Mechanosensitive receptors in migraine: a systematic review
Language English Country Great Britain, England Media electronic
Document type Systematic Review, Journal Article
PubMed
38221631
PubMed Central
PMC10788982
DOI
10.1186/s10194-023-01710-1
PII: 10.1186/s10194-023-01710-1
Knihovny.cz E-resources
- Keywords
- ASICs, Headache, K2P, Mechano-neurobiology, Mechanotransduction, Migraine, NMDA, Piezo, TRP,
- MeSH
- Pain MeSH
- Mechanotransduction, Cellular * physiology MeSH
- Migraine Disorders * diagnosis MeSH
- Nociception physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH
BACKGROUND: Migraine is a debilitating neurological disorder with pain profile, suggesting exaggerated mechanosensation. Mechanosensitive receptors of different families, which specifically respond to various mechanical stimuli, have gathered increasing attention due to their potential role in migraine related nociception. Understanding these mechanisms is of principal importance for improved therapeutic strategies. This systematic review comprehensively examines the involvement of mechanosensitive mechanisms in migraine pain pathways. METHODS: A systematic search across the Cochrane Library, Scopus, Web of Science, and Medline was conducted on 8th August 2023 for the period from 2000 to 2023, according to PRISMA guidelines. The review was constructed following a meticulous evaluation by two authors who independently applied rigorous inclusion criteria and quality assessments to the selected studies, upon which all authors collectively wrote the review. RESULTS: We identified 36 relevant studies with our analysis. Additionally, 3 more studies were selected by literature search. The 39 papers included in this systematic review cover the role of the putative mechanosensitive Piezo and K2P, as well as ASICs, NMDA, and TRP family of channels in the migraine pain cascade. The outcome of the available knowledge, including mainly preclinical animal models of migraine and few clinical studies, underscores the intricate relationship between mechanosensitive receptors and migraine pain symptoms. The review presents the mechanisms of activation of mechanosensitive receptors that may be involved in the generation of nociceptive signals and migraine associated clinical symptoms. The gender differences of targeting these receptors as potential therapeutic interventions are also acknowledged as well as the challenges related to respective drug development. CONCLUSIONS: Overall, this analysis identified key molecular players and uncovered significant gaps in our understanding of mechanotransduction in migraine. This review offers a foundation for filling these gaps and suggests novel therapeutic options for migraine treatments based on achievements in the emerging field of mechano-neurobiology.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
Department of Neurology Clínica Universidad de Navarra Pamplona Spain
Neurology Department Hospital Universitari Vall d'Hebron Barcelona Spain
School of Health Sciences Unitelma Sapienza University of Rome Rome Italy
See more in PubMed
Messlinger K. Migraine: where and how does the pain originate? Exp brain Res. 2009;196:179–193. doi: 10.1007/s00221-009-1756-y. PubMed DOI
Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8:679–690. doi: 10.1016/S1474-4422(09)70090-0. PubMed DOI
Zhang X, Levy D, Noseda R, et al. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with Aura. J Neurosci. 2010;30:8807–8814. doi: 10.1523/JNEUROSCI.0511-10.2010. PubMed DOI PMC
