The Effect of Sedentary Behaviour on Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis

. 2024 Apr ; 54 (4) : 997-1013. [epub] 20240116

Jazyk angličtina Země Nový Zéland Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid38225444
Odkazy

PubMed 38225444
PubMed Central PMC11052788
DOI 10.1007/s40279-023-01986-y
PII: 10.1007/s40279-023-01986-y
Knihovny.cz E-zdroje

BACKGROUND: Cardiorespiratory fitness (CRF) is an important indicator of current and future health. While the impact of habitual physical activity on CRF is well established, the role of sedentary behaviour (SB) remains less understood. OBJECTIVE: We aimed to determine the effect of SB on CRF. METHODS: Searches were conducted in MEDLINE, Embase, PsycINFO, CINAHL and SPORTDiscus from inception to August 2022. Randomised controlled trials, quasi-experimental studies and cohort studies that assessed the relationship between SB and CRF were eligible. Narrative syntheses and meta-analyses summarised the evidence, and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) certainty was based on evidence from randomised controlled trials. RESULTS: This review included 18 studies that focused on youth (four randomised controlled trials, three quasi-experimental studies, 11 cohort studies) and 24 on adult populations (15 randomised controlled trials, five quasi-experimental studies, four cohort studies). In youth and adults, evidence from randomised controlled trials suggests mixed effects of SB on CRF, but with the potential for interventions to improve CRF. Quasi-experimental and cohort studies also support similar conclusions. Certainty of evidence was very low for both age groups. A meta-analysis of adult randomised controlled trials found that interventions targeting reducing SB, or increasing physical activity and reducing SB, had a significant effect on post-peak oxygen consumption (mean difference = 3.16 mL.kg-1.min-1, 95% confidence interval: 1.76, 4.57). CONCLUSIONS: Evidence from randomised controlled trials indicates mixed associations between SB and CRF, with the potential for SB to influence CRF, as supported by meta-analytical findings. Further well-designed trials are warranted to confirm the relationship between SB and CRF, explore the effects of SB independent from higher intensity activity, and investigate the existence of such relationships in paediatric populations. CLINICAL TRIAL REGISTRATION: PROSPERO CRD42022356218.

Erratum v

PubMed

Zobrazit více v PubMed

Ross R, Blair SN, Arena R, Church TS, Després J-P, Franklin BA, et al. Importance of Assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653–e699. doi: 10.1161/CIR.0000000000000461. PubMed DOI

Oja P. Dose response between total volume of physical activity and health and fitness. Med Sci Sports Exerc. 2001;33(6):S428–S437. doi: 10.1097/00005768-200106001-00011. PubMed DOI

2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC; 2018.

Jackson AS, Sui X, Hébert JR, Church TS, Blair SN. Role of lifestyle and aging on the longitudinal change in cardiorespiratory fitness. Arch Intern Med. 2009 doi: 10.1001/archinternmed.2009.312. PubMed DOI PMC

Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(7):e002014. doi: 10.1161/JAHA.115.002014. PubMed DOI PMC

Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb. PubMed DOI

Gibala MJ, Little JP. Physiological basis of brief vigorous exercise to improve health. J Physiol. 2020;598(1):61–69. doi: 10.1113/JP276849. PubMed DOI

Parikh T, Stratton G. Influence of Intensity of physical activity on adiposity and cardiorespiratory fitness in 5–18 year olds. Sports Med. 2011;41(6):477–488. doi: 10.2165/11588750-000000000-00000. PubMed DOI

Burden SJ, Weedon BD, Turner A, Whaymand L, Meaney A, Dawes H, et al. Intensity and duration of physical activity and cardiorespiratory fitness. Pediatrics. 2022 doi: 10.1542/peds.2021-056003. PubMed DOI PMC

Gralla MH, McDonald SM, Breneman C, Beets MW, Moore JB. Associations of Objectively measured vigorous physical activity with body composition, cardiorespiratory fitness, and cardiometabolic health in youth: a review. Am J Lifestyle Med. 2019;13(1):61–97. doi: 10.1177/1559827615624417. PubMed DOI PMC

Nayor M, Chernofsky A, Spartano NL, Tanguay M, Blodgett JB, Murthy VL, et al. Physical activity and fitness in the community: the Framingham Heart Study. Eur Heart J. 2021;42(44):4565–4575. doi: 10.1093/eurheartj/ehab580. PubMed DOI PMC

