Temporal and spatial variability of phloem structure in Picea abies and Fagus sylvatica and its link to climate
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P4-0430
Slovenian Research and Innovation Agency
P4-0015
Slovenian Research and Innovation Agency
P4-0085
Slovenian Research and Innovation Agency
J4-2541
Slovenian Research and Innovation Agency
J4-4541
Slovenian Research and Innovation Agency
Z4-7318
Slovenian Research and Innovation Agency
N°952314
European Union's Horizon 2020 research and innovation program ASFORCLIC
PubMed
38213092
DOI
10.1111/pce.14811
Knihovny.cz E-zdroje
- Klíčová slova
- European beech, Norway spruce, anatomy, early phloem, late phloem, sieve element area, xylem-ring width,
- MeSH
- borovice * MeSH
- buk (rod) * MeSH
- floém MeSH
- jedle * MeSH
- podnebí MeSH
- smrk * fyziologie MeSH
- stromy fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.
Department of Agronomy Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Slovenian Forestry Institute Ljubljana Slovenia
TUM School of Life Sciences Technical University of Munich Freising Germany
Zobrazit více v PubMed
Abramoff, M.D., Magalhaes, P.J. & Ram, S.J. (2004) Image processing with ImageJ. Biophotonics International, 11, 36-42.
Angyalossy, V., Pace, M.R., Evert, R.F., Marcati, C.R., Oskolski, A.A., Terrazas, T. et al. (2016) IAWA list of microscopic bark features. IAWA Journal, 37, 517-615. https://doi.org/10.1163/22941932-20160151
Arnič, D., Gričar, J., Jevšenak, J., Božič, G., von Arx, G. & Prislan, P. (2021) Different wood anatomical and growth responses in European Beech (Fagus sylvatica L.) at three forest sites in Slovenia. Frontiers in Plant Science, 12, 669229. https://doi.org/10.3389/fpls.2021.669229
Balzano, A., De Micco, V., Čufar, K., De Luis, M. & Gričar, J. (2020) Intra-seasonal trends in phloem traits in Pinus spp. from drought-prone environments. IAWA Journal, 41(2), 219-235.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48.
Carrer, M., Motta, R. & Nola, P. (2012) Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the Alps. PLoS One, 7(11), e50755.
Castagneri, D., Fonti, P., von Arx, G. & Carrer, M. (2017) How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Annals of Botany, 119(6), 1011-1020.
Daigneault, A., Baker, J.S., Guo, J., Lauri, P., Favero, A., Forsell, N. et al. (2022) How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Global Environmental Change, 76, 102582.
Dannoura, M., Epron, D., Desalme, D., Massonnet, C., Tsuji, S., Plain, C. et al. (2019) The impact of prolonged drought on phloem anatomy and phloem transport in young beech trees. Tree Physiology, 39(2), 201-210.
De Kroon, H., Huber, H., Stuefer, J.F. & Van Groenendael, J.M. (2005) A modular concept of phenotypic plasticity in plants. New Phytologist, 166(1), 73-82.
De Schepper, V., De Swaef, T., Bauweraerts, I. & Steppe, K. (2013) Phloem transport: A review of mechanisms and controls. Journal of Experimental Botany, 64(16), 4839-4850.
Dinant, S. & Lemoine, R. (2010) The phloem pathway: new issues and old debates. Comptes Rendus Biologies, 333(4), 307-319.
Eilmann, B., Sterck, F., Wegner, L., de Vries, S.M.G., von Arx, G., Mohren, G.M.J. et al. (2014) Wood structural differences between Northern and Southern beech provenances growing at a moderate site. Tree Physiology, 34(8), 882-893.
Fabiánek, T., Menšík, L., Tomášková, I. & Kulhavý, J. (2009) Effects of spruce, beech and mixed commercial stand on humus conditions of forest soils. Journal of Forest Science, 55, 119-126.
Fischer, S. & Neuwirth, B. (2013) Vulnerability of trees to climate events in temperate forests of West Germany. ISRN Forestry, 2013, 1-15.
Franceschi, V.R., Krokene, P., Krekling, T. & Christiansen, E. (2000) Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). American Journal of Botany, 87(3), 314-326.
Giagli, K., Gricar, J., Vavrcík, H. & Gryc, V. (2016) Nine-year monitoring of cambial seasonality and cell production in Norway spruce. iForest - Biogeosciences and Forestry, 9(3), 375-382.
Griar, J., Prislan, P., Gryc, V., Vavrčík, H., de Luis, M. & Čufar, K. (2014) Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiology, 34(8), 869-881. https://doi.org/10.1093/treephys/tpu026
Gričar, J. & Čufar, K. (2008) Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russian Journal of Plant Physiology, 55(4), 538-543.