Harriott AM, Chung DY, Uner A, et al. Optogenetic spreading depression elicits trigeminal pain and anxiety behavior. Ann Neurol. 2021;89:99–110. doi: 10.1002/ana.25926. PubMed DOI PMC
Levy D, Moskowitz MA. Meningeal mechanisms and the migraine connection. Annu Rev Neurosci. 2023;46:39–58. doi: 10.1146/annurev-neuro-080422-105509. PubMed DOI PMC
Guan LC, Dong X, Green DP. Roles of mast cells and their interactions with the trigeminal nerve in migraine headache. Mol Pain. 2023;19:174480692311813. doi: 10.1177/17448069231181358. PubMed DOI PMC
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev. 2014;66:102–192. doi: 10.1124/pr.113.008029. PubMed DOI
Edvinsson L, Haanes KA, Warfvinge K, Krause DN. CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nat Rev Neurol. 2018;14:338–350. doi: 10.1038/s41582-018-0003-1. PubMed DOI
Ottosson A, Edvinsson L. Release of histamine from dural mast cells by substance p and calcitonin gene-related peptide. Cephalalgia. 1997;17:166–174. doi: 10.1046/j.1468-2982.1997.1703166.x. PubMed DOI
Xu H, Shi X, Li X, et al. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation. 2020;17:356. doi: 10.1186/s12974-020-02029-3. PubMed DOI PMC
Kong X, Bennett WC, Jania CM, et al (2021) Identification of an ATP/P2X7/mast cell pathway mediating ozone-induced bronchial hyperresponsiveness. JCI Insight 6:. 10.1172/jci.insight.140207 PubMed PMC
Giniatullin R. 5-hydroxytryptamine in migraine: The puzzling role of ionotropic 5-HT 3 receptor in the context of established therapeutic effect of metabotropic 5-HT 1 subtypes. Br J Pharmacol. 2022;179:400–415. doi: 10.1111/bph.15710. PubMed DOI
Mai L, Liu Q, Huang F, et al (2021) Involvement of Mast Cells in the Pathophysiology of Pain. Front Cell Neurosci 15:. 10.3389/fncel.2021.665066 PubMed PMC
Kilinc E, Guerrero-toro C, Zakharov A, et al. Neuropharmacology serotonergic mechanisms of trigeminal meningeal nociception : implications for migraine pain. Neuropharmacology. 2017;116:160–173. doi: 10.1016/j.neuropharm.2016.12.024. PubMed DOI
Krabbe AA, Olesen J. Headache provocation by continuous intravenous infusion of histamine. Clin Results Recep Mechanisms Pain. 1980;8:253–259. doi: 10.1016/0304-3959(88)90012-7. PubMed DOI
Erdener ŞE, Kaya Z, Dalkara T. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain. 2021;22:138. doi: 10.1186/s10194-021-01353-0. PubMed DOI PMC
Zhao J, Levy D (2016) Cortical Spreading Depression Promotes Persistent Mechanical Sensitization of Intracranial Meningeal Afferents: Implications for the Intracranial Mechanosensitivity of Migraine. eneuro 3:ENEURO.0287–16.2016. 10.1523/ENEURO.0287-16.2016 PubMed PMC
Charles A, Brennan K. Cortical Spreading Depression—New Insights and Persistent Questions. Cephalalgia. 2009;29:1115–1124. doi: 10.1111/j.1468-2982.2009.01983.x. PubMed DOI PMC
Schain AJ, Melo-Carrillo A, Strassman AM, Burstein R. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. J Neurosci. 2017;37:2904–2915. doi: 10.1523/JNEUROSCI.3390-16.2017. PubMed DOI PMC
Close LN, Eftekhari S, Wang M, et al. Cortical spreading depression as a site of origin for migraine: Role of CGRP. Cephalalgia. 2019;39:428–434. doi: 10.1177/0333102418774299. PubMed DOI PMC
Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. 2011;13:e36. doi: 10.1017/S1462399411002067. PubMed DOI PMC
Strassman AM, Raymond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature. 1996;384:560–564. doi: 10.1038/384560a0. PubMed DOI
Karatas H, Erdener SE, Gursoy-Ozdemir Y, et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science. 2013;339:1092–1095. doi: 10.1126/science.1231897. PubMed DOI
Burstein R, Yamamura H, Malick A, Strassman AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol. 1998;79:964–982. doi: 10.1152/jn.1998.79.2.964. PubMed DOI