O'Donovan G, Owen A, Bird SR, Kearney EM, Nevill AM, Jones DW, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol. 2005;98(5):1619–1625. doi: 10.1152/japplphysiol.01310.2004. PubMed DOI

Batacan RB, Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51(6):494–503. doi: 10.1136/bjsports-2015-095841. PubMed DOI

Fowles J, Roy J, Clarke J, Dogra S. Are the fittest Canadian adults the healthiest? Health Rep. 2014;25(5):13–18. PubMed

Lavie CJ, Sanchis-Gomar F, Ozemek C. Fit is it for longevity across population. J Am Coll Cardiol. 2022;80(6):610–612. doi: 10.1016/j.jacc.2022.05.030. PubMed DOI

García-Hermoso A, Ramírez-Vélez R, García-Alonso Y, Alonso-Martínez AM, Izquierdo M. Association of cardiorespiratory fitness levels during youth with health risk later in life. JAMA Pediatr. 2020;174(10):952. doi: 10.1001/jamapediatrics.2020.2400. PubMed DOI PMC

Ruiz JR, Castro-Piñero J, Artero EG, Ortega FB, Sjöström M, Suni J, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–203. doi: 10.1136/bjsm.2008.056499. PubMed DOI

Kodama S, Saito K, Tanaka S, M M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women. JAMA. 2009;301(19):2024. doi: 10.1001/jama.2009.681. PubMed DOI

Steell L, Ho FK, Sillars A, Petermann-Rocha F, Li H, Lyall DM, et al. Dose-response associations of cardiorespiratory fitness with all-cause mortality and incidence and mortality of cancer and cardiovascular and respiratory diseases: the UK Biobank cohort study. Br J Sports Med. 2019;53(21):1371–1378. doi: 10.1136/bjsports-2018-099093. PubMed DOI

Gupta S, Rohatgi A, Ayers CR, Willis BL, Haskell WL, Khera A, et al. Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality. Circulation. 2011;123(13):1377–1383. doi: 10.1161/CIRCULATIONAHA.110.003236. PubMed DOI PMC

Berry JD, Willis B, Gupta S, Barlow CE, Lakoski SG, Khera A, Rohatgi A, et al. Lifetime risks for cardiovascular disease mortality by cardiorespiratory fitness levels measured at ages 45, 55, and 65 years in men. The Cooper Center Longitudinal Study. J Am Coll Cardiol. 2011;57(15):1604–1610. doi: 10.1016/j.jacc.2010.10.056. PubMed DOI PMC

Schmid D, Leitzmann MF. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. Ann Oncol. 2015;26(2):272–278. doi: 10.1093/annonc/mdu250. PubMed DOI

Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Pscyhopharmacology. 2010;24:27–35. doi: 10.1177/1359786810382057. PubMed DOI PMC

Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Cooper, Gibbons LW. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA. 1989;262(17):2395–2401. doi: 10.1001/jama.1989.03430170057028. PubMed DOI

Kokkinos P, Faselis C, Samuel IBH, Lavie CJ, Zhang J, Vargas JD, et al. Changes in cardiorespiratory fitness and survival in patients with or without cardiovascular disease. J Am Coll Cardiol. 2023;81(12):1137–1147. doi: 10.1016/j.jacc.2023.01.027. PubMed DOI

Kokkinos P, Faselis C, Samuel IBH, Pittaras A, Doumas M, Murphy R, et al. Cardiorespiratory fitness and mortality risk across the spectra of age, race, and sex. J Am Coll Cardiol. 2022;80(6):598–609. doi: 10.1016/j.jacc.2022.05.031. PubMed DOI

Laukkanen JA, Zaccardi F, Khan H, Kurl S, Jae SY, Rauramaa R. Long-term change in cardiorespiratory fitness and all-cause mortality: a population-based follow-up study. Mayo Clin Proc. 2016;91(9):1183–1188. doi: 10.1016/j.mayocp.2016.05.014. PubMed DOI

Kaminsky LA, Imboden MT, Ozemek C. It's time to (again) recognize the considerable clinical and public health significance of cardiorespiratory fitness. J Am Coll Cardiol. 2023;81(12):1148–1150. doi: 10.1016/j.jacc.2023.02.004. PubMed DOI

