Ceria-Catalyzed Hydrolytic Cleavage of Sulfonamides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38234266
PubMed Central
PMC10828983
DOI
10.1021/acs.inorgchem.3c04367
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanoceria is a promising nanomaterial for the catalytic hydrolysis of a wide variety of substances. In this study, it was experimentally demonstrated for the first time that CeO2 nanostructures show extraordinary reactivity toward sulfonamide drugs (sulfadimethoxine, sulfamerazine, and sulfapyridine) in aqueous solution without any illumination, activation, or pH adjustment. Hydrolytic cleavage of various bonds, including S-N, C-N, and C-S, was proposed as the main reaction mechanism and was indicated by the formation of various reaction products, namely, sulfanilic acid, sulfanilamide, and aniline, which were identified by HPLC-DAD, LC-MS/MS, and NMR spectroscopy. The kinetics and efficiency of the ceria-catalyzed hydrolytic cleavage were dependent on the structure of the sulfonamide molecule and physicochemical properties of Nanoceria prepared by three different precipitation methods. However, in general, all three ceria samples were able to cleave SA drugs tested, proving the robust and unique surface reactivity toward these compounds inherent to cerium dioxide. The demonstrated reactivity of CeO2 to molecules containing sulfonamide or even sulfonyl (and similar) functional groups may be significant for both heterogeneous catalysis and environmentally important degradation reactions.
Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68 Husinec Řež Czechia
Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10 162 00 Prague Czechia
Zobrazit více v PubMed
Sukul P.; Spiteller M.. Sulfonamides in the Environment as Veterinary Drugs. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware G. W.; Albert L. A.; de Voogt P.; Gerba C. P.; Hutzinger O.; Knaak J. B.; Mayer F. L.; Morgan D. P.; Park D. L.; Tjeerdema R. S.; Whitacre D. M.; Yang R. S. H.; Gunther F. A., Eds.; Springer New York: New York, NY, 2006; pp. 67–101. PubMed
Ovung A.; Bhattacharyya J. sulfonamide Drugs: Structure, Antibacterial Property, Toxicity, and Biophysical Interactions. Biophys Rev. 2021, 13 (2), 259–272. 10.1007/s12551-021-00795-9. PubMed DOI PMC
Wan Y.; Fang G.; Chen H.; Deng X.; Tang Z. sulfonamide Derivatives as Potential Anti-Cancer Agents and Their SARs Elucidation. Eur. J. Med. Chem. 2021, 226, 11383710.1016/j.ejmech.2021.113837. PubMed DOI
Casini A.; Scozzafava A.; Mastrolorenzo A.; Supuran C. Sulfonamides and Sulfonylated Derivatives as Anticancer Agents. Curr. Cancer Drug Targets 2005, 2 (1), 55.10.2174/1568009023334060. PubMed DOI
Silverman R. B.; Holladay M. W.. Chapter 5 - Enzyme Inhibition and Inactivation. In The Organic Chemistry of Drug Design and Drug Action, third edition; Silverman R. B.; Holladay M. W., Eds.; Academic Press: Boston, 2014; pp. 207–274.
García-Galán M. J.; Silvia Díaz-Cruz M.; Barceló D.; Barceló D. Combining Chemical Analysis and Ecotoxicity to Determine Environmental Exposure and to Assess Risk from Sulfonamides. TrAC Trends in Analytical Chemistry 2009, 28 (6), 804–819. 10.1016/j.trac.2009.04.006. DOI
Thiele-Bruhn S.; Seibicke T.; Schulten H.-R.; Leinweber P. Sorption of sulfonamide Pharmaceutical Antibiotics on Whole Soils and Particle-Size Fractions. J. Environ. Qual 2004, 33 (4), 1331–1342. 10.2134/jeq2004.1331. PubMed DOI
Ingerslev F.; Halling-So̷rensen B. Biodegradability Properties of Sulfonamides in Activated Sludge. Environ. Toxicol. Chem. 2000, 19 (10), 2467–2473. 10.1002/etc.5620191011. DOI