Gričar, J. & Prislan, P. (2022) Seasonal changes in the width and structure of non-collapsed phloem affect the assessment of its potential conducting efficiency. IAWA Journal, 43(3), 219-233.
Gričar, J., Prislan, P., De Luis, M., Gryc, V., Hacurová, J., Vavrčík, H. et al. (2015) Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Frontiers in Plant Science, 6, 730. https://doi.org/10.3389/fpls.2015.00730
Gričar, J., Prislan, P., De Luis, M., Novak, K., Longares, L.A., del Castillo, E.M. et al. (2016) Lack of annual periodicity in cambial production of phloem in trees from Mediterranean area. IAWA Journal, 37(2), 349-364.
Gričar, J., Zavadlav, S., Jyske, T., Lavrič, M., Laakso, T., Hafner, P. et al. (2018) Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. Tree Physiology, 39(2), 222-233.
Gričar, J., Čufar, K., Eler, K., Gryc, V., Vavrčík, H., de Luis, M. et al. (2021) Transition dates from earlywood to latewood and early phloem to late phloem in Norway spruce. Forests, 12(3), 331.
Gričar, J., Jevšenak, J., Hafner, P., Prislan, P., Ferlan, M., Lavrič, M. et al. (2022) Climatic regulation of leaf and cambial phenology in quercus pubescens: their interlinkage and impact on xylem and phloem conduits. Science of the Total Environment, 802, 149968.
Holdheide, W. (1951) Anatomie mitteleuropäischer Gehölzrinden. In: Freud, H., ed. Handbuch der Mikroskopie in der Technik, Frankfurt am Main: Umschau Verlag. 193-367.
Holtta, T., Makinen, H., Nojd, P., Makela, A. & Nikinmaa, E. (2010) A physiological model of softwood cambial growth. Tree Physiology, 30(10), 1235-1252.
Jevšenak, J. (2019) Daily climate data reveal stronger climate-growth relationships for an extended European tree-ring network. Quaternary Science Reviews, 221, 105868.
Jevšenak, J. (2020) New features in the dendrotools R package: bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia, 63, 125753.
Jevšenak, J., Tychkov, I., Gričar, J., Levanič, T., Tumajer, J., Prislan, P. et al. (2021) Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. International Journal of Biometeorology, 65(2), 311-324.
Jyske, T. & Hölttä, T. (2015) Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist, 205(1), 102-115.
Jyske, T., Kuroda, K., Suuronen, J.P., Pranovich, A., Roig-Juan, S., Aoki, D. et al. (2016) In planta localization of stilbenes within picea abies phloem. Plant Physiology, 172(2), pp. 00990.2016.
Jyske, T., Kuroda, K., Keriö, S., Pranovich, A., Linnakoski, R., Hayashi, N. et al. (2020) Localization of (+)-catechin in picea abies phloem: responses to wounding and fungal inoculation. Molecules, 25(12), 2952.
Kiorapostolou, N., Camarero, J.J., Carrer, M., Sterck, F., Brigita, B., Sangüesa-Barreda, G. et al. (2020) Scots pine trees react to drought by increasing xylem and phloem conductivities. Tree Physiology, 40(6), 774-781.
Krajnc, L., Prislan, P., Božič, G., Westergren, M., Arnič, D., Mátyás, C. et al. (2022) A comparison of radial increment and wood density from beech provenance trials in Slovenia and Hungary. European Journal of Forest Research, 141(3), 433-446.
Martinez del Castillo, E., Zang, C.S., Buras, A., Hacket-Pain, A., Esper, J., Serrano-Notivoli, R. et al. (2022) Climate-change-driven growth decline of European beech forests. Communications Biology, 5(1), 163.
Miller, T.W., Stangler, D.F., Larysch, E., Seifert, T., Spiecker, H. & Kahle, H.-P. (2020) Plasticity of seasonal xylem and phloem production of Norway spruce along an elevational gradient. Trees, 34(5), 1281-1297.
Morris, H., Plavcová, L., Cvecko, P., Fichtler, E., Gillingham, M.A.F., Martínez-Cabrera, H.I. et al. (2016) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209(4), 1553-1565.
Newson, R. (2002) Parameters behind “nonparametric” statistics: kendall's tau, somers' D and median differences. The Stata Journal: Promoting communications on statistics and Stata, 2(1), 45-64.
Petit, G. & Crivellaro, A. (2014) Comparative axial widening of phloem and xylem conduits in small woody plants. Trees, 28(3), 915-921.
Pfautsch, S., Hölttä, T. & Mencuccini, M. (2015) Hydraulic functioning of tree stems-fusing ray anatomy, radial transfer and capacitance. Tree Physiology, 35(7), 706-722.