Lee D, Sui X, Ortega F, Kim Y, Church T, Winett R, et al. Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. Br J Sports Med. 2011;45(6):504–510. doi: 10.1136/bjsm.2009.066209. PubMed DOI

Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. doi: 10.1186/s12966-017-0525-8. PubMed DOI PMC

Yang L, Cao C, Kantor ED, Nguyen LH, Zheng X, Park Y, et al. Trends in sedentary behavior among the US population, 2001–2016. JAMA. 2019;321(16):1587–1597. doi: 10.1001/jama.2019.3636. PubMed DOI PMC

Prince SA, Melvin A, Roberts KC, Butler GP, Thompson W. Sedentary behaviour surveillance in Canada: trends, challenges and lessons learned. Int J Behav Nutr Phys Act. 2020;17:34. doi: 10.1186/s12966-020-00925-8. PubMed DOI PMC

Chau JY, Merom D, Grunseit A, Rissel C, Bauman AE, van der Ploeg HP. Temporal trends in non-occupational sedentary behaviours from Australian Time Use Surveys 1992, 1997 and 2006. Int J Behav Nutr Phys Act. 2012;9(1):76. doi: 10.1186/1479-5868-9-76. PubMed DOI PMC

López-Valenciano A, Mayo X, Liguori G, Copeland RJ, Lamb M, Jimenez A. Changes in sedentary behaviour in European Union adults between 2002 and 2017. BMC Public Health. 2020;20(1):1206. doi: 10.1186/s12889-020-09293-1. PubMed DOI PMC

Lamoureux NR, Fitzgerald JS, Norton KI, Sabato T, Tremblay MS, Tomkinson GR. Temporal Trends in the cardiorespiratory fitness of 2,525,827 adults between 1967 and 2016: a systematic review. Sports Med. 2019;49(1):41–55. doi: 10.1007/s40279-018-1017-y. PubMed DOI

Moore SA, Faulkner G, Rhodes RE, Brussoni M, Chulak-Bozzer T, Ferguson LJ, et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey. Int J Behav Nutr Phys Act. 2020 doi: 10.1186/s12966-020-00987-8. PubMed DOI PMC

Colley RC, Bushnik T, Langlois K. Exercise and screen time during the COVID-19 pandemic. Health Rep. 2020;31(6):3–11. PubMed

Stockwell S, Trott M, Tully M, Shin J, Barnett Y, Butler L, et al. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: a systematic review. BMJ Open Sport Exerc Med. 2021;7(1):e000960. doi: 10.1136/bmjsem-2020-000960. PubMed DOI PMC

Kidokoro T, Tomkinson GR, Lang JJ, Suzuki K. Physical fitness before and during the COVID-19 pandemic: results of annual national physical fitness surveillance among 16,647,699 Japanese children and adolescents between 2013 and 2021. J Sport Health Sci. 2023;12(2):246–254. doi: 10.1016/j.jshs.2022.11.002. PubMed DOI PMC

Jurak G, Morrison SA, Kovač M, Leskošek B, Sember V, Strel J, et al. A COVID-19 crisis in child physical fitness: creating a barometric tool of public health engagement for the Republic of Slovenia. Front Public Health. 2021 doi: 10.3389/fpubh.2021.644235. PubMed DOI PMC

Aires L, Pratt M, Lobelo F, Santos RM, Santos MP, Mota J. Associations of cardiorespiratory fitness in children and adolescents with physical activity, active commuting to school, and screen time. J Phys Act Health. 2011;8(Suppl. 2):S198–205. doi: 10.1123/jpah.8.s2.s198. PubMed DOI

Sandercock GRH, Ogunleye AA. Independence of physical activity and screen time as predictors of cardiorespiratory fitness in youth. Pediatr Res. 2013;73(5):692–697. doi: 10.1038/pr.2013.37. PubMed DOI

Santos R, Mota J, Okely AD, Pratt M, Moreira C, Coelho-e-Silva MJ, et al. The independent associations of sedentary behaviour and physical activity on cardiorespiratory fitness. Br J Sports Med. 2014;48(20):1508–1512. doi: 10.1136/bjsports-2012-091610. PubMed DOI

Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput J-P, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. App Physiol Nutr Metab. 2016;41(6 (Suppl. 3)):S240–S265. doi: 10.1139/apnm-2015-0630. PubMed DOI

Prince SA, Blanchard CM, Grace SL, Reid RD. Objectively-measured sedentary time and its association with markers of cardiometabolic health and fitness among cardiac rehabilitation graduates. Eur J Prev Cardiol. 2016;23(8):818–825. doi: 10.1177/2047487315617101. PubMed DOI

Kulinski JP, Khera A, Ayers CR, Das SR, De Lemos JA, Blair SN, et al. Association between cardiorespiratory fitness and accelerometer-derived physical activity and sedentary time in the general population. Mayo Clin Proceed. 2014;89(8):1063–1071. doi: 10.1016/j.mayocp.2014.04.019. PubMed DOI PMC

Wientzek A, Tormo Díaz MJ, Castaño JMH, Amiano P, Arriola L, Overvad K, et al. Cross-sectional associations of objectively measured physical activity, cardiorespiratory fitness and anthropometry in European adults. Obes. 2014;22(5):E127–E134. PubMed

Silva FM, Duarte-Mendes P, Rusenhack MC, Furmann M, Nobre PR, Fachada MÂ, et al. Objectively measured sedentary behavior and physical fitness in adults: a systematic review and meta-analysis. Int J Environ Res Public Health. 2020;17(22):8660. doi: 10.3390/ijerph17228660. PubMed DOI PMC

Vaara JP, Vasankari T, Wyss T, Pihlainen K, Ojanen T, Raitanen J, et al. Device-based measures of sedentary time and physical activity are associated with physical fitness and body fat content. Front Sports Act Liv. 2020 doi: 10.3389/fspor.2020.587789. PubMed DOI PMC

Carr LJ, Karvinen K, Peavler M, Smith R, Cangelosi K. Multicomponent intervention to reduce daily sedentary time: a randomised controlled trial. BMJ Open. 2013;3(10):e003261. doi: 10.1136/bmjopen-2013-003261. PubMed DOI PMC

Prince SA, Reed JL, Cotie LM, Harris J, Pipe AL, Reid RD. Results of the Sedentary Intervention Trial in Cardiac Rehabilitation (SIT-CR Study): a pilot randomized controlled trial. Int J Cardiol. 2018;269:317–324. doi: 10.1016/j.ijcard.2018.07.082. PubMed DOI

KozeyKeadle S, Lyden K, Staudenmayer J, Hickey A, Viskochil R, Braun B, et al. The independent and combined effects of exercise training and reducing sedentary behavior on cardiometabolic risk factors. Appl Physiol Nutr Metab. 2014;39(7):770–780. doi: 10.1139/apnm-2013-0379. PubMed DOI PMC

Balducci S, Haxhi J, Sacchetti M, Orlando G, Cardelli P, Vitale M, et al. Relationships of changes in physical activity and sedentary behavior with changes in physical fitness and cardiometabolic risk profile in individuals with Type 2 diabetes: The Italian Diabetes and Exercise Study 2 (IDES_2) Diabetes Care. 2022;45(1):213–221. doi: 10.2337/dc21-1505. PubMed DOI

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC

Lefebvre CGJ, Briscoe S, Littlewood A, Marshall C, Metzendorf M-I, Noel-Storr A, et al. Technical supplement to Chapter 4: aearching for and selecting studies. In: Higgins JPT TJ, Chandler J, Cumpston MS, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for systematic reviews of interventions. Version 6. Cochrane; 2019.

McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 Guideline Statement. J Clin Epidemiol. 2016;75:40–46. doi: 10.1016/j.jclinepi.2016.01.021. PubMed DOI

Sutton AJ, Duval SJ, Tweedie RL, Abrams KR, Jones DR. Empirical assessment of effect of publication bias on meta-analyses. BMJ. 2000;320(7249):1574–1577. doi: 10.1136/bmj.320.7249.1574. PubMed DOI PMC

Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Chapter 13: Assessing risk of bias due to missing results in a synthesis. 2023. Available from: https://training.cochrane.org/handbook/current/chapter-13. [Accessed 6 Dec 2023].