Zhang X-C, Strassman AM, Burstein R, Levy D. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. J Pharmacol Exp Ther. 2007;322:806–812. doi: 10.1124/jpet.107.123745. PubMed DOI
Burstein R, Yarnitsky D, Goor-Aryeh I, et al. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47:614–624. doi: 10.1002/1531-8249(200005)47:5<614::AID-ANA9>3.0.CO;2-N. PubMed DOI
Gafurov O, Koroleva K, Giniatullin R (2021) Antidromic Spike Propagation and Dissimilar Expression of P2X, 5-HT, and TRPV1 Channels in Peripheral vs. Central Sensory Axons in Meninges. Front Cell Neurosci 14:. 10.3389/fncel.2020.623134 PubMed PMC
(2018) IHS classification ICHD-3. https://ichd-3.org
Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain. 2019;20:91. doi: 10.1186/s10194-019-1043-7. PubMed DOI PMC
Al-Hassany L, Haas J, Piccininni M, et al (2020) Giving Researchers a Headache – Sex and Gender Differences in Migraine. Front Neurol 11:. 10.3389/fneur.2020.549038 PubMed PMC
Bavi N, Cox CD, Nikolaev YA, Martinac B. Molecular insights into the force-from-lipids gating of mechanosensitive channels. Curr Opin Physiol. 2023;36:100706. doi: 10.1016/j.cophys.2023.100706. DOI
Duitama M, Vargas-López V, Casas Z, et al (2020) TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Front Neurosci 14:. 10.3389/fnins.2020.00782 PubMed PMC
Benemei S, Dussor G (2019) TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities. Pharmaceuticals (Basel) 12:. 10.3390/ph12020054 PT - Journal Article, Review PubMed PMC
Dussor G, Yan J, Xie JY, et al (2014) Targeting TRP channels for novel migraine therapeutics. ACS Chem Neurosci 5:1085–1096. 10.1021/cn500083e PT - Journal Article, Review PubMed PMC
Dussor G, Cao Y. TRPM8 and Migraine. Headache J Head Face Pain. 2016;56:1406–1417. doi: 10.1111/head.12948. PubMed DOI PMC
Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413:203–210. doi: 10.1038/35093019. PubMed DOI
Lengyel M, Czirjak G, Jacobson DA, Enyedi P (2020) TRESK and TREK-2 two-pore-domain potassium channel subunits form functional heterodimers in primary somatosensory neurons. J Biol Chem 295:12408–12425. 10.1074/jbc.RA120.014125 PT - Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t PubMed PMC
Royal P, Andres-Bilbe A, Avalos Prado P, et al (2019) Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron 101:232–245.e6. 10.1016/j.neuron.2018.11.039 PT - Journal Article, Research Support, Non-U.S. Gov’t PubMed
Alloui A, Zimmermann K, Mamet J, et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 2006;25:2368–2376. doi: 10.1038/sj.emboj.7601116. PubMed DOI PMC
Huntemann N, Bittner S, Bock S, et al (2022) Mini-Review: Two Brothers in Crime - The Interplay of TRESK and TREK in Human Diseases. Neurosci Lett 769:136376. 10.1016/j.neulet.2021.136376 PT - Journal Article, Research Support, Non-U.S. Gov’t, Review PubMed
Pope L, Minor DLJ (2021) The Polysite Pharmacology of TREK K2P Channels. Adv Exp Med Biol 1349:51–65. 10.1007/978-981-16-4254-8_4 PT - Journal Article PubMed PMC
Coste B, Mathur J, Schmidt M, et al (2010) Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels. Science (80- ) 330:55–60. 10.1126/science.1193270 PubMed PMC
Zhou Z, Martinac B. Mechanisms of PIEZO Channel Inactivation. Int J Mol Sci. 2023;24:14113. doi: 10.3390/ijms241814113. PubMed DOI PMC
Ma T, Wang Y-Y, Lu Y, et al. Inhibition of Piezo1/Ca2+/calpain signaling in the rat basal forebrain reverses sleep deprivation-induced fear memory impairments. Behav Brain Res. 2022;417:113594. doi: 10.1016/j.bbr.2021.113594. PubMed DOI
