Multimodal Carbon Monoxide Photorelease from Flavonoids
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38227978
PubMed Central
PMC10825817
DOI
10.1021/acs.orglett.3c04141
Knihovny.cz E-zdroje
- MeSH
- flavonoidy * MeSH
- fotochemie metody MeSH
- oxid uhelnatý * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavonoidy * MeSH
- oxid uhelnatý * MeSH
Photooxygenation of flavonoids leads to the release of carbon monoxide (CO). Our structure-photoreactivity study, employing several structurally different flavonoids, including their 13C-labeled analogs, revealed that CO can be produced via two completely orthogonal pathways, depending on their hydroxy group substitution pattern and the reaction conditions. While photooxygenation of the enol 3-OH group has previously been established as the CO liberation channel, we show that the catechol-type hydroxy groups of ring B can predominantly participate in photodecarbonylation.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Panche A. N.; Diwan A. D.; Chandra S. R. Flavonoids: an overview. J. Nutr. Sci. 2016, 5, e4710.1017/jns.2016.41. PubMed DOI PMC
Sharif S.; Nabais P.; Melo M. J.; Pina F.; Oliveira M. C. Photoreactivity and stability of flavonoid yellows used in cultural heritage. Dyes Pigm. 2022, 199, 11005110.1016/j.dyepig.2021.110051. DOI
Machlin L. J.; Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987, 1, 441–445. 10.1096/fasebj.1.6.3315807. PubMed DOI
Sisa M.; Bonnet S. L.; Ferreira D.; Van der Westhuizen J. H. Photochemistry of flavonoids. Molecules 2010, 15, 5196–5245. 10.3390/molecules15085196. PubMed DOI PMC
Westlake D. W. S.; Roxburgh J. M.; Talbot G. Microbial production of carbon monoxide from flavonoids. Nature 1961, 189, 510–511. 10.1038/189510a0. PubMed DOI
Zenkevich I. G.; Eshchenko A. Y.; Makarova S. V.; Vitenberg A. G.; Dobryakov Y. G.; Utsal V. A. Identification of the products of oxidation of quercetin by air oxygen at ambient temperature. Molecules 2007, 12, 654–672. 10.3390/12030654. PubMed DOI PMC
Russo M.; Stacko P.; Nachtigallova D.; Klan P. Mechanisms of orthogonal photodecarbonylation reactions of 3-hydroxyflavone-based acid–base forms. J. Org. Chem. 2020, 85, 3527–3537. 10.1021/acs.joc.9b03248. PubMed DOI
Schwartz B. J.; Peteanu L. A.; Harris C. B. Direct observation of fast proton transfer: femtosecond photophysics of 3-hydroxyflavone. J. Phys. Chem. 1992, 96, 3591–3598. 10.1021/j100188a009. DOI
Studer S. L.; Brewer W. E.; Martinez M. L.; Chou P. T. Time-resolved study of the photooxygenation of 3-hydroxyflavone. J. Am. Chem. Soc. 1989, 111, 7643–7644. 10.1021/ja00201a071. DOI
Matsuura T.; Matsushima H.; Nakashima R. Photoinduced reactions—XXXVI: Photosensitized oxygenation of 3-hydroxyflavones as a nonenzymatic model for quercetinase. Tetrahedron 1970, 26, 435–443. 10.1016/S0040-4020(01)97840-8. DOI
Matsuura T.; Matsushima H.; Sakamoto H. Photosensitized oxygenation of 3-hydroxyflavones. Possible model for biological oxygenation. J. Am. Chem. Soc. 1967, 89, 6370–6371. 10.1021/ja01000a078. PubMed DOI
Kim H. P.; Ryter S. W.; Choi A. M. K. CO as a cellular signaling molecule. Annu. Rev. Pharmacol. 2006, 46, 411–449. 10.1146/annurev.pharmtox.46.120604.141053. PubMed DOI
Fischer K.; Luttge U. Light-dependent net production of carbon monoxide by plants. Nature 1978, 275, 740–741. 10.1038/275740a0. DOI
Wu L.; Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev. 2005, 57, 585–630. 10.1124/pr.57.4.3. PubMed DOI
Slanina T.; Sebej P. Visible-light-activated photoCORMs: rational design of CO-releasing organic molecules absorbing in the tissue-transparent window. Photochem. Photobiol. Sci. 2018, 17, 692–710. 10.1039/c8pp00096d. PubMed DOI
Kumar S.; Pandey A. K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 16275010.1155/2013/162750. PubMed DOI PMC
Anderson S. N.; Richards J. M.; Esquer H. J.; Benninghoff A. D.; Arif A. M.; Berreau L. M. A structurally-tunable 3-hydroxyflavone motif for visible light-induced carbon monoxide-releasing molecules (CORMs). ChemistryOpen 2015, 4, 590–594. 10.1002/open.201500167. PubMed DOI PMC