Hoffmann MD, Colley RC, Doyon CY, Wong SL, Tomkinson GR, Lang JJ. Normative-referenced percentile values for physical fitness among Canadians. Health Rep. 2019;30(10):14–22. PubMed

Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019 doi: 10.1136/bmj.l4898. PubMed DOI

Collaboration TC. RoB 2: a revised Cochrane risk-of-bias tool for randomized trials. 2022. Available from: https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials. [Accessed 18 May 2022].

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016 doi: 10.1136/bmj.i4919. PubMed DOI PMC

ROBINS-E Development Group (Higgins JMR, Rooney A, Taylor K, Thayer K, Silva R, Lemeris C, et al. Risk Of Bias In Non-randomized Studies - of Exposure (ROBINS-E). 2022. Available from: https://www.riskofbias.info/welcome/robins-e-tool. [Accessed 11 May 2023].

Schunemann H, Brozek J, Guyatt G, Oxman A, editors. GRADE Handbook. 2013.

Aguinaga S, Marquez DX. Impact of Latin dance on physical activity, cardiorespiratory fitness, and sedentary behavior among latinos attending an adult day center. J Aging Health. 2019;31(3):397–414. doi: 10.1177/0898264317733206. PubMed DOI

Balducci S, Conti F, Sacchetti M, Russo CR, Argento G, Haxhi J, et al. Study to weigh the effect of exercise training on BONE quality and strength (SWEET BONE) in type 2 diabetes: study protocol for a randomised clinical trial. BMJ Open. 2019;9(11):e027429. doi: 10.1136/bmjopen-2018-027429. PubMed DOI PMC

Bergman F, Wahlström V, Stomby A, Otten J, Lanthén E, Renklint R, et al. Treadmill workstations in office workers who are overweight or obese: a randomised controlled trial. Lancet Public Health. 2018;3(11):e523–e535. doi: 10.1016/S2468-2667(18)30163-4. PubMed DOI

Carr LJ, Leonhard C, Tucker S, Fethke N, Benzo R, Gerr F. Total worker health intervention increases activity of sedentary workers. Am J Prev Med. 2016;50(1):9–17. doi: 10.1016/j.amepre.2015.06.022. PubMed DOI

Carter SE, Draijer R, Maxwell JD, Morris AS, Pedersen SJ, Graves LEF, et al. Using an e-health intervention to reduce prolonged sitting in UK office workers: a randomised acceptability and feasibility study. Int J Environ Res Public Health. 2020;17(23):1–21. doi: 10.3390/ijerph17238942. PubMed DOI PMC

Cheng SWM, Alison J, Stamatakis E, Dennis S, McNamara R, Spencer L, et al. Six-week behaviour change intervention to reduce sedentary behaviour in people with chronic obstructive pulmonary disease: a randomised controlled trial. Thorax. 2022;77(3):231–238. doi: 10.1136/thoraxjnl-2020-214885. PubMed DOI

Dunning JR, McVeigh JA, Goble D, Meiring RM. The effect of interrupting sedentary behavior on the cardiometabolic health of adults with sedentary occupations a pilot study. J Occup Environ Med. 2018;60(8):760–767. doi: 10.1097/JOM.0000000000001327. PubMed DOI

Guirado T, Metz L, Pereira B, Brun C, Birat A, Boscaro A, et al. A 12-week cycling workstation intervention improves cardiometabolic risk factors in healthy inactive office workers. J Occup Environ Med. 2022;64(8):E467–E474. doi: 10.1097/JOM.0000000000002583. PubMed DOI

Kozey-Keadle S, Staudenmayer J, Libertine A, Mavilia M, Lyden K, Braun B, et al. Changes in sedentary time and physical activity in response to an exercise training and/or lifestyle intervention. J Phys Act Health. 2014;11(7):1324–1333. doi: 10.1123/jpah.2012-0340. PubMed DOI

Larisch L-M, Bojsen-Moller E, Nooijen CFJ, Blom V, Ekblom M, Ekblom O, et al. Effects of two randomized and controlled multi-component interventions focusing on 24-hour movement behavior among office workers: a compositional data analysis. Int J Environ Res Public Health. 2021;18(8):4191. doi: 10.3390/ijerph18084191. PubMed DOI PMC

