne G., von Elofsson A., Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance. 2019;2:e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC

Richter S., Lamppa G.K. Determinants for removal and degradation of transit peptides of chloroplast precursor proteins. J. Biol. Chem. 2002;277:43888–43894. doi: 10.1074/jbc.M206020200. PubMed DOI

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC

Machettira A.B., Groß L.E., Tillmann B., Weis B.L., Englich G., Sommer M.S., Königer M., Schleiff E. Protein-induced modulation of chloroplast membrane morphology. Front. Plant Sci. 2011;2:118. doi: 10.3389/fpls.2011.00118. PubMed DOI PMC

Choi Y.-R., Kim I., Kumar M., Shim J., Kim H.-U. Chloroplast Localized FIBRILLIN11 Is Involved in the Osmotic Stress Response during Arabidopsis Seed Germination. Biology. 2021;10:368. doi: 10.3390/biology10050368. PubMed DOI PMC

Delfosse K., Wozny M.R., Barton K.A., Mathur N., Griffiths N., Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. Front. Plant Sci. 2018;9:754. doi: 10.3389/fpls.2018.00754. PubMed DOI PMC

Breuers F., Braeutigam A., Geimer S., Welzel U., Stefano G., Renna L., Brandizzi F., Weber A. Dynamic Remodeling of the Plastid Envelope Membranes—A Tool for Chloroplast Envelope in vivo Localizations. Front. Plant Sci. 2012;3:7. doi: 10.3389/fpls.2012.00007. PubMed DOI PMC

Nelson B.K., Cai X., Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. Cell Mol. Biol. 2007;51:1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI

Hanson M.R., Köhler R.H. GFP imaging: Methodology and application to investigate cellular compartmentation in plants. J. Exp. Bot. 2001;52:529–539. doi: 10.1093/jexbot/52.356.529. PubMed DOI

Fourrier N., Bédard J., Lopez-Juez E., Barbrook A., Bowyer J., Jarvis P., Warren G., Thorlby G. A role for SENSITIVE TO FREEZING2 in protecting chloroplasts against freeze-induced damage in Arabidopsis. Plant J. Cell Mol. Biol. 2008;55:734–745. doi: 10.1111/j.1365-313X.2008.03549.x. PubMed DOI

Teng Y.-S., Su Y., Chen L.-J., Lee Y.J., Hwang I., Li H. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell. 2006;18:2247–2257. doi: 10.1105/tpc.106.044305. PubMed DOI PMC

Lee Y.J., Kim D.H., Kim Y.-W., Hwang I. Identification of a Signal That Distinguishes between the Chloroplast Outer Envelope Membrane and the Endomembrane System in Vivo. Plant Cell. 2001;13:2175–2190. doi: 10.1105/tpc.010232. PubMed DOI PMC

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Shintre C.A., Pike A.C.W., Li Q., Kim J.-I., Barr A.J., Goubin S., Shrestha L., Yang J., Berridge G., Ross J., et al. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc. Natl. Acad. Sci. USA. 2013;110:9710–9715. doi: 10.1073/pnas.1217042110. PubMed DOI PMC

Srinivasan V., Pierik A.J., Lill R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science. 2014;343:1137–1140. doi: 10.1126/science.1246729. PubMed DOI

Lilley R.M., Fitzgerald M.P., Rienits K.G., Walker D.A. Criteria of Intactness and the Photosynthetic Activity of Spinach Chloroplast Preparations. New Phytol. 1975;75:1–10. doi: 10.1111/j.1469-8137.1975.tb01365.x. DOI

Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC

Thieme C.J., Rojas-Triana M., Stecyk E., Schudoma C., Zhang W., Yang L., Miñambres M., Walther D., Schulze W.X., Paz-Ares J., et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants. 2015;1:15025. doi: 10.1038/nplants.2015.25. PubMed DOI

Reed R.C., Brady S.R., Muday G.K. Inhibition of Auxin Movement from the Shoot into the Root Inhibits Lateral Root Development in Arabidopsis. Plant Physiol. 1998;118:1369–1378. doi: 10.1104/pp.118.4.1369. PubMed DOI PMC

Malamy J.E., Benfey P.N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Dev. Camb. Engl. 1997;124:33–44. doi: 10.1242/dev.124.1.33. PubMed DOI

Yang H., Yang X., Heskel M., Sun S., Tang J. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Sci. Rep. 2017;7:1267. doi: 10.1038/s41598-017-01260-y. PubMed DOI PMC

Stirbet A. Govindjee, null On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B. 2011;104:236–257. doi: 10.1016/j.jphotobiol.2010.12.010. PubMed DOI

Buckley T.N., Mott K.A. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ. 2013;36:1691–1699. doi: 10.1111/pce.12140. PubMed DOI

