Simplified PCR-Based Quantification of Proteins with DNA Aptamers and Methylcellulose as a Blocking Agent

. 2023 Dec 26 ; 25 (1) : . [epub] 20231226

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38203527

Due to their unique three-dimensional structure, DNA or RNA oligonucleotide aptamers bind to various molecules with high affinity and specificity. Aptamers, alone or in combination with antibodies, can be used to sensitively quantify target molecules by quantitative real-time polymerase chain reaction (qPCR). However, the assays are often complicated and unreliable. In this study, we explored the feasibility of performing the entire assay on wells of routinely used polypropylene PCR plates. We found that polypropylene wells efficiently bind proteins. This allows the entire assay to be run in a single well. To minimize nonspecific binding of the assay components to the polypropylene wells, we tested various blocking agents and identified methylcellulose as an effective alternative to the commonly used BSA. Methylcellulose not only demonstrates comparable or superior blocking capabilities but also offers the advantage of a well-defined composition and non-animal origin. Our findings support the utilization of aptamers, either alone or in combination with antibodies, for sensitive quantification of selected molecules immobilized in polypropylene PCR wells in a streamlined one-well qPCR assay under well-defined conditions.

Zobrazit více v PubMed

Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822. doi: 10.1038/346818a0. PubMed DOI

Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510. doi: 10.1126/science.2200121. PubMed DOI

Wang T., Chen C., Larcher L.M., Barrero R.A., Veedu R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2019;37:28–50. doi: 10.1016/j.biotechadv.2018.11.001. PubMed DOI

Berezovski M.V., Musheev M.U., Drabovich A.P., Jitkova J.V., Krylov S.N. Non-SELEX: Selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat. Protoc. 2006;1:1359–1369. doi: 10.1038/nprot.2006.200. PubMed DOI

Nitsche A., Kurth A., Dunkhorst A., Panke O., Sielaff H., Junge W., Muth D., Scheller F., Stocklein W., Dahmen C., et al. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 2007;7:48. doi: 10.1186/1472-6750-7-48. PubMed DOI PMC

Peng L., Stephens B.J., Bonin K., Cubicciotti R., Guthold M. A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides. Microsc. Res. Tech. 2007;70:372–381. doi: 10.1002/jemt.20421. PubMed DOI PMC

Fan M., McBurnett S.R., Andrews C.J., Allman A.M., Bruno J.G., Kiel J.L. Aptamer selection express: A novel method for rapid single-step selection and sensing of aptamers. J. Biomol. Tech. 2008;19:311–319. PubMed PMC

Hmila I., Wongphatcharachai M., Laamiri N., Aouini R., Marnissi B., Arbi M., Sreevatsan S., Ghram A. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR. J. Virol. Methods. 2017;243:83–91. doi: 10.1016/j.jviromet.2017.01.024. PubMed DOI

Mairal T., Ozalp V.C., Lozano S.P., Mir M., Katakis I., O’Sullivan C.K. Aptamers: Molecular tools for analytical applications. Anal. Bioanal. Chem. 2008;390:989–1007. doi: 10.1007/s00216-007-1346-4. PubMed DOI

Toh S.Y., Citartan M., Gopinath S.C., Tang T.H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2015;64:392–403. doi: 10.1016/j.bios.2014.09.026. PubMed DOI

Lapa S.A., Chudinov A.V., Timofeev E.N. The toolbox for modified aptamers. Mol. Biotechnol. 2016;58:79–92. doi: 10.1007/s12033-015-9907-9. PubMed DOI

Xiang W., Lv Q., Shi H., Xie B., Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020;214:120716. doi: 10.1016/j.talanta.2020.120716. PubMed DOI

Lao Y.H., Chiang H.Y., Yang D.K., Peck K., Chen L.C. Selection of aptamers targeting the sialic acid receptor of hemagglutinin by epitope-specific SELEX. Chem. Commun. (Camb.) 2014;50:8719–8722. doi: 10.1039/C4CC03116D. PubMed DOI

Sedighian H., Halabian R., Amani J., Heiat M., Amin M., Fooladi A.A.I. Staggered Target SELEX, a novel approach to isolate non-cross-reactive aptamer for detection of SEA by apta-qPCR. J. Biotechnol. 2018;286:45–55. doi: 10.1016/j.jbiotec.2018.09.006. PubMed DOI