Prislan, P., Čufar, K., De Luis, M. & Gričar, J. (2018a) Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiology, 38(2), 186-197.
Prislan, P., Koch, G., Schmitt, U., Gričar, J. & Čufar, K. (2012) Cellular and topochemical characteristics of secondary changes in bark tissues of beech (Fagus sylvatica). Holzforschung, 66, 131.
Prislan, P., Gričar, J., de Luis, M., Smith, K.T. & Čufar, K. (2013) Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology, 180, 142-151.
Prislan, P., del Castillo, E.M., Skoberne, G., Špenko, N. & Gričar, J. (2022) Sample preparation protocol for wood and phloem formation analyses. Dendrochronologia, 73, 125959.
Prislan, P., Gričar, J., de Luis, M., Novak, K., Martinez del Castillo, E., Schmitt, U. et al. (2016) Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation. Frontiers in Plant Science, 7, 1923. https://doi.org/10.3389/fpls.2016.01923
Prislan, P., Mrak, P., Žnidaršič, N., Štrus, J., Humar, M., Thaler, N. et al. (2018b) Intra-annual dynamics of phloem formation and ultrastructural changes in sieve tubes in Fagus sylvatica. Tree Physiology, 39(2), 262-274.
Prislan, P., Gričar, J., Čufar, K., de Luis, M., Merela, M. & Rossi, S. (2019) Growing season and radial growth predicted for Fagus sylvatica under climate change. Climatic Change, 153(1), 181-197.
Rezaie, N., D'Andrea, E., Scartazza, A., Gričar, J., Prislan, P., Calfapietra, C. et al. (2023) Upside down and the game of C allocation. Tree Physiology, tpad034. https://doi.org/10.1093/treephys/tpad034
Richardson, A.D., Carbone, M.S., Huggett, B.A., Furze, M.E., Czimczik, C.I., Walker, J.C. et al. (2015) Distribution and mixing of old and new nonstructural carbon in two temperate trees. New Phytologist, 206(2), 590-597.
Rosell, J.A., Gleason, S., Méndez-Alonzo, R., Chang, Y. & Westoby, M. (2014) Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201(2), 486-497.
Rosner, S., Baier, P. & Kikuta, S.B. (2001) Osmotic potential of Norway spruce [Picea abies (L.) Karst.] secondary phloem in relation to anatomy. Trees, 15(8), 472-482.
Rossi, S., Anfodillo, T. & Menardi, R. (2006) Trephor: a new tool for sampling microcores from tree stems. IAWA Journal, 27, 89-97.
Savage, J.A. (2020) It's all about timing-or is it? Exploring the potential connection between phloem physiology and whole plant phenology. American Journal of Botany, 107(6), 848-851.
Savage, J.A. & Chuine, I. (2021) Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytologist, 230(5), 1700-1715.
Savage, J.A., Clearwater, M.J., Haines, D.F., Klein, T., Mencuccini, M., Sevanto, S. et al. (2016) Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? Plant, Cell & Environment, 39(4), 709-725.
Secchi, F., Pagliarani, C. & Zwieniecki, M.A. (2017) The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell & Environment, 40(6), 858-871.
Sevanto, S. (2018) Drought impacts on phloem transport. Current Opinion in Plant Biology, 43, 76-81.
Shtein, I., Gričar, J., Lev-Yadun, S., Oskolski, A., Pace, M.R., Rosell, J.A. et al. (2023) Priorities for bark anatomical research: study venues and open questions. Plants, 12(10), 1985.
Spicer, R. (2014) Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. Journal of Experimental Botany, 65(7), 1829-1848.
Stojnic, S., Sass-Klaassen, U., Orlovic, S., Matovic, B. & Eilmann, B. (2013) Plastic growth response of european beech provenances to dry site conditions. IAWA Journal, 34(4), 475-484.
Swidrak, I., Gruber, A. & Oberhuber, W. (2014) Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees, 28(4), 1161-1171.
Treml, V., Mašek, J., Tumajer, J., Rydval, M., Čada, V., Ledvinka, O. et al. (2022) Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in central Europe. Global Change Biology, 28(2), 557-570.
Vicente-Serrano, S.M., Beguería, S. & López-Moreno, J.I. (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718.
Woodruff, D.R. (2014) The impacts of water stress on phloem transport in douglas-fir trees. Tree Physiology, 34(1), 5-14.
Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. (2016) Are trees able to grow in periods of stem shrinkage? New Phytologist, 211(3), 839-849.
Zweifel, R., Etzold, S., Basler, D., Bischoff, R., Braun, S., Buchmann, N. et al. (2021) TreeNet-the biological drought and growth indicator network. Frontiers in Forests and Global Change, 4, art 776905.