Baker N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI

Hwang J.-U., Song W.-Y., Hong D., Ko D., Yamaoka Y., Jang S., Yim S., Lee E., Khare D., Kim K., et al. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant’s Lifestyle. Mol. Plant. 2016;9:338–355. doi: 10.1016/j.molp.2016.02.003. PubMed DOI

Larsen P.B., Cancel J., Rounds M., Ochoa V. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta. 2007;225:1447–1458. doi: 10.1007/s00425-006-0452-4. PubMed DOI

Kim D.-Y., Bovet L., Kushnir S., Noh E.W., Martinoia E., Lee Y. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol. 2006;140:922–932. doi: 10.1104/pp.105.074146. PubMed DOI PMC

Chen S., Sánchez-Fernández R., Lyver E.R., Dancis A., Rea P.A. Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J. Biol. Chem. 2007;282:21561–21571. doi: 10.1074/jbc.M702383200. PubMed DOI

Peer W.A., Cheng Y., Murphy A.S. Evidence of oxidative attenuation of auxin signalling. J. Exp. Bot. 2013;64:2629–2639. doi: 10.1093/jxb/ert152. PubMed DOI

Porco S., Pěnčík A., Rashed A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC

Zhang J., Lin J.E., Harris C., Campos Mastrotti Pereira F., Wu F., Blakeslee J.J., Peer W.A. DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2016;113:11010–11015. doi: 10.1073/pnas.1604769113. PubMed DOI PMC

Hull A.K., Vij R., Celenza J.L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA. 2000;97:2379–2384. doi: 10.1073/pnas.040569997. PubMed DOI PMC

Lehmann T., Janowitz T., Sánchez-Parra B., Alonso M.-M.P., Trompetter I., Piotrowski M., Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. Front. Plant Sci. 2017;8:36. doi: 10.3389/fpls.2017.00036. PubMed DOI PMC

Olinares P.D.B., Ponnala L., van Wijk K.J. Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol. Cell. Proteomics MCP. 2010;9:1594–1615. doi: 10.1074/mcp.M000038-MCP201. PubMed DOI PMC

Helm S., Dobritzsch D., Rödiger A., Agne B., Baginsky S. Protein identification and quantification by data-independent acquisition and multi-parallel collision-induced dissociation mass spectrometry (MS(E)) in the chloroplast stroma proteome. J. Proteom. 2014;98:79–89. doi: 10.1016/j.jprot.2013.12.007. PubMed DOI

Cutler S.R., Somerville C.R. Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death. BMC Plant Biol. 2005;5:4. doi: 10.1186/1471-2229-5-4. PubMed DOI PMC

Niehaus T.D., Patterson J.A., Alexander D.C., Folz J.S., Pyc M., MacTavish B.S., Bruner S.D., Mullen R.T., Fiehn O., Hanson A.D. The metabolite repair enzyme Nit1 is a dual-targeted amidase that disposes of damaged glutathione in Arabidopsis. Biochem. J. 2019;476:683–697. doi: 10.1042/BCJ20180931. PubMed DOI

Sugawara S., Hishiyama S., Jikumaru Y., Hanada A., Nishimura T., Koshiba T., Zhao Y., Kamiya Y., Kasahara H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:5430–5435. doi: 10.1073/pnas.0811226106. PubMed DOI PMC

Zhao Y. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Mol. Plant. 2012;5:334–338. doi: 10.1093/mp/ssr104. PubMed DOI PMC

Stepanova A.N., Yun J., Robles L.M., Novak O., He W., Guo H., Ljung K., Alonso J.M. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011;23:3961–3973. doi: 10.1105/tpc.111.088047. PubMed DOI PMC

Won C., Shen X., Mashiguchi K., Zheng Z., Dai X., Cheng Y., Kasahara H., Kamiya Y., Chory J., Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18518–18523. doi: 10.1073/pnas.1108436108. PubMed DOI PMC

Zhao Y., Hull A.K., Gupta N.R., Goss K.A., Alonso J., Ecker J.R., Normanly J., Chory J., Celenza J.L. Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 2002;16:3100–3112. doi: 10.1101/gad.1035402. PubMed DOI PMC

Sergeeva E., Liaimer A., Bergman B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta. 2002;215:229–238. doi: 10.1007/s00425-002-0749-x. PubMed DOI

Hussain A., Shah S.T., Rahman H., Irshad M., Iqbal A. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front. Plant Sci. 2015;6:46. doi: 10.3389/fpls.2015.00046. PubMed DOI PMC

Funakoshi M., Sekine M., Katane M., Furuchi T., Yohda M., Yoshikawa T., Homma H. Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase—D-aspartate behavior during germination. FEBS J. 2008;275:1188–1200. doi: 10.1111/j.1742-4658.2008.06279.x. PubMed DOI