Dávila Y. A.; Sancho M. I.; Almandoz M. C.; Blanco S. E. Solvent effects on the dissociation constants of hydroxyflavones in organic–water mixtures. determination of the thermodynamic pKa values by UV–visible spectroscopy and DFT calculations. J. Chem. Eng. Data 2013, 58, 1706–1716. 10.1021/je400153r. DOI
Herrero-Martínez J. M.; Sanmartin M.; Rosés M.; Bosch E.; Ràfols C. Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis 2005, 26, 1886–1895. 10.1002/elps.200410258. PubMed DOI
Han Y.; Jia Y.; Wang X.; Chen Z.; Jin P.; Jia M.; Pan H.; Sun Z.; Chen J. Ultrafast excited state dynamics of two non-emissive flavonoids that undergo excited state intramolecular proton transfer in solution. Chem. Phys. Lett. 2023, 811, 14018910.1016/j.cplett.2022.140189. DOI
Yang Y.; Zhao J.; Li Y. Theoretical study of the ESIPT process for a new natural product quercetin. Sci. Rep. 2016, 6, 32152.10.1038/srep32152. PubMed DOI PMC
Martinez M. L.; Studer S. L.; Chou P. T. Direct evidence of the triplet-state origin of the slow reverse proton transfer reaction of 3-hydroxyflavone. J. Am. Chem. Soc. 1990, 112, 2427–2429. 10.1021/ja00162a058. DOI
Russo M.; Orel V.; Stacko P.; Srankova M.; Muchova L.; Vitek L.; Klan P. Structure–photoreactivity relationship of 3-hydroxyflavone-based CO-releasing molecules. J. Org. Chem. 2022, 87, 4750–4763. 10.1021/acs.joc.2c00032. PubMed DOI
Engler G.; Nispel M.; Marian C.; Kleinermanns K. Transient spectroscopy of UV excited flavone: Triplet–triplet absorption and comparison with theory. Chem. Phys. Lett. 2009, 473, 167–170. 10.1016/j.cplett.2009.03.051. DOI
Nakayama T.; Shimizu T.; Torii Y.; Miki S.; Hamanoue K. A comparison of the photochemistry of flavanone with that of flavone originating from their lowest excited triplet states in ethanol. J. Photochem. Photobiol., A 1997, 111, 35–39. 10.1016/S1010-6030(97)00235-9. DOI
Norikane Y.; Itoh H.; Arai T. Photophysical properties of 5-hydroxyflavone. J. Photochem. Photobiol., A 2004, 161, 163–168. 10.1016/S1010-6030(03)00285-5. DOI
Tournaire C.; Croux S.; Maurette M.-T.; Beck I.; Hocquaux M.; Braun A. M.; Oliveros E. Antioxidant activity of flavonoids: Efficiency of singlet oxygen (1Δg) quenching. J. Photochem. Photobiol., B 1993, 19, 205–215. 10.1016/1011-1344(93)87086-3. PubMed DOI
Zhang W.-J.; Wu J.-F.; Zhou P.-F.; Wang Y.; Hou A.-J. Total syntheses of norartocarpin and artocarpin. Tetrahedron 2013, 69, 5850–5858. 10.1016/j.tet.2013.05.024. DOI
Wang Q.; Zhang J.; Liu M.; Yang J.; Zhang X.-m.; Zhou L.; Cao L.; Liao X.-l. Modified syntheses of the dietary flavonoid luteolin. J. Chem. Res. 2015, 39, 550–552. 10.3184/174751915X14404221529907. DOI
Jiang W.-J.; Ishiuchi K. i.; Furukawa M.; Takamiya T.; Kitanaka S.; Iijima H. Stereospecific inhibition of nitric oxide production in macrophage cells by flavanonols: synthesis and the structure–activity relationship. Bioorg. Med. Chem. 2015, 23, 6922–6929. 10.1016/j.bmc.2015.09.042. PubMed DOI
Trouillas P.; Marsal P.; Svobodová A.; Vostálová J.; Gažák R.; Hrbáč J.; Sedmera P.; Křen V.; Lazzaroni R.; Duroux J.-L.; Walterová D. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A 2008, 112, 1054–1063. 10.1021/jp075814h. PubMed DOI
Jensen F.; Foote C. Chemistry of singlet oxygen—48. Isolation and structure of the primary product of photooxygenation of 3,5-di-t-butyl catechol. Photochem. Photobiol. 1987, 46, 325–330. 10.1111/j.1751-1097.1987.tb04776.x. PubMed DOI
Matsuura T.; Matsushima H.; Kato S.; Saito I. Photoinduced reactions—LVII: Photosensitized oxygenation of catechol and hydroquinone derivatives: Nonenzymic models for the enzymatic cleavage of phenolic rings. Tetrahedron 1972, 28, 5119–5129. 10.1016/S0040-4020(01)88931-6. DOI
Shurygina M. P.; Kurskii Y. A.; Druzhkov N. O.; Chesnokov S. A.; Abakumova L. G.; Fukin G. K.; Abakumov G. A. Photolytic decarbonylation of o-benzoquinones. Tetrahedron 2008, 64, 9784–9788. 10.1016/j.tet.2008.07.008. DOI
Valentine R. L.; Zepp R. G. Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters. Environ. Sci. Technol. 1993, 27, 409–412. 10.1021/es00039a023. DOI
Carbon Monoxide-Releasing Activity of Plant Flavonoids