Vagus nerve stimulation attenuates septic shock-induced cardiac injury in rats

. 2023 Dec 31 ; 72 (6) : 731-739.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38215060

This research aimed to evaluate whether vagus nerve stimulation (VNS) could effectively prevent septic shock-induced cardiac injury in rats and investigate the potential mechanisms. Female Sprague-Dawley rats were divided into the Sham group (sham cecal ligation and puncture [CLP] plus vagal nerve trunk separation), the Vehicle group (CLP plus vagal nerve trunk separation), and the VNS groups (CLP plus vagal nerve trunk separation plus VNS). The left ventricular function was analyzed by echocardiography. Histologic examinations of the cardiac tissues were performed through hematoxylin and eosin staining and TUNEL staining. The Vehicle group had worse cardiac function, higher levels of cardiac injury markers, and enhanced myocardial apoptosis than the Sham group. The rats in the VNS groups had enhanced cardiac function, lower levels of cardiac injury markers, and inhibited myocardial apoptosis than those in the Vehicle group. Elevated interleukin-1beta and tumor necrosis factor-alpha-levels and activated nuclear factor kappa B (NF-kappa-B) signal in septic shock rats were inhibited by the performance of VNS. This study suggests that VNS contributes to the reduction of myocardial apoptosis and improvement of left ventricular function to attenuate septic shock-induced cardiac injury in rats. The performance of VNS inhibits the inflammatory responses in heart tissues via the regulation of NF-kappa-B signal.

Zobrazit více v PubMed

Standl T, Annecke T, Cascorbi I, Heller AR, Sabashnikov A, Teske W. The Nomenclature, Definition and Distinction of Types of Shock. Dtsch Arztebl Int. 2018;115:757–768. doi: 10.3238/arztebl.2018.0757. PubMed DOI PMC

Blumlein D, Griffiths I. Shock: aetiology, pathophysiology and management. Br J Nurs. 2022;31:422–428. doi: 10.12968/bjon.2022.31.8.422. PubMed DOI

Li Y, Alam HB. Modulation of acetylation: creating a pro-survival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock. J Biomed Biotechnol. 2011;2011:523481. doi: 10.1155/2011/523481. PubMed DOI PMC

Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87. doi: 10.1016/S0140-6736(18)30696-2. PubMed DOI

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC

Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology. 2021;29:975–986. doi: 10.1007/s10787-021-00812-z. PubMed DOI

Duzen IV, Oguz E, Yilmaz R, Taskin A, Vuruskan E, Cekici Y, Bilgel ZG, Goksuluk H, Candemir B, Sucu M. Lycopene has a protective effect on septic shock-induced cardiac injury in rats. Bratisl Lek Listy. 2019;120:919–923. doi: 10.4149/BLL_2019_154. PubMed DOI

Falk GE, Rogers J, Lu L, Ablah E, Okut H, Vindhyal MR. Sepsis, Septic Shock, and Differences in Cardiovascular Event Occurrence. J Intensive Care Med. 2022;37:1528–1534. doi: 10.1177/08850666221083644. PubMed DOI

Zhao S, Dai Y, Ning X, Tang M, Zhao Y, Li Z, Zhang S. Vagus Nerve Stimulation in Early Stage of Acute Myocardial Infarction Prevent Ventricular Arrhythmias and Cardiac Remodeling. Front Cardiovasc Med. 2021;8:648910. doi: 10.3389/fcvm.2021.648910. PubMed DOI PMC

Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol. 2018;113:22. doi: 10.1007/s00395-018-0683-0. PubMed DOI

Zarychanski R, Doucette S, Fergusson D, Roberts D, Houston DS, Sharma S, Gulati H, Kumar A. Early intravenous unfractionated heparin and mortality in septic shock. Crit Care Med. 2008;36:2973–2979. doi: 10.1097/CCM.0b013e31818b8c6b. PubMed DOI

Court O, Kumar A, Parrillo JE, Kumar A. Clinical review: Myocardial depression in sepsis and septic shock. Crit Care. 2002;6:500–508. doi: 10.1186/cc1822. PubMed DOI PMC

Chavan SS, Tracey KJ. Essential Neuroscience in Immunology. J Immunol. 2017;198:3389–3397. doi: 10.4049/jimmunol.1601613. PubMed DOI PMC

Kox M, Pickkers P. Modulation of the Innate Immune Response through the Vagus Nerve. Nephron. 2015;131:79–84. doi: 10.1159/000435843. PubMed DOI

Buchholz B, Kelly J, Munoz M, Bernatene EA, Mendez Diodati N, Gonzalez Maglio DH, Dominici FP, Gelpi RJ. Vagal stimulation mimics preconditioning and postconditioning of ischemic myocardium in mice by activating different protection mechanisms. Am J Physiol Heart Circ Physiol. 2018;314:H1289–H1297. doi: 10.1152/ajpheart.00286.2017. PubMed DOI