Mitchell P. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism. Nature. 1961;191:144. doi: 10.1038/191144a0. PubMed DOI

Widhalm J.R., Gutensohn M., Yoo H., Adebesin F., Qian Y., Guo L., Jaini R., Lynch J.H., McCoy R.M., Shreve J.T., et al. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat. Commun. 2015;6:8142. doi: 10.1038/ncomms9142. PubMed DOI PMC

Liu G., Pfeifer J., de Brito Francisco R., Emonet A., Stirnemann M., Gübeli C., Hutter O., Sasse J., Mattheyer C., Stelzer E., et al. Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils. New Phytol. 2018;217:784–798. doi: 10.1111/nph.14847. PubMed DOI PMC

Lepistö A., Kangasjärvi S., Luomala E.-M., Brader G., Sipari N., Keränen M., Keinänen M., Rintamäki E. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol. 2009;149:1261–1276. doi: 10.1104/pp.108.133777. PubMed DOI PMC

Casimiro I., Marchant A., Bhalerao R.P., Beeckman T., Dhooge S., Swarup R., Graham N., Inzé D., Sandberg G., Casero P.J., et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13:843–852. doi: 10.1105/tpc.13.4.843. PubMed DOI PMC

Ljung K., Hull A.K., Celenza J., Yamada M., Estelle M., Normanly J., Sandberg G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 2005;17:1090–1104. doi: 10.1105/tpc.104.029272. PubMed DOI PMC

Wu G., Lewis D.R., Spalding E.P. Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell. 2007;19:1826–1837. doi: 10.1105/tpc.106.048777. PubMed DOI PMC

Kirchsteiger K., Ferrández J., Pascual M.B., González M., Cejudo F.J. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Plant Cell. 2012;24:1534–1548. doi: 10.1105/tpc.111.092304. PubMed DOI PMC

Ge L., Peer W., Robert S., Swarup R., Ye S., Prigge M., Cohen J.D., Friml J., Murphy A., Tang D., et al. Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 is required for polar auxin transport. Plant Cell. 2010;22:1749–1761. doi: 10.1105/tpc.110.074195. PubMed DOI PMC

Serrato A.J., Pérez-Ruiz J.M., Spínola M.C., Cejudo F.J. A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J. Biol. Chem. 2004;279:43821–43827. doi: 10.1074/jbc.M404696200. PubMed DOI

Wang L., Patena W., Van Baalen K.A., Xie Y., Singer E.R., Gavrilenko S., Warren-Williams M., Han L., Harrigan H.R., Hartz L.D., et al. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell. 2023;186:3499–3518.e14. doi: 10.1016/j.cell.2023.06.008. PubMed DOI

Pan T., Liu Y., Hu X., Li P., Lin C., Tang Y., Tang W., Liu Y., Guo L., Kim C., et al. Stress-induced endocytosis from chloroplast inner envelope membrane is mediated by CHLOROPLAST VESICULATION but inhibited by GAPC. Cell Rep. 2023;42:113208. doi: 10.1016/j.celrep.2023.113208. PubMed DOI

Wang S., Blumwald E. Stress-Induced Chloroplast Degradation in Arabidopsis Is Regulated via a Process Independent of Autophagy and Senescence-Associated Vacuoles. Plant Cell. 2014;26:4875–4888. doi: 10.1105/tpc.114.133116. PubMed DOI PMC

Guo L., Devaiah S.P., Narasimhan R., Pan X., Zhang Y., Zhang W., Wang X. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase DΔ to Transduce Hydrogen Peroxide Signals in the Arabidopsis Response to Stress. Plant Cell. 2012;24:2200–2212. doi: 10.1105/tpc.111.094946. PubMed DOI PMC

Kim S.-C., Guo L., Wang X. Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nat. Commun. 2020;11:3439. doi: 10.1038/s41467-020-17311-4. PubMed DOI PMC

Moreno J.C., Rojas B.E., Vicente R., Gorka M., Matz T., Chodasiewicz M., Peralta-Ariza J.S., Zhang Y., Alseekh S., Childs D., et al. Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism. EMBO J. 2021;40:e106800. doi: 10.15252/embj.2020106800. PubMed DOI PMC

Rivero R.M., Shulaev V., Blumwald E. Cytokinin-Dependent Photorespiration and the Protection of Photosynthesis during Water Deficit. Plant Physiol. 2009;150:1530–1540. doi: 10.1104/pp.109.139378. PubMed DOI PMC

Voss I., Sunil B., Scheibe R., Raghavendra A.S. Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol. 2013;15:713–722. doi: 10.1111/j.1438-8677.2012.00710.x. PubMed DOI

