Comparison of Pulmonary and Extrapulmonary Models of Sepsis-Associated Acute Lung Injury

. 2023 Dec 31 ; 72 (6) : 741-752.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38215061

To compare different rat models of sepsis at different time points, based on pulmonary or extrapulmonary injury mechanisms, to identify a model which is more stable and reproducible to cause sepsis-associated acute lung injury (ALI). Adult male Sprague-Dawley rats were subjected to (1) cecal ligation and puncture (CLP) with single (CLP1 group) or two repeated through-and-through punctures (CLP2 group); (2) tail vein injection with lipopolysaccharide (LPS) of 10mg/kg (IV-LPS10 group) or 20 mg/kg (IV-LPS20 group); (3) intratracheal instillation with LPS of 10mg/kg (IT-LPS10 group) or 20mg/kg (IT-LPS20 group). Each of the model groups had a sham group. 7-day survival rates of each group were observed (n=15 for each group). Moreover, three time points were set for additional experimental studying in each model group: 4 hours, 24 hours and 48 hours after modeling (every time point, n=8 for each group). Rats were sacrificed to collect BALF and lung tissue samples at different time points for detection of IL-6, TNF-alpha, total protein concentration in BALF and MPO activity, HMGB1 protein expression in lung tissues, as well as the histopathological changes of lung tissues. More than 50 % of the rats died within 7 days in each model group, except for the IT-LPS10 group. In contrast, the mortality rates in the two IV-LPS groups as well as the IT-LPS20 group were significantly higher than that in IT-LPS10 group. Rats received LPS by intratracheal instillation exhibited evident histopathological changes and inflammatory exudation in the lung, but there was no evidence of lung injury in CLP and IV-LPS groups. Rat model of intratracheal instillation with LPS proved to be a more stable and reproducible animal model to cause sepsis-associated ALI than the extrapulmonary models of sepsis.

Zobrazit více v PubMed

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC

Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020;395:200–211. doi: 10.1016/S0140-6736(19)32989-7. PubMed DOI PMC

Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight. 2019;4:e124061. doi: 10.1172/jci.insight.124061. PubMed DOI PMC

Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP. Causes and timing of death in patients with ARDS. Chest. 2005;128:525–32. doi: 10.1378/chest.128.2.525. PubMed DOI

Korneev KV. Mouse models of sepsis and septic shock. Mol Biol (Mosk) 2019;53:799–814. doi: 10.1134/S0026893319050108. PubMed DOI

Zhao H, Chen H, Xiaoyin M, Yang G, Hu Y, Xie K, Yu Y, et al. Autophagy activation improves lung injury and inflammation in sepsis. Inflammation. 2019;42:426–439. doi: 10.1007/s10753-018-00952-5. PubMed DOI

Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011;19:198–208. doi: 10.1016/j.tim.2011.01.001. PubMed DOI

Meng PZ, Liu J, Hu PS, Tong F. Protective Effect of Dexmedetomidine on Endotoxin-Induced Acute Lung Injury in Rats. Med Sci Monit. 2018;24:4869–4875. doi: 10.12659/MSM.908887. PubMed DOI PMC

Ehrentraut H, Weisheit CK, Frede S, Hilbert T. Inducing acute lung injury in mice by direct intratracheal lipopolysaccharide instillation. J Vis Exp. 2019;149 doi: 10.3791/59999. doi: 10.3791/59999-v. PubMed DOI

Chimenti L, Morales-Quinteros L, Puig F, Camprubi-Rimblas M, Guillamat-Prats R, Gómez MN, Tijero J, et al. Comparison of direct and indirect models of early induced acute lung injury. Intensive Care Med Exp. 2020;8(Suppl 1):62. doi: 10.1186/s40635-020-00350-y. PubMed DOI PMC

Fink MP. Animal models of sepsis. Virulence. 2014;5:143–153. doi: 10.4161/viru.26083. PubMed DOI PMC