McNeil J, Brenner DR, Stone CR, O'Reilly R, Ruan Y, Vallance JK, et al. Activity tracker to prescribe various exercise intensities in breast cancer survivors. Med Sci Sports Exerc. 2019;51(5):930–940. doi: 10.1249/MSS.0000000000001890. PubMed DOI

Patel AK, Banga C, Chandrasekaran B. Effect of an education-based workplace intervention (move in office with education) on sedentary behaviour and well-being in desk-based workers: a cluster randomized controlled trial. Int J Occup Safe Ergon. 2022;28(3):1655–1663. doi: 10.1080/10803548.2021.1916221. PubMed DOI

Peralta LR, Jones RA, Okely AD. Promoting healthy lifestyles among adolescent boys: the Fitness Improvement and Lifestyle Awareness Program RCT. Prev Med. 2009;48(6):537–542. doi: 10.1016/j.ypmed.2009.04.007. PubMed DOI

Reich B, Niederseer D, Loidl M, Fernandez La Puente de Battre MD, Rossi VA, Zagel B, et al. Effects of active commuting on cardiovascular risk factors: GISMO—a randomized controlled feasibility study. Scand J Med Sci Sports. 2020;30:15–23. doi: 10.1111/sms.13697. PubMed DOI PMC

Robinson TN. Reducing children's television viewing to prevent obesity: a randomized controlled trial. JAMA. 1999;282(16):1561–1567. doi: 10.1001/jama.282.16.1561. PubMed DOI

Sacher PM, Kolotourou M, Chadwick PM, Cole TJ, Lawson MS, Lucas A, et al. Randomized controlled trial of the MEND program: a family-based community intervention for childhood obesty. Obes. 2010;18(Suppl. 1):S62–S68. PubMed

Zhou Z, Li S, Yin J, Fu Q, Ren H, Jin T, et al. Impact on physical fitness of the chinese champs: a clustered randomized controlled trial. Int J Environ Res Public Health. 2019;16(22):4412. doi: 10.3390/ijerph16224412. PubMed DOI PMC

Aguiñaga S, Marques IG, Kitsiou S, Balbim GM, Gerber BS, Buchholz SW, et al. BAILAMOS With mHealth Technology! Improving physical activity and well-being in middle-aged and older Latinxs: a pre–post feasibility study. Health Educ Behav. 2021;48(5):575–583. doi: 10.1177/10901981211027517. PubMed DOI

Epstein LH, Paluch RA, Gordy CC, Dorn J. Decreasing sedentary behaviors in treating pediatric obesity. Arch Pediatr Adoles Med. 2000;154(3):220–226. doi: 10.1001/archpedi.154.3.220. PubMed DOI

Freene N, van Berlo S, McManus M, Mair T, Davey R. A behavioral change smartphone app and program (ToDo-CR) to decrease sedentary behavior in cardiac rehabilitation participants: prospective feasibility cohort study. JMIR Form Res. 2020;4(11):e17359. doi: 10.2196/17359. PubMed DOI PMC

Gow ML, Van Doorn N, Broderick CR, Hardy LL, Ho M, Baur LA, et al. Sustained improvements in fitness and exercise tolerance in obese adolescents after a 12 week exercise intervention. Obes Res Clin Pract. 2016;10(2):178–188. doi: 10.1016/j.orcp.2015.04.001. PubMed DOI

Jamerson T, Sylvester R, Jiang Q, Corriveau N, Durussel-Weston J, Kline-Rogers E, et al. Differences in cardiovascular disease risk factors and health behaviors between Black and non-Black students participating in a school-based health promotion program. Am J Health Promot. 2017;31(4):318–324. doi: 10.1177/0890117116674666. PubMed DOI

Overgaard K, Nannerup K, Lunen MKB, Maindal HT, Larsen RG. Exercise more or sit less? A randomized trial assessing the feasibility of two advice-based interventions in obese inactive adults. J Sci Med Sport. 2018;21(7):708–713. doi: 10.1016/j.jsams.2017.10.037. PubMed DOI

Peterman JE, Morris KL, Kram R, Byrnes WC. Cardiometabolic effects of a workplace cycling intervention. J Phys Act Health. 2019;16(7):547–555. doi: 10.1123/jpah.2018-0062. PubMed DOI