Zhang M, Wang Y, Geng J, et al. Mechanically Activated Piezo Channels Mediate Touch and Suppress Acute Mechanical Pain Response in Mice. Cell Rep. 2019;26:1419–1431.e4. doi: 10.1016/j.celrep.2019.01.056. PubMed DOI
De Logu F, Geppetti P (2019) Ion Channel Pharmacology for Pain Modulation. Handb Exp Pharmacol 260:161–186. 10.1007/164_2019_336 PT - Journal Article, Review PubMed
Johnson LR, Battle AR, Martinac B (2019) Remembering Mechanosensitivity of NMDA Receptors. Front Cell Neurosci 13:. 10.3389/fncel.2019.00533 PubMed PMC
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC
Cheng Y. TRPV1 and Piezo: the 2021 Nobel Prize in Physiology or Medicine. IUCrJ. 2022;9:4–5. doi: 10.1107/S2052252521013488. PubMed DOI PMC
Gunthorpe MJ, Hannan SL, Smart D, et al. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J Pharmacol Exp Ther. 2007;321:1183–1192. doi: 10.1124/jpet.106.116657. PubMed DOI
Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi: 10.1038/39807. PubMed DOI
Jancsó N, Jancsó-Gábor A, SZOLCSÁNYI J, Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother. 1967;31:138–151. doi: 10.1111/j.1476-5381.1967.tb01984.x. PubMed DOI PMC
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol. 2016;38:385–396. doi: 10.1007/s00281-015-0528-y. PubMed DOI
Meents JE, Hoffmann J, Chaplan SR, et al. Two TRPV1 receptor antagonists are effective in two different experimental models of migraine. J Headache Pain. 2015;16:57. doi: 10.1186/s10194-015-0539-z. PubMed DOI PMC
Chizh B, Palmer J, Lai R, et al (2009) 702 A Randomised, two‐period cross‐over study to investigate the efficacy of the TRPV1 antagonist SB‐705498 in acute migraine. Eur J Pain 13:. 10.1016/S1090-3801(09)60705-9
Lis K, Grygorowicz T, Cudna A, et al (2017) Inhibition of TNF reduces mechanical orofacial hyperalgesia induced by Complete Freund’s Adjuvant by a TRPV1-dependent mechanism in mice. Pharmacol Rep 69:1380–1385. 10.1016/j.pharep.2017.05.013 PT - Journal Article PubMed
Wei X, Edelmayer RM, Yan J, Dussor G (2011) Activation of TRPV4 on dural afferents produces headache-related behavior in a preclinical rat model. Cephalalgia 31:1595–1600. 10.1177/0333102411427600 PT - Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t PubMed PMC
Citak A, Kilinc E, Torun IE, et al (2022) The effects of certain TRP channels and voltage-gated KCNQ/Kv7 channel opener retigabine on calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 42:1375–1386. 10.1177/03331024221114773 PT - Journal Article PubMed
Edelmayer RM, Le LN, Yan J, et al (2012) Activation of TRPA1 on dural afferents: a potential mechanism of headache pain. Pain 153:1949–1958. 10.1016/j.pain.2012.06.012 PT - Journal Article, Research Support, N.I.H., Extramural PubMed PMC
McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416:52–58. doi: 10.1038/nature719. PubMed DOI
Lehto SG, Weyer AD, Zhang M, et al (2015) AMG2850, a potent and selective TRPM8 antagonist, is not effective in rat models of inflammatory mechanical hypersensitivity and neuropathic tactile allodynia. Naunyn Schmiedebergs Arch Pharmacol 388:465–476. 10.1007/s00210-015-1090-9 PT - Journal Article PubMed PMC
Martin-Escura C, Medina-Peris A, Spear LA, et al (2022) beta-Lactam TRPM8 Antagonist RGM8–51 Displays Antinociceptive Activity in Different Animal Models. Int J Mol Sci 23:. 10.3390/ijms23052692 PubMed PMC
Cohen CF, Prudente AS, Berta T, Lee SH (2021) Transient Receptor Potential Channel 4 Small-Molecule Inhibition Alleviates Migraine-Like Behavior in Mice. Front Mol Neurosci 14:. 10.3389/fnmol.2021.765181 PubMed PMC