Lu T., Zhang H., Zhou J., Ma Q., Yan W., Zhao L., Wu S., Chen H. Aptamer-targeting of Aleutian mink disease virus (AMDV) can be an effective strategy to inhibit virus replication. Sci. Rep. 2021;11:4649. doi: 10.1038/s41598-021-84223-8. PubMed DOI PMC

Sano T., Smith C.L., Cantor C.R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science. 1992;258:120–122. doi: 10.1126/science.1439758. PubMed DOI

Niemeyer C.M., Adler M., Wacker R. Immuno-PCR: High sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol. 2005;23:208–216. doi: 10.1016/j.tibtech.2005.02.006. PubMed DOI

Niemeyer C.M., Adler M., Wacker R. Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2007;2:1918–1930. doi: 10.1038/nprot.2007.267. PubMed DOI

Chang L., Li J., Wang L. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Anal. Chim. Acta. 2016;910:12–24. doi: 10.1016/j.aca.2015.12.039. PubMed DOI

Ruzicka V., Marz W., Russ A., Gross W. Immuno-PCR with a commercially available avidin system. Science. 1993;260:698–699. doi: 10.1126/science.8480182. PubMed DOI

Zhou H., Fisher R.J., Papas T.S. Universal immuno-PCR for ultra-sensitive target protein detection. Nucleic Acids Res. 1993;21:6038–6039. doi: 10.1093/nar/21.25.6038. PubMed DOI PMC

Zhang H.T., Kacharmina J.E., Miyashiro K., Greene M.I., Eberwine J. Protein quantification from complex protein mixtures using a proteomics methodology with single-cell resolution. Proc. Natl. Acad. Sci. USA. 2001;98:5497–5502. doi: 10.1073/pnas.101124598. PubMed DOI PMC

Potuckova L., Franko F., Bambouskova M., Draber P. Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA. J. Immunol. Methods. 2011;371:38–47. doi: 10.1016/j.jim.2011.06.012. PubMed DOI

Stegurova L., Draberova E., Bartos A., Draber P., Ripova D., Draber P. Gold nanoparticle-based immuno-PCR for detection of tau protein in cerebrospinal fluid. J. Immunol. Methods. 2014;406:137–142. doi: 10.1016/j.jim.2014.03.007. PubMed DOI

Potuckova L., Draberova L., Halova I., Paulenda T., Draber P. Positive and negative regulatory roles of C-terminal Src kinase (CSK) in FcεRI-mediated mast cell activation, independent of the transmembrane adaptor PAG/CSK-binding protein. Front. Immunol. 2018;9:1771. doi: 10.3389/fimmu.2018.01771. PubMed DOI PMC

Vogt R.F., Jr., Phillips D.L., Henderson L.O., Whitfield W., Spierto F.W. Quantitative differences among various proteins as blocking agents for ELISA microtiter plates. J. Immunol. Methods. 1987;101:43–50. doi: 10.1016/0022-1759(87)90214-6. PubMed DOI

Xiao Y., Isaacs S.N. Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)--not all BSAs are alike. J. Immunol. Methods. 2012;384:148–151. doi: 10.1016/j.jim.2012.06.009. PubMed DOI PMC

Rebeski D.E., Winger E.M., Shin Y.K., Lelenta M., Robinson M.M., Varecka R., Crowther J.R. Identification of unacceptable background caused by nonspecific protein adsorption to the plastic surface of 96-well immunoassay plates using a standardized enzyme-linked immunosorbent assay procedure. J. Immunol. Methods. 1999;226:85–92. doi: 10.1016/S0022-1759(99)00051-4. PubMed DOI

Craig W.Y., Poulin S.E., Collins M.F., Ledue T.B., Ritchie R.F. Background staining in immunoblot assays. Reduction of signal caused by cross-reactivity with blocking agents. J. Immunol. Methods. 1993;158:67–76. doi: 10.1016/0022-1759(93)90259-A. PubMed DOI

Craig W.Y., Poulin S.E., Nelson C.P., Ritchie R.F. ELISA of IgG antibody to oxidized low-density lipoprotein: Effects of blocking buffer and method of data expression. Clin. Chem. 1994;40:882–888. doi: 10.1093/clinchem/40.6.882. PubMed DOI

Redcenko O., Draberova L., Draber P. Carboxymethylcellulose enhances the production of single-stranded DNA aptamers generated by asymmetric PCR. Anal. Biochem. 2020;589:113502. doi: 10.1016/j.ab.2019.113502. PubMed DOI