Tucker MH, Yeh HW, Oh D, Shaw N, Kumar N, Sampath V. Preterm sepsis is associated with acute lung injury as measured by pulmonary severity score. Pediatr Res. 2022 doi: 10.1038/s41390-022-02218-1. doi: 10.1038/s41390-022-02218-1. PubMed DOI

Baradaran Rahimi V, Rakhshandeh H, Raucci F, Buono B, Shirazinia R, Samzadeh Kermani A, Maione F, et al. Anti-Inflammatory and Anti-Oxidant Activity of Portulaca oleracea Extract on LPS-Induced Rat Lung Injury. Molecules. 2019;24:139. doi: 10.3390/molecules24010139. PubMed DOI PMC

Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725–738. doi: 10.1165/rcmb.2009-0210ST. PubMed DOI PMC

Nedeva C. Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules. 2021;11:1011. doi: 10.3390/biom11071011. PubMed DOI PMC

Chen H, Huang N, Tian H, et al. Splenectomy provides protective effects against CLP-induced sepsis by reducing TRegs and PD-1/PD-L1 expression. Int J Biochem Cell Biol. 2021;136:105970. doi: 10.1016/j.biocel.2021.105970. PubMed DOI

Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. AJP Lung Cellular and Molecular Physiology. 2008;295:L379–L399. doi: 10.1152/ajplung.00010.2008. PubMed DOI PMC

Puig F, Herrero R, Guillamat-Prats R, Gómez MN, Tijero J, Chimenti L, Stelmakh O, et al. A new experimental model of acid- and endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2016;311:L229–L237. doi: 10.1152/ajplung.00390.2015. PubMed DOI PMC

Rossol M, Heine H, Meusch U, et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol. 2011;31(5):379–446. doi: 10.1615/CritRevImmunol.v31.i5.20. PubMed DOI

Szarka RJ, Wang N, Gordon L, Nation PN, Smith RH. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J Immunol Methods. 1997;202:49–57. doi: 10.1016/S0022-1759(96)00236-0. PubMed DOI

Mirzapoiazova T, Kolosova IA, Moreno L, Sammani S, Garcia JG, Verin AD. Suppression of endotoxin-induced inflammation by taxol. Eur Respir J. 2007;30:429–435. doi: 10.1183/09031936.00154206. PubMed DOI

Chen J, Li G. MiR-1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1. Biomed Pharmacother. 2018;107:997–1003. doi: 10.1016/j.biopha.2018.08.059. PubMed DOI

De Leo F, Quilici G, Tirone M, De Marchis F, Mannella V, Zucchelli C, Preti A, et al. Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment. EMBO Rep. 2019;20:e47788. doi: 10.15252/embr.201947788. PubMed DOI PMC

Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, Jiang S, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin. 2022;43:520–528. doi: 10.1038/s41401-021-00676-7. PubMed DOI PMC

Lee S, Piao C, Kim G, Kim JY, Choi E, Lee M. Production and application of HMGB1 derived recombinant RAGE-antagonist peptide for anti-inflammatory therapy in acute lung injury. Eur J Pharm Sci. 2018;114:275–284. doi: 10.1016/j.ejps.2017.12.019. PubMed DOI

Suda K, Takeuchi H, Ishizaka A, Kitagawa Y. High-mobility-group box chromosomal protein 1 as a new target for modulating stress response. Surg Today. 2010;40:592–601. doi: 10.1007/s00595-009-4232-1. PubMed DOI

Qu L, Chen C, Chen Y, Li Y, Tang F, Huang H, He W, et al. High-Mobility Group Box 1 (HMGB1) and Autophagy in Acute Lung Injury (ALI): A Review. Med Sci Monit. 2019;25:1828–1837. doi: 10.12659/MSM.912867. PubMed DOI PMC

Zhao J, Yu H, Liu Y, Gibson SA, Yan Z, Xu X, Gaggar A, et al. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311:L868–L880. doi: 10.1152/ajplung.00281.2016. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...