Pippi R, Cugusi L, Bergamin M, Bini V, Fanelli CG, Bullo V, et al. Impact of BMI, physical activity, and sitting time levels on health-related outcomes in a group of overweight and obese adults with and without Type 2 diabetes. J Funct Morphol Kinesiol. 2022;7(1):12. doi: 10.3390/jfmk7010012. PubMed DOI PMC

Aggio D, Ogunleye AA, Voss C, Sandercock GR. Temporal relationships between screen-time and physical activity with cardiorespiratory fitness in English schoolchildren: a 2-year longitudinal study. Prev Med. 2012;55(1):37–39. doi: 10.1016/j.ypmed.2012.04.012. PubMed DOI

Beltran-Valls MR, Adelantado-Renau M, Mota J, Moliner-Urdiales D. Longitudinal associations of healthy behaviors on fitness in adolescents: DADOS Study. Am J Prev Med. 2021;61(3):410–417. doi: 10.1016/j.amepre.2021.04.009. PubMed DOI

Gomez-Bruton A, Navarrete-Villanueva D, Pérez-Gómez J, Vila-Maldonado S, Gesteiro E, Gusi N, et al. The effects of age, organized physical activity and sedentarism on fitness in older adults: an 8-year longitudinal study. Int J Environ Res Public Health. 2020;17(12):1–17. doi: 10.3390/ijerph17124312. PubMed DOI PMC

Hancox RJ, Milne BJ, Poulton R. Association between child and adolescent television viewing and adult health: a longitudinal birth cohort study. Lancet. 2004;364(9430):257–262. doi: 10.1016/S0140-6736(04)16675-0. PubMed DOI

Haynes A, McVeigh J, Lester L, Eastwood PR, Straker L, Mori TA. Relationship between TV watching during childhood and adolescence and fitness in adulthood in the Raine Study cohort. Eur J Sport Sci. 2023;23(3):423–431. doi: 10.1080/17461391.2021.2023659. PubMed DOI

Knaeps S, Bourgois JG, Charlier R, Mertens E, Lefevre J, Wijndaele K. Ten-year change in sedentary behaviour, moderate-to-vigorous physical activity, cardiorespiratory fitness and cardiometabolic risk: independent associations and mediation analysis. Br J Sports Med. 2018;52(16):1063–1068. doi: 10.1136/bjsports-2016-096083. PubMed DOI PMC

Leppänen MH, Henriksson P, Delisle Nyström C, Henriksson H, Ortega FB, Pomeroy J, et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med Sci Sports Exerc. 2017;49(10):2078–2085. doi: 10.1249/MSS.0000000000001313. PubMed DOI

Lobelo F, Dowda M, Pfeiffer KA, Pate RR. Electronic media exposure and its association with activity-related outcomes in female adolescents: cross-sectional and longitudinal analyses. J Phys Act Health. 2009;6(2):137–143. doi: 10.1123/jpah.6.2.137. PubMed DOI

Mota J, Ribeiro JC, Carvalho J, Santos MP, Martins J. Television viewing and changes in body mass index and cardiorespiratory fitness over a two-year period in schoolchildren. Pediatr Exerc Sci. 2010;22(2):245–253. doi: 10.1123/pes.22.2.245. PubMed DOI

Potter M, Spence JC, Boulé N, Stearns JA, Carson V. Behavior tracking and 3-year longitudinal associations between physical activity, screen time, and fitness among young children. Pediatr Exerc Sci. 2018;30(1):134–141. doi: 10.1123/pes.2016-0239. PubMed DOI

Reisberg K, Riso E-M, Jurimae J. Associations between physical activity, body composition, and physical fitness in the transition from preschool to school. Scand J Med Sci Sports. 2020;30(11):2251–2263. doi: 10.1111/sms.13784. PubMed DOI

Saidj M, Jorgensen T, Jacobsen RK, Linneberg A, Oppert J-M, Aadahl M. Work and leisure time sitting and inactivity: effects on cardiorespiratory and metabolic health. Eur J Prev Cardiol. 2016;23(12):1321–1329. doi: 10.1177/2047487315619559. PubMed DOI

Santos DA, Marques A, Minderico CS, Ekelund U, Sardinha LB. A cross-sectional and prospective analyse of reallocating sedentary time to physical activity on children’s cardiorespiratory fitness. J Sports Sci. 2018;36(15):1720–1726. doi: 10.1080/02640414.2017.1411176. PubMed DOI

