Vagus nerve stimulation attenuates septic shock-induced cardiac injury in rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38215060
PubMed Central
PMC10805250
DOI
10.33549/physiolres.935136
PII: 935136
Knihovny.cz E-zdroje
- MeSH
- krysa rodu Rattus MeSH
- myokard patologie MeSH
- NF-kappa B MeSH
- poranění srdce * patologie MeSH
- potkani Sprague-Dawley MeSH
- septický šok * komplikace terapie patologie MeSH
- srdce MeSH
- vagová stimulace * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NF-kappa B MeSH
This research aimed to evaluate whether vagus nerve stimulation (VNS) could effectively prevent septic shock-induced cardiac injury in rats and investigate the potential mechanisms. Female Sprague-Dawley rats were divided into the Sham group (sham cecal ligation and puncture [CLP] plus vagal nerve trunk separation), the Vehicle group (CLP plus vagal nerve trunk separation), and the VNS groups (CLP plus vagal nerve trunk separation plus VNS). The left ventricular function was analyzed by echocardiography. Histologic examinations of the cardiac tissues were performed through hematoxylin and eosin staining and TUNEL staining. The Vehicle group had worse cardiac function, higher levels of cardiac injury markers, and enhanced myocardial apoptosis than the Sham group. The rats in the VNS groups had enhanced cardiac function, lower levels of cardiac injury markers, and inhibited myocardial apoptosis than those in the Vehicle group. Elevated interleukin-1beta and tumor necrosis factor-alpha-levels and activated nuclear factor kappa B (NF-kappa-B) signal in septic shock rats were inhibited by the performance of VNS. This study suggests that VNS contributes to the reduction of myocardial apoptosis and improvement of left ventricular function to attenuate septic shock-induced cardiac injury in rats. The performance of VNS inhibits the inflammatory responses in heart tissues via the regulation of NF-kappa-B signal.
Zobrazit více v PubMed
Standl T, Annecke T, Cascorbi I, Heller AR, Sabashnikov A, Teske W. The Nomenclature, Definition and Distinction of Types of Shock. Dtsch Arztebl Int. 2018;115:757–768. doi: 10.3238/arztebl.2018.0757. PubMed DOI PMC
Blumlein D, Griffiths I. Shock: aetiology, pathophysiology and management. Br J Nurs. 2022;31:422–428. doi: 10.12968/bjon.2022.31.8.422. PubMed DOI
Li Y, Alam HB. Modulation of acetylation: creating a pro-survival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock. J Biomed Biotechnol. 2011;2011:523481. doi: 10.1155/2011/523481. PubMed DOI PMC
Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87. doi: 10.1016/S0140-6736(18)30696-2. PubMed DOI
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology. 2021;29:975–986. doi: 10.1007/s10787-021-00812-z. PubMed DOI
Duzen IV, Oguz E, Yilmaz R, Taskin A, Vuruskan E, Cekici Y, Bilgel ZG, Goksuluk H, Candemir B, Sucu M. Lycopene has a protective effect on septic shock-induced cardiac injury in rats. Bratisl Lek Listy. 2019;120:919–923. doi: 10.4149/BLL_2019_154. PubMed DOI
Falk GE, Rogers J, Lu L, Ablah E, Okut H, Vindhyal MR. Sepsis, Septic Shock, and Differences in Cardiovascular Event Occurrence. J Intensive Care Med. 2022;37:1528–1534. doi: 10.1177/08850666221083644. PubMed DOI
Zhao S, Dai Y, Ning X, Tang M, Zhao Y, Li Z, Zhang S. Vagus Nerve Stimulation in Early Stage of Acute Myocardial Infarction Prevent Ventricular Arrhythmias and Cardiac Remodeling. Front Cardiovasc Med. 2021;8:648910. doi: 10.3389/fcvm.2021.648910. PubMed DOI PMC
Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol. 2018;113:22. doi: 10.1007/s00395-018-0683-0. PubMed DOI
Zarychanski R, Doucette S, Fergusson D, Roberts D, Houston DS, Sharma S, Gulati H, Kumar A. Early intravenous unfractionated heparin and mortality in septic shock. Crit Care Med. 2008;36:2973–2979. doi: 10.1097/CCM.0b013e31818b8c6b. PubMed DOI
Court O, Kumar A, Parrillo JE, Kumar A. Clinical review: Myocardial depression in sepsis and septic shock. Crit Care. 2002;6:500–508. doi: 10.1186/cc1822. PubMed DOI PMC
Chavan SS, Tracey KJ. Essential Neuroscience in Immunology. J Immunol. 2017;198:3389–3397. doi: 10.4049/jimmunol.1601613. PubMed DOI PMC
Kox M, Pickkers P. Modulation of the Innate Immune Response through the Vagus Nerve. Nephron. 2015;131:79–84. doi: 10.1159/000435843. PubMed DOI
Buchholz B, Kelly J, Munoz M, Bernatene EA, Mendez Diodati N, Gonzalez Maglio DH, Dominici FP, Gelpi RJ. Vagal stimulation mimics preconditioning and postconditioning of ischemic myocardium in mice by activating different protection mechanisms. Am J Physiol Heart Circ Physiol. 2018;314:H1289–H1297. doi: 10.1152/ajpheart.00286.2017. PubMed DOI