Sadler KE, Moehring F, Shiers SI, et al (2021) Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci Transl Med 13:. 10.1126/scitranslmed.abd7702 PT - Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t PubMed PMC
Benemei S, De Cesaris F, Fusi C, et al. TRPA1 and other TRP channels in migraine. J Headache Pain. 2013;14:71. doi: 10.1186/1129-2377-14-71. PubMed DOI PMC
Del Fiacco M, Quartu M, Boi M, et al. TRPV1, CGRP and SP in scalp arteries of patients suffering from chronic migraine. J Neurol Neurosurg Psychiatry. 2015;86:393–397. doi: 10.1136/jnnp-2014-308813. PubMed DOI
Jakubowski M, Levy D, Kainz V, et al. Sensitization of central trigeminovascular neurons: Blockade by intravenous naproxen infusion. Neuroscience. 2007;148:573–583. doi: 10.1016/j.neuroscience.2007.04.064. PubMed DOI PMC
Kim S-J, Yeo J-H, Yoon S-Y, et al (2018) Differential Development of Facial and Hind Paw Allodynia in a Nitroglycerin-Induced Mouse Model of Chronic Migraine: Role of Capsaicin Sensitive Primary Afferents. Biol Pharm Bull 41:172–181. 10.1248/bpb.b17-00589 PT - Comparative Study, Journal Article PubMed
Grant AD, Cottrell GS, Amadesi S, et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol. 2007;578:715–733. doi: 10.1113/jphysiol.2006.121111. PubMed DOI PMC
Zhang X-C, Levy D (2008) Modulation of meningeal nociceptors mechanosensitivity by peripheral proteinase-activated receptor-2: the role of mast cells. Cephalalgia 28:276–284. 10.1111/j.1468-2982.2007.01523.x PT - Comparative Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t PubMed PMC
Hassler SN, Ahmad FB, Burgos-Vega CC, et al. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia. 2019;39:111–122. doi: 10.1177/0333102418779548. PubMed DOI PMC
Nie L, Jiang L, Quinn JP, et al (2021) TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. Int J Mol Sci 22:. 10.3390/ijms222212273 PT - Journal Article PubMed PMC
Rice FL, Xie JY, Albrecht PJ, et al (2017) Anatomy and immunochemical characterization of the non-arterial peptidergic diffuse dural innervation of the rat and Rhesus monkey: Implications for functional regulation and treatment in migraine. Cephalalgia 37:1350–1372. 10.1177/0333102416677051 PT - Journal Article PubMed
Vangeel L, Benoit M, Miron Y, et al. Functional expression and pharmacological modulation of TRPM3 in human sensory neurons. Br J Pharmacol. 2020;177:2683–2695. doi: 10.1111/bph.14994. PubMed DOI PMC
Majeed Y, Tumova S, Green BL, et al. Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium. 2012;51:1–11. doi: 10.1016/j.ceca.2011.09.005. PubMed DOI PMC
Krivoshein G, Tolner EA, van den Maagdenberg A, et al. Migraine-relevant sex-dependent activation of mouse meningeal afferents by TRPM3 agonists. J Headache Pain. 2022;23:4. doi: 10.1186/s10194-021-01383-8. PubMed DOI PMC
Ito H, Aizawa N, Sugiyama R, et al. Functional role of the transient receptor potential melastatin 8 ( <scp>TRPM</scp> 8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the ra. BJU Int. 2016;117:484–494. doi: 10.1111/bju.13225. PubMed DOI
Simone DA, Kajander KC. Excitation of rat cutaneous nociceptors by noxious cold. Neurosci Lett. 1996;213:53–56. doi: 10.1016/0304-3940(96)12838-X. PubMed DOI
Knowlton WM, Palkar R, Lippoldt EK, et al. A Sensory-Labeled Line for Cold: TRPM8-Expressing Sensory Neurons Define the Cellular Basis for Cold, Cold Pain, and Cooling-Mediated Analgesia. J Neurosci. 2013;33:2837–2848. doi: 10.1523/JNEUROSCI.1943-12.2013. PubMed DOI PMC
Burgos-Vega CC, Ahn DD-U, Bischoff C, et al. Meningeal transient receptor potential channel M8 activation causes cutaneous facial and hindpaw allodynia in a preclinical rodent model of headache. Cephalalgia. 2016;36:185–193. doi: 10.1177/0333102415584313. PubMed DOI PMC
