Comparison of Pulmonary and Extrapulmonary Models of Sepsis-Associated Acute Lung Injury
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38215061
PubMed Central
PMC10805253
DOI
10.33549/physiolres.935123
PII: 935123
Knihovny.cz E-zdroje
- MeSH
- akutní poškození plic * etiologie metabolismus MeSH
- krysa rodu Rattus MeSH
- lipopolysacharidy toxicita metabolismus MeSH
- plíce metabolismus MeSH
- potkani Sprague-Dawley MeSH
- sepse * komplikace metabolismus MeSH
- TNF-alfa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipopolysacharidy MeSH
- TNF-alfa MeSH
To compare different rat models of sepsis at different time points, based on pulmonary or extrapulmonary injury mechanisms, to identify a model which is more stable and reproducible to cause sepsis-associated acute lung injury (ALI). Adult male Sprague-Dawley rats were subjected to (1) cecal ligation and puncture (CLP) with single (CLP1 group) or two repeated through-and-through punctures (CLP2 group); (2) tail vein injection with lipopolysaccharide (LPS) of 10mg/kg (IV-LPS10 group) or 20 mg/kg (IV-LPS20 group); (3) intratracheal instillation with LPS of 10mg/kg (IT-LPS10 group) or 20mg/kg (IT-LPS20 group). Each of the model groups had a sham group. 7-day survival rates of each group were observed (n=15 for each group). Moreover, three time points were set for additional experimental studying in each model group: 4 hours, 24 hours and 48 hours after modeling (every time point, n=8 for each group). Rats were sacrificed to collect BALF and lung tissue samples at different time points for detection of IL-6, TNF-alpha, total protein concentration in BALF and MPO activity, HMGB1 protein expression in lung tissues, as well as the histopathological changes of lung tissues. More than 50 % of the rats died within 7 days in each model group, except for the IT-LPS10 group. In contrast, the mortality rates in the two IV-LPS groups as well as the IT-LPS20 group were significantly higher than that in IT-LPS10 group. Rats received LPS by intratracheal instillation exhibited evident histopathological changes and inflammatory exudation in the lung, but there was no evidence of lung injury in CLP and IV-LPS groups. Rat model of intratracheal instillation with LPS proved to be a more stable and reproducible animal model to cause sepsis-associated ALI than the extrapulmonary models of sepsis.
Zobrazit více v PubMed
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020;395:200–211. doi: 10.1016/S0140-6736(19)32989-7. PubMed DOI PMC
Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight. 2019;4:e124061. doi: 10.1172/jci.insight.124061. PubMed DOI PMC
Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP. Causes and timing of death in patients with ARDS. Chest. 2005;128:525–32. doi: 10.1378/chest.128.2.525. PubMed DOI
Korneev KV. Mouse models of sepsis and septic shock. Mol Biol (Mosk) 2019;53:799–814. doi: 10.1134/S0026893319050108. PubMed DOI
Zhao H, Chen H, Xiaoyin M, Yang G, Hu Y, Xie K, Yu Y, et al. Autophagy activation improves lung injury and inflammation in sepsis. Inflammation. 2019;42:426–439. doi: 10.1007/s10753-018-00952-5. PubMed DOI
Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011;19:198–208. doi: 10.1016/j.tim.2011.01.001. PubMed DOI
Meng PZ, Liu J, Hu PS, Tong F. Protective Effect of Dexmedetomidine on Endotoxin-Induced Acute Lung Injury in Rats. Med Sci Monit. 2018;24:4869–4875. doi: 10.12659/MSM.908887. PubMed DOI PMC
Ehrentraut H, Weisheit CK, Frede S, Hilbert T. Inducing acute lung injury in mice by direct intratracheal lipopolysaccharide instillation. J Vis Exp. 2019;149 doi: 10.3791/59999. doi: 10.3791/59999-v. PubMed DOI