Terry R. Vagus nerve stimulation: a proven therapy for treatment of epilepsy strives to improve efficacy and expand applications. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4631–4634. doi: 10.1109/IEMBS.2009.5332676. PubMed DOI
Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203–213. doi: 10.2147/JIR.S163248. PubMed DOI PMC
Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, Chavan S, Tracey KJ. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105:11008–11013. doi: 10.1073/pnas.0803237105. PubMed DOI PMC
Huang J, Wang Y, Jiang D, Zhou J, Huang X. The sympathetic-vagal balance against endotoxemia. J Neural Transm (Vienna) 2010;117:729–735. doi: 10.1007/s00702-010-0407-6. PubMed DOI
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. doi: 10.1038/35013070. PubMed DOI
Johnson RL, Murray ST, Camacho DK, Wilson CG. Vagal nerve stimulation attenuates IL-6 and TNFalpha expression in respiratory regions of the developing rat brainstem. Respir Physiol Neurobiol. 2016;229:1–4. doi: 10.1016/j.resp.2016.03.014. PubMed DOI
Meroni E, Stakenborg N, Gomez-Pinilla PJ, De Hertogh G, Goverse G, Matteoli G, Verheijden S, Boeckxstaens GE. Functional characterization of oxazolone-induced colitis and survival improvement by vagus nerve stimulation. PLoS One. 2018;13:e0197487. doi: 10.1371/journal.pone.0197487. PubMed DOI PMC
Azabou E, Bao G, Bounab R, Heming N, Annane D. Vagus Nerve Stimulation: A Potential Adjunct Therapy for COVID-19. Front Med (Lausanne) 2021;8:625836. doi: 10.3389/fmed.2021.625836. PubMed DOI PMC
Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med. 2007;13:178–184. doi: 10.2119/2006-00112.Sloan. PubMed DOI PMC
Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K, Sato T. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 2005;112:164–170. doi: 10.1161/CIRCULATIONAHA.104.525493. PubMed DOI
Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Jr, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–1481. doi: 10.1161/01.RES.68.5.1471. PubMed DOI
Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20:808–816. doi: 10.1016/j.cardfail.2014.08.009. PubMed DOI
Sharma K, Premchand RK, Mittal S, Monteiro R, Libbus I, DiCarlo LA, Ardell JL, Amurthur B, KenKnight BH, Anand IS. Long-term Follow-Up of Patients with Heart Failure and Reduced Ejection Fraction Receiving Autonomic Regulation Therapy in the ANTHEM-HF Pilot Study. Int J Cardiol. 2021;323:175–178. doi: 10.1016/j.ijcard.2020.09.072. PubMed DOI
Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2:692–699. doi: 10.1161/CIRCHEARTFAILURE.109.873968. PubMed DOI
Zhao M, He X, Bi XY, Yu XJ, Gil Wier W, Zang WJ. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol. 2013;108:345. doi: 10.1007/s00395-013-0345-1. PubMed DOI
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015;3:48. doi: 10.1186/s40560-015-0112-5. PubMed DOI PMC
Wang Z, Chen Q, Guo H, Li Z, Zhang J, Lv L, Guo Y. Effects of dexmedetomidine on H-FABP, CK-MB, cTnI levels, neurological function and near-term prognosis in patients undergoing heart valve replacement. Exp Ther Med. 2017;14:5851–5856. doi: 10.3892/etm.2017.5265. PubMed DOI PMC
Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44. doi: 10.1146/annurev.physiol.010908.163111. PubMed DOI
Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009;137:223–231. doi: 10.1016/j.jtcvs.2008.08.020. PubMed DOI
Li F, Fan X, Zhang Y, Pang L, Ma X, Song M, Kou J, Yu B. Cardioprotection by combination of three compounds from ShengMai preparations in mice with myocardial ischemia/reperfusion injury through AMPK activation-mediated mitochondrial fission. Sci Rep. 2016;6:37114. doi: 10.1038/srep37114. PubMed DOI PMC
Vaez H, Rameshrad M, Najafi M, Barar J, Barzegari A, Garjani A. Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4 (TLR4) in heart. Eur J Pharmacol. 2016;772:115–123. doi: 10.1016/j.ejphar.2015.12.030. PubMed DOI
Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med. 1996;183:949–958. doi: 10.1084/jem.183.3.949. PubMed DOI PMC
Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, Deng C, Fan C, Di S, Sun Y, Yi W. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7:e2234. doi: 10.1038/cddis.2016.140. PubMed DOI PMC
Xu X, Rui S, Chen C, Zhang G, Li Z, Wang J, Luo Y, Zhu H, Ma X. Protective effects of astragalus polysaccharide nanoparticles on septic cardiac dysfunction through inhibition of TLR4/NF-kappaB signaling pathway. Int J Biol Macromol. 2020;153:977–985. doi: 10.1016/j.ijbiomac.2019.10.227. PubMed DOI