Terry R. Vagus nerve stimulation: a proven therapy for treatment of epilepsy strives to improve efficacy and expand applications. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4631–4634. doi: 10.1109/IEMBS.2009.5332676. PubMed DOI

Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203–213. doi: 10.2147/JIR.S163248. PubMed DOI PMC

Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, Chavan S, Tracey KJ. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105:11008–11013. doi: 10.1073/pnas.0803237105. PubMed DOI PMC

Huang J, Wang Y, Jiang D, Zhou J, Huang X. The sympathetic-vagal balance against endotoxemia. J Neural Transm (Vienna) 2010;117:729–735. doi: 10.1007/s00702-010-0407-6. PubMed DOI

Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. doi: 10.1038/35013070. PubMed DOI

Johnson RL, Murray ST, Camacho DK, Wilson CG. Vagal nerve stimulation attenuates IL-6 and TNFalpha expression in respiratory regions of the developing rat brainstem. Respir Physiol Neurobiol. 2016;229:1–4. doi: 10.1016/j.resp.2016.03.014. PubMed DOI

Meroni E, Stakenborg N, Gomez-Pinilla PJ, De Hertogh G, Goverse G, Matteoli G, Verheijden S, Boeckxstaens GE. Functional characterization of oxazolone-induced colitis and survival improvement by vagus nerve stimulation. PLoS One. 2018;13:e0197487. doi: 10.1371/journal.pone.0197487. PubMed DOI PMC

Azabou E, Bao G, Bounab R, Heming N, Annane D. Vagus Nerve Stimulation: A Potential Adjunct Therapy for COVID-19. Front Med (Lausanne) 2021;8:625836. doi: 10.3389/fmed.2021.625836. PubMed DOI PMC

Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med. 2007;13:178–184. doi: 10.2119/2006-00112.Sloan. PubMed DOI PMC

Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K, Sato T. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 2005;112:164–170. doi: 10.1161/CIRCULATIONAHA.104.525493. PubMed DOI

Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Jr, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–1481. doi: 10.1161/01.RES.68.5.1471. PubMed DOI

Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20:808–816. doi: 10.1016/j.cardfail.2014.08.009. PubMed DOI

Sharma K, Premchand RK, Mittal S, Monteiro R, Libbus I, DiCarlo LA, Ardell JL, Amurthur B, KenKnight BH, Anand IS. Long-term Follow-Up of Patients with Heart Failure and Reduced Ejection Fraction Receiving Autonomic Regulation Therapy in the ANTHEM-HF Pilot Study. Int J Cardiol. 2021;323:175–178. doi: 10.1016/j.ijcard.2020.09.072. PubMed DOI

Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2:692–699. doi: 10.1161/CIRCHEARTFAILURE.109.873968. PubMed DOI

Zhao M, He X, Bi XY, Yu XJ, Gil Wier W, Zang WJ. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol. 2013;108:345. doi: 10.1007/s00395-013-0345-1. PubMed DOI

Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015;3:48. doi: 10.1186/s40560-015-0112-5. PubMed DOI PMC

Wang Z, Chen Q, Guo H, Li Z, Zhang J, Lv L, Guo Y. Effects of dexmedetomidine on H-FABP, CK-MB, cTnI levels, neurological function and near-term prognosis in patients undergoing heart valve replacement. Exp Ther Med. 2017;14:5851–5856. doi: 10.3892/etm.2017.5265. PubMed DOI PMC

Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44. doi: 10.1146/annurev.physiol.010908.163111. PubMed DOI

Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009;137:223–231. doi: 10.1016/j.jtcvs.2008.08.020. PubMed DOI

Li F, Fan X, Zhang Y, Pang L, Ma X, Song M, Kou J, Yu B. Cardioprotection by combination of three compounds from ShengMai preparations in mice with myocardial ischemia/reperfusion injury through AMPK activation-mediated mitochondrial fission. Sci Rep. 2016;6:37114. doi: 10.1038/srep37114. PubMed DOI PMC

Vaez H, Rameshrad M, Najafi M, Barar J, Barzegari A, Garjani A. Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4 (TLR4) in heart. Eur J Pharmacol. 2016;772:115–123. doi: 10.1016/j.ejphar.2015.12.030. PubMed DOI

Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med. 1996;183:949–958. doi: 10.1084/jem.183.3.949. PubMed DOI PMC

Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, Deng C, Fan C, Di S, Sun Y, Yi W. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7:e2234. doi: 10.1038/cddis.2016.140. PubMed DOI PMC

Xu X, Rui S, Chen C, Zhang G, Li Z, Wang J, Luo Y, Zhu H, Ma X. Protective effects of astragalus polysaccharide nanoparticles on septic cardiac dysfunction through inhibition of TLR4/NF-kappaB signaling pathway. Int J Biol Macromol. 2020;153:977–985. doi: 10.1016/j.ijbiomac.2019.10.227. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...