Sade N., Umnajkitikorn K., Rubio Wilhelmi M., Rubio Wilhelmi M.D.M., Wright M., Wang S., Blumwald E. Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice. J. Exp. Bot. 2018;69:867–878. doi: 10.1093/jxb/erx247. PubMed DOI PMC

Do T.H.T., Choi H., Palmgren M., Martinoia E., Hwang J.-U., Lee Y. Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc. Natl. Acad. Sci. USA. 2019;116:12540–12549. doi: 10.1073/pnas.1902010116. PubMed DOI PMC

Polley H.W. Implications of Atmospheric and Climatic Change for Crop Yield and Water Use Efficiency. Crop Sci. 2002;42:131–140. doi: 10.2135/cropsci2002.1310. PubMed DOI

Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J., Hernandez J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy. 2017;7:18. doi: 10.3390/agronomy7010018. DOI

Daszkowska-Golec A., Szarejko I. Open or Close the Gate—Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Front. Plant Sci. 2013;4:138. doi: 10.3389/fpls.2013.00138. PubMed DOI PMC

Medeiros D.B., Barros J.A.S., Fernie A.R., Araújo W.L. Eating Away at ROS to Regulate Stomatal Opening. Trends Plant Sci. 2020;25:220–223. doi: 10.1016/j.tplants.2019.12.023. PubMed DOI

Wang Z., Wang F., Hong Y., Huang J., Shi H., Zhu J.-K. Two Chloroplast Proteins Suppress Drought Resistance by Affecting ROS Production in Guard Cells1. Plant Physiol. 2016;172:2491–2503. doi: 10.1104/pp.16.00889. PubMed DOI PMC

Yoo C.Y., Pence H.E., Jin J.B., Miura K., Gosney M.J., Hasegawa P.M., Mickelbart M.V. The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD1[W][OA] Plant Cell. 2010;22:4128–4141. doi: 10.1105/tpc.110.078691. PubMed DOI PMC

Tanaka Y., Sugano S.S., Shimada T., Hara-Nishimura I. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol. 2013;198:757–764. doi: 10.1111/nph.12186. PubMed DOI

Hepworth C., Doheny-Adams T., Hunt L., Cameron D.D., Gray J.E. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol. 2015;208:336–341. doi: 10.1111/nph.13598. PubMed DOI PMC

Machado R.M.A., Serralheiro R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae. 2017;3:30. doi: 10.3390/horticulturae3020030. DOI

Leng G., Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019;654:811–821. doi: 10.1016/j.scitotenv.2018.10.434. PubMed DOI PMC

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Karimi M., Inzé D., Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–195. doi: 10.1016/S1360-1385(02)02251-3. PubMed DOI

Nakamura S., Mano S., Tanaka Y., Ohnishi M., Nakamori C., Araki M., Niwa T., Nishimura M., Kaminaka H., Nakagawa T., et al. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci. Biotechnol. Biochem. 2010;74:1315–1319. doi: 10.1271/bbb.100184. PubMed DOI

Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell Mol. Biol. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Beeckman T., Engler G. An easy technique for the clearing of histochemically stained plant tissue. Plant Mol. Biol. Report. 1994;12:37–42. doi: 10.1007/BF02668662. DOI

Henrichs S., Wang B., Fukao Y., Zhu J., Charrier L., Bailly A., Oehring S.C., Linnert M., Weiwad M., Endler A., et al. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 2012;31:2965–2980. doi: 10.1038/emboj.2012.120. PubMed DOI PMC

Littlejohn G.R., Love J. A simple method for imaging Arabidopsis leaves using perfluorodecalin as an infiltrative imaging medium. J. Vis. Exp. 2012;59:e3394. doi: 10.3791/3394. PubMed DOI PMC

Hino T., Tanaka Y., Kawamukai M., Nishimura K., Mano S., Nakagawa T. Two Sec13p homologs, AtSec13A and AtSec13B, redundantly contribute to the formation of COPII transport vesicles in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2011;75:1848–1852. doi: 10.1271/bbb.110331. PubMed DOI

Yoo S.-D., Cho Y.-H., Sheen J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007;2:1565–1572. doi: 10.1038/nprot.2007.199. PubMed DOI

Lichtenthaler H.K. Methods in Enzymology. Volume 148. Academic Press; Cambridge, MA, USA: 1987. biomembranes; pp. 350–382. Plant Cell Membranes.

Wu J., Neimanis S., Heber U. Photorespiration is More Effective than the Mehler Reaction in Protecting the Photosynthetic Apparatus against Photoinhibition. Bot. Acta. 1991;104:283–291. doi: 10.1111/j.1438-8677.1991.tb00231.x. DOI

Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. Cell Mol. Biol. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...