Levy D, Strassman AM. Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura. J Neurophysiol. 2002;88:3021–3031. doi: 10.1152/jn.00029.2002. PubMed DOI
Ren L, Chang MJ, Zhang Z, et al (2018) Quantitative Analysis of Mouse Dural Afferent Neurons Expressing TRPM8, VGLUT3, and NF200. Headache 58:88–101. 10.1111/head.13188 PT - Journal Article PubMed PMC
Wei H, Sagalajev B, Yüzer MA, et al. Regulation of neuropathic pain behavior by amygdaloid TRPC4/C5 channels. Neurosci Lett. 2015;608:12–17. doi: 10.1016/j.neulet.2015.09.033. PubMed DOI
Lengyel M, Dobolyi A, Czirjak G, Enyedi P. Selective and state-dependent activation of TRESK (K(2P)18.1) background potassium channel by cloxyquin. Br J Pharmacol. 2017;174:2102–2113. doi: 10.1111/bph.13821. PubMed DOI PMC
Ávalos Prado P, Landra-Willm A, Verkest C, et al (2021) TREK channel activation suppresses migraine pain phenotype. iScience 24:. 10.1016/j.isci.2021.102961 PubMed PMC
Callejo G, Giblin JP, Gasull X (2013) Modulation of TRESK background K+ channel by membrane stretch. PLoS One 8:e64471. 10.1371/journal.pone.0064471 PT - Journal Article, Research Support, Non-U.S. Gov’t PubMed PMC
Guo Z, Cao Y-Q (2014) Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors. PLoS One 9:e87029. 10.1371/journal.pone.0087029 PT - Journal Article, Research Support, N.I.H., Extramural PubMed PMC
Kang D, Cho Y-W, Kim WS, et al. Localization and expression of TREK-1, TREK-2, and TRAAK channels in rat medial vestibular nuclei. J Int Adv Otol. 2013;9:75–81.
Lengyel M, Erdelyi F, Pergel E, et al (2019) Chemically Modified Derivatives of the Activator Compound Cloxyquin Exert Inhibitory Effect on TRESK (K2P18.1) Background Potassium Channel. Mol Pharmacol 95:652–660. 10.1124/mol.118.115626 PT - Journal Article, Research Support, Non-U.S. Gov’t PubMed
Liu P, Xiao Z, Ren F, et al (2013) Functional analysis of a migraine-associated TRESK K+ channel mutation. J Neurosci 33:12810–12824. 10.1523/JNEUROSCI.1237-13.2013 PT - Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t PubMed PMC
Avalos Prado P, Chassot A-AA-AA, Landra-Willm A, et al. Regulation of two-pore-domain potassium TREK channels and their involvement in pain perception and migraine. Neurosci Lett. 2022;773:136494. doi: 10.1016/j.neulet.2022.136494. PubMed DOI
Andres-Bilbe A, Castellanos A, Pujol-Coma A, et al (2020) The Background K+ Channel TRESK in Sensory Physiology and Pain. Int J Mol Sci 21:. 10.3390/ijms21155206 PT - Journal Article, Review PubMed PMC
Enyedi P, Braun G, Czirjak G (2012) TRESK: the lone ranger of two-pore domain potassium channels. Mol Cell Endocrinol 353:75–81. 10.1016/j.mce.2011.11.009 PT - Journal Article, Research Support, Non-U.S. Gov’t, Review PubMed
Mikhailov N, Leskinen J, Fagerlund I, et al. Mechanosensitive meningeal nociception via Piezo channels: Implications for pulsatile pain in migraine? Neuropharmacology. 2019;149:113–123. doi: 10.1016/j.neuropharm.2019.02.015. PubMed DOI
Della Pietra A, Mikhailov N, Giniatullin R (2023) FM1–43 Dye Memorizes Piezo1 Activation in the Trigeminal Nociceptive System Implicated in Migraine Pain. Int J Mol Sci 24:. 10.3390/ijms24021688 PT - Journal Article PubMed PMC
Dolgorukova A, Isaeva JE, Verbitskaya E, et al. Differential effects of the Piezo1 agonist Yoda1 in the trigeminovascular system: An electrophysiological and intravital microscopy study in rats. Exp Neurol. 2021;339:113634. doi: 10.1016/j.expneurol.2021.113634. PubMed DOI
Mikhailov N, Plotnikova L, Singh P, et al (2022) Functional Characterization of Mechanosensitive Piezo1 Channels in Trigeminal and Somatic Nerves in a Neuron-on-Chip Model. Int J Mol Sci 23:. 10.3390/ijms23031370 PubMed PMC