Nasatto P.L., Pignon F., Silveira J.L.M., Duarte M.E.R., Noseda M.D., Rinaudo M. Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers. 2015;7:777–803. doi: 10.3390/polym7050777. DOI

Chevillard C., Axelos M.A.V. Phase separation of aqueous solution of methylcellulose. J. Colloid Polym. Sci. 1997;275:537–545. doi: 10.1007/s003960050116. DOI

Ahirwar R., Bariar S., Balakrishnan A., Nahar P. BSA blocking in enzyme-linked immunosorbent assays is a non-mandatory step: A perspective study on mechanism of BSA blocking in common ELISA protocols. RSC Adv. 2015;5:100077–100083. doi: 10.1039/C5RA20750A. DOI

Belotserkovskii B.P., Johnston B.H. Polypropylene tube surfaces may induce denaturation and multimerization of DNA. Science. 1996;271:222–223. doi: 10.1126/science.271.5246.222. PubMed DOI

Gaillard C., Strauss F. Avoiding adsorption of DNA to polypropylene tubes and denaturation of short DNA fragments. Tech. Tips Online. 1998;3:63–65. doi: 10.1016/S1366-2120(08)70101-6. DOI

Gaillard C., Flavin M., Woisard A., Strauss F. Association of double-stranded DNA fragments into multistranded DNA structures. Biopolymers. 1999;50:679–689. doi: 10.1002/(SICI)1097-0282(199912)50:7<679::AID-BIP1>3.0.CO;2-3. PubMed DOI

Feng B., Sosa R.P., Martensson A.K.F., Jiang K., Tong A., Dorfman K.D., Takahashi M., Lincoln P., Bustamante C.J., Westerlund F., et al. Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proc. Natl. Acad. Sci. USA. 2019;116:17169–17174. doi: 10.1073/pnas.1909122116. PubMed DOI PMC

Barone G., Fonseca G.C., Bickelhaupt F.M. B-DNA structure and stability as function of nucleic acid composition: Dispersion-corrected DFT study of dinucleoside monophosphate single and double strands. ChemistryOpen. 2013;2:186–193. doi: 10.1002/open.201300019. PubMed DOI PMC

Bodvik R., Karlson L., Edwards K., Eriksson J., Thormann E., Claesson P.M. Aggregation of modified celluloses in aqueous solution: Transition from methylcellulose to hydroxypropylmethylcellulose solution properties induced by a low-molecular-weight oxyethylene additive. Langmuir. 2012;28:13562–13569. doi: 10.1021/la301704f. PubMed DOI

Mohammad K., Esen A. A blocking agent and a blocking step are not needed in ELISA, immunostaining dot-blots and western blots. J. Immunol. Methods. 1989;117:141–145. doi: 10.1016/0022-1759(89)90129-4. PubMed DOI

Esser P. Detergent in polystyrene ELISA. Nunc. Bull. 1990;8:1–6.

Esser P. Blocking agent and detergent in ELISA. Nunc. Bull. 1991;9:1–4.

Schmitz A., Weber A., Bayin M., Breuers S., Fieberg V., Famulok M., Mayer G. A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism. Angew. Chem. Int. Ed. Engl. 2021;60:10279–10285. doi: 10.1002/anie.202100316. PubMed DOI PMC

Shaik G.M., Dráberová L., Dráber P., Boubelík M., Dráber P. Tetraalkylammonium derivatives as real-time PCR enhancers and stabilizers of the qPCR mixtures containing SYBR Green I. Nucleic Acids Res. 2008;36:e93. doi: 10.1093/nar/gkn421. PubMed DOI PMC

Cho S.J., Woo H.M., Kim K.S., Oh J.W., Jeong Y.J. Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J. Biosci. Bioeng. 2011;112:535–540. doi: 10.1016/j.jbiosc.2011.08.014. PubMed DOI PMC

Bovaird J.H., Ngo T.T., Lenhoff H.M. Optimizing the o-phenylenediamine assay for horseradish peroxidase: Effects of phosphate and pH, substrate and enzyme concentrations, and stopping reagents. Clin. Chem. 1982;28:2423–2426. doi: 10.1093/clinchem/28.12.2423. PubMed DOI

Fornera S., Walde P. Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine. Anal. Biochem. 2010;407:293–295. doi: 10.1016/j.ab.2010.07.034. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...