Chimenti L, Morales-Quinteros L, Puig F, Camprubi-Rimblas M, Guillamat-Prats R, Gómez MN, Tijero J, et al. Comparison of direct and indirect models of early induced acute lung injury. Intensive Care Med Exp. 2020;8(Suppl 1):62. doi: 10.1186/s40635-020-00350-y. PubMed DOI PMC
Fink MP. Animal models of sepsis. Virulence. 2014;5:143–153. doi: 10.4161/viru.26083. PubMed DOI PMC
Tucker MH, Yeh HW, Oh D, Shaw N, Kumar N, Sampath V. Preterm sepsis is associated with acute lung injury as measured by pulmonary severity score. Pediatr Res. 2022 doi: 10.1038/s41390-022-02218-1. doi: 10.1038/s41390-022-02218-1. PubMed DOI
Baradaran Rahimi V, Rakhshandeh H, Raucci F, Buono B, Shirazinia R, Samzadeh Kermani A, Maione F, et al. Anti-Inflammatory and Anti-Oxidant Activity of Portulaca oleracea Extract on LPS-Induced Rat Lung Injury. Molecules. 2019;24:139. doi: 10.3390/molecules24010139. PubMed DOI PMC
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725–738. doi: 10.1165/rcmb.2009-0210ST. PubMed DOI PMC
Nedeva C. Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules. 2021;11:1011. doi: 10.3390/biom11071011. PubMed DOI PMC
Chen H, Huang N, Tian H, et al. Splenectomy provides protective effects against CLP-induced sepsis by reducing TRegs and PD-1/PD-L1 expression. Int J Biochem Cell Biol. 2021;136:105970. doi: 10.1016/j.biocel.2021.105970. PubMed DOI
Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. AJP Lung Cellular and Molecular Physiology. 2008;295:L379–L399. doi: 10.1152/ajplung.00010.2008. PubMed DOI PMC
Puig F, Herrero R, Guillamat-Prats R, Gómez MN, Tijero J, Chimenti L, Stelmakh O, et al. A new experimental model of acid- and endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2016;311:L229–L237. doi: 10.1152/ajplung.00390.2015. PubMed DOI PMC
Rossol M, Heine H, Meusch U, et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol. 2011;31(5):379–446. doi: 10.1615/CritRevImmunol.v31.i5.20. PubMed DOI
Szarka RJ, Wang N, Gordon L, Nation PN, Smith RH. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J Immunol Methods. 1997;202:49–57. doi: 10.1016/S0022-1759(96)00236-0. PubMed DOI
Mirzapoiazova T, Kolosova IA, Moreno L, Sammani S, Garcia JG, Verin AD. Suppression of endotoxin-induced inflammation by taxol. Eur Respir J. 2007;30:429–435. doi: 10.1183/09031936.00154206. PubMed DOI
Chen J, Li G. MiR-1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1. Biomed Pharmacother. 2018;107:997–1003. doi: 10.1016/j.biopha.2018.08.059. PubMed DOI
De Leo F, Quilici G, Tirone M, De Marchis F, Mannella V, Zucchelli C, Preti A, et al. Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment. EMBO Rep. 2019;20:e47788. doi: 10.15252/embr.201947788. PubMed DOI PMC
Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, Jiang S, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin. 2022;43:520–528. doi: 10.1038/s41401-021-00676-7. PubMed DOI PMC
Lee S, Piao C, Kim G, Kim JY, Choi E, Lee M. Production and application of HMGB1 derived recombinant RAGE-antagonist peptide for anti-inflammatory therapy in acute lung injury. Eur J Pharm Sci. 2018;114:275–284. doi: 10.1016/j.ejps.2017.12.019. PubMed DOI
Suda K, Takeuchi H, Ishizaka A, Kitagawa Y. High-mobility-group box chromosomal protein 1 as a new target for modulating stress response. Surg Today. 2010;40:592–601. doi: 10.1007/s00595-009-4232-1. PubMed DOI
Qu L, Chen C, Chen Y, Li Y, Tang F, Huang H, He W, et al. High-Mobility Group Box 1 (HMGB1) and Autophagy in Acute Lung Injury (ALI): A Review. Med Sci Monit. 2019;25:1828–1837. doi: 10.12659/MSM.912867. PubMed DOI PMC
Zhao J, Yu H, Liu Y, Gibson SA, Yan Z, Xu X, Gaggar A, et al. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311:L868–L880. doi: 10.1152/ajplung.00281.2016. PubMed DOI PMC
ST-Segment Alterations in the Electrocardiogram of Acute Pulmonary Thromboembolism: A Rabbit Model