Mikhailov N, Plotnikova L, Singh P, et al. Functional characterization of mechanosensitive piezo1 channels in trigeminal and somatic nerves in a neuron-on-chip model. Int J Mol Sci. 2022;23:1370. doi: 10.3390/ijms23031370. PubMed DOI PMC
Verkest C, Piquet E, Diochot S, et al (2018) Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br J Pharmacol 175:4154–4166. 10.1111/bph.14462 PT - Journal Article, Research Support, Non-U.S. Gov’t PubMed PMC
Yan J, Wei XM, Bischoff C, et al. pH-Evoked dural afferent signaling is mediated byasic3 and is sensitized by mast cell mediators. Headache. 2013;53:1250–1261. doi: 10.1111/head.12152. PubMed DOI PMC
Holton CM, Strother LC, Dripps I, et al (2020) Acid-sensing ion channel 3 blockade inhibits durovascular and nitric oxide-mediated trigeminal pain. Br J Pharmacol 177:2478–2486. 10.1111/bph.14990 PT - Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t PubMed PMC
Belin S, Maki BA, Catlin J, et al. Membrane Stretch Gates NMDA Receptors. J Neurosci. 2022;42:5672–5680. doi: 10.1523/JNEUROSCI.0350-22.2022. PubMed DOI PMC
Kaufmann D, Bates EA, Yagen B, et al (2016) sec-Butylpropylacetamide (SPD) has antimigraine properties. Cephalalgia 36:924–935. 10.1177/0333102415612773 PT - Journal Article PubMed PMC
Tipton AF, Tarash I, McGuire B, et al (2016) The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia 36:1048–1056. 10.1177/0333102415623070 PT - Journal Article PubMed PMC
Douguet D, Honoré E. Mammalian mechanoelectrical transduction: structure and function of force-gated Ion channels. Cell. 2019;179:340–354. doi: 10.1016/j.cell.2019.08.049. PubMed DOI
Ballesteros A, Fenollar-Ferrer C, Swartz KJ (2018) Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. Elife 7:. 10.7554/eLife.38433 PubMed PMC
Coste B, Xiao B, Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483:176–181. doi: 10.1038/nature10812. PubMed DOI PMC
Cox CD, Bavi N, Martinac B. Biophysical principles of Ion-channel-mediated mechanosensory transduction. Cell Rep. 2019;29:1–12. doi: 10.1016/j.celrep.2019.08.075. PubMed DOI
Lengyel M, Enyedi P, Czirják G. Negative influence by the force: mechanically induced hyperpolarization via K2P background potassium channels. Int J Mol Sci. 2021;22:9062. doi: 10.3390/ijms22169062. PubMed DOI PMC
Vitale M, Tottene A, Zarin Zadeh M, et al. Mechanisms of initiation of cortical spreading depression. J Headache Pain. 2023;24:105. doi: 10.1186/s10194-023-01643-9. PubMed DOI PMC
López-de-Uralde-Villanueva I, Beltran-Alacreu H, Fernández-Carnero J, et al (2015) Differences in Neural Mechanosensitivity Between Patients with Chronic Nonspecific Neck Pain With and Without Neuropathic Features. A Descriptive Cross-Sectional Study. Pain Med n/a-n/a. 10.1111/pme.12856 PubMed
Diener H-C, Charles A, Goadsby PJ, Holle D. New therapeutic approaches for the prevention and treatment of migraine. Lancet Neurol. 2015;14:1010–1022. doi: 10.1016/S1474-4422(15)00198-2. PubMed DOI
Ashina S, Melo-Carrillo A, Szabo E, et al (2023) Pre-treatment non-ictal cephalic allodynia identifies responders to prophylactic treatment of chronic and episodic migraine patients with galcanezumab: A prospective quantitative sensory testing study (NCT04271202). Cephalalgia 43:. 10.1177/03331024221147881 PubMed
Scholten-Peeters GGM, Coppieters MW, Durge TSC, Castien RF (2020) Fluctuations in local and widespread mechanical sensitivity throughout the migraine cycle: a prospective longitudinal study. J Headache Pain 21:16. 10.1186/s10194-020-1083-z PT - Journal Article PubMed PMC