Balducci S, D’Errico V, Haxhi J, Sacchetti M, Orlando G, Cardelli P, et al. Effect of a behavioral intervention strategy on sustained change in physical activity and sedentary behavior in patients with type 2 diabetes: the IDES_2 Randomized Clinical Trial. JAMA. 2019;321(9):880–890. doi: 10.1001/jama.2019.0922. PubMed DOI

Mitchell JA, Pate RR, Blair SN. Screen-based sedentary behavior and cardiorespiratory fitness from age 11 to 13. Med Sci Sports Exerc. 2012;44(7):1302–1309. doi: 10.1249/MSS.0b013e318247cd73. PubMed DOI PMC

Leppanen MH, Henriksson P, Delisle Nystrom C, Henriksson H, Ortega FB, Pomeroy J, et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med Sci Sports Exerc. 2017;49(10):2078–2085. doi: 10.1249/MSS.0000000000001313. PubMed DOI

Tremblay MS, Leblanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98. doi: 10.1186/1479-5868-8-98. PubMed DOI PMC

Dempsey PC, Thyfault JP. Physiological responses to sedentary behaviour. Switzerland: Springer International Publishing; 2018. pp. 109–153.

Dempsey PC, Larsen RN, Dunstan DW, Owen N, Kingwell BA. Sitting less and moving more. Hypertension. 2018;72(5):1037–1046. doi: 10.1161/HYPERTENSIONAHA.118.11190. PubMed DOI PMC

Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, et al. Physiology of sedentary behavior. Physiol Rev. 2023;103(4):2561–2622. doi: 10.1152/physrev.00022.2022. PubMed DOI PMC

Segura-Jiménez V, Biddle SJH, De Cocker K, Khan S, Gavilán-Carrera B. Where does the time go? Displacement of device-measured sedentary time in effective sedentary behaviour interventions: systematic review and meta-analysis. Sports Med. 2022;52(9):2177–2207. doi: 10.1007/s40279-022-01682-3. PubMed DOI

Jackson AS, Sui X, Hébert JR, Church TS, Blair SN. Role of lifestyle and aging on the longitudinal change in cardiorespiratory fitness. Arch Intern Med. 2009;169(19):1781–1787. doi: 10.1001/archinternmed.2009.312. PubMed DOI PMC

Letnes JM, Nes BM, Wisløff U. Age-related decline in peak oxygen uptake: cross-sectional vs. longitudinal findings. A review. Int J Cardiol Cardiovasc Risk Prev. 2023;16:200171. PubMed PMC

Van Der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Physiol Sedent Behav. 2017 doi: 10.1186/s12966-017-0601-0. PubMed DOI PMC

Rollo S, Antsygina O, Tremblay MS. The whole day matters: understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J Sport Health Sci. 2020;9(6):493–510. doi: 10.1016/j.jshs.2020.07.004. PubMed DOI PMC

Laukkanen JA, Isiozor NM, Kunutsor SK. Objectively assessed cardiorespiratory fitness and all-cause mortality risk: an updated meta-analysis of 37 cohort studies involving 2,258,029 participants. Mayo Clin Proc. 2022;97(6):1054–1073. doi: 10.1016/j.mayocp.2022.02.029. PubMed DOI

Grace SL, Poirier P, Norris CM, Oakes GH, Somanader DS, Suskin N. Pan-Canadian development of cardiac rehabilitation and secondary prevention quality indicators. Can J Cardiol. 2014;30(8):945–948. doi: 10.1016/j.cjca.2014.04.003. PubMed DOI

Bonafiglia JT, Preobrazenski N, Islam H, Walsh JJ, Ross R, Johannsen NM, et al. Exploring differences in cardiorespiratory fitness response rates across varying doses of exercise training: a retrospective analysis of eight randomized controlled trials. Sports Med. 2021;51(8):1785–1797. doi: 10.1007/s40279-021-01442-9. PubMed DOI

Dempsey PC, Matthews CE, Dashti SG, Doherty AR, Bergouignan A, van Roekel EH, et al. Sedentary behavior and chronic disease: mechanisms and future directions. J Phys Act Health. 2020;17(1):52–61. doi: 10.1123/jpah.2019-0377. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...