Batchu S. R.; Panditi V. R.; Gardinali P. R. Photodegradation of sulfonamide Antibiotics in Simulated and Natural Sunlight: Implications for Their Environmental Fate. Journal of Environmental Science and Health, Part B 2014, 49 (3), 200–211. 10.1080/03601234.2014.858574. PubMed DOI
Boreen L. A.; Arnold A. W.; McNeill K. Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environmental Science & Technology 2004, 38 (14), 3933–3940. 10.1021/es0353053. PubMed DOI
Białk-Bielińska A.; Stolte S.; Matzke M.; Fabiańska A.; Maszkowska J.; Kołodziejska M.; Liberek B.; Stepnowski P.; Kumirska J. Hydrolysis of Sulphonamides in Aqueous Solutions. J. Hazard Mater. 2012, 221–222, 264–274. 10.1016/j.jhazmat.2012.04.044. PubMed DOI
Deng Y.; Li B.; Zhang T. Bacteria That Make a Meal of sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. Environmental Science & Technology 2018, 52 (7), 3854–3868. 10.1021/acs.est.7b06026. PubMed DOI
Ben W.; Shi Y.; Li W.; Zhang Y.; Qiang Z. Oxidation of sulfonamide Antibiotics by Chlorine Dioxide in Water: Kinetics and Reaction Pathways. Chemical Engineering Journal 2017, 327, 743–750. 10.1016/j.cej.2017.06.157. DOI
Feng M.; Clayton Baum J.; Nesnas N.; Lee Y.; Huang C.-H.; Sharma K. V. Oxidation of sulfonamide Antibiotics of Six-Membered Heterocyclic Moiety by ferrate(VI): Kinetics and Mechanistic Insight into SO2 Extrusion. Environ. Sci. Technol. 2019, 53 (5), 2695–2704. 10.1021/acs.est.8b06535. PubMed DOI
Kim C.; Panditi V. R.; Gardinali P. R.; Varma R. S.; Kim H.; Sharma V. K. ferrate Promoted Oxidative Cleavage of Sulfonamides: Kinetics and Product Formation under Acidic Conditions. Chemical Engineering Journal 2015, 279, 307–316. 10.1016/j.cej.2015.04.139. DOI
Song D.; Jefferson W. A.; Cheng H.; Jiang X.; Qiang Z.; He H.; Liu H.; Qu J. Acidic Permanganate Oxidation of Sulfamethoxazole by Stepwise Electron-Proton Transfer. Chemosphere 2019, 222, 71–82. 10.1016/j.Chemosphere.2019.01.113. PubMed DOI
Zhou W.; Moore D. E. Photochemical Decomposition of Sulfamethoxazole. Int. J. Pharm. 1994, 110 (1), 55–63. 10.1016/0378-5173(94)90375-1. DOI
Baran W.; Sochacka J.; Wardas W. Toxicity and Biodegradability of Sulfonamides and Products of Their Photocatalytic Degradation in Aqueous Solutions. Chemosphere 2006, 65 (8), 1295–1299. 10.1016/j.Chemosphere.2006.04.040. PubMed DOI
Wang Y.; Boo Liang J.; Di Liao X.; Wang L.; Chwen Loh T.; Dai J.; Wan Ho Y. Photodegradation of Sulfadiazine by Goethite–Oxalate Suspension under UV Light Irradiation. Ind. Eng. Chem. Res. 2010, 49 (8), 3527–3532. 10.1021/ie9014974. DOI
Hu J.; Li X.; Liu F.; Fu W.; Lin L.; Li B. Comparison of Chemical and Biological Degradation of Sulfonamides: Solving the Mystery of sulfonamide Transformation. J. Hazard Mater. 2022, 424, 12766110.1016/j.jhazmat.2021.127661. PubMed DOI
Song Y.; Jiang J.; Ma J.; Zhou Y.; von Gunten U. Enhanced Transformation of sulfonamide Antibiotics by Manganese(IV) Oxide in the Presence of Model Humic Constituents. Water Res. 2019, 153, 200–207. 10.1016/j.watres.2019.01.011. PubMed DOI
Kuchma M. H.; Komanski C. B.; Colon J.; Teblum A.; Masunov A. E.; Alvarado B.; Babu S.; Seal S.; Summy J.; Baker C. H. Phosphate Ester Hydrolysis of Biologically Relevant Molecules by Cerium Oxide Nanoparticles. Nanomedicine 2010, 6 (6), 738–744. 10.1016/j.nano.2010.05.004. PubMed DOI
Yao T.; Tian Z.; Zhang Y.; Qu Y. Phosphatase-like Activity of Porous Nanorods of CeO2 for the Highly Stabilized Dephosphorylation under Interferences. ACS Applied Materials & Interfaces 2019, 11 (1), 195–201. 10.1021/acsami.8b17086. PubMed DOI
Zhao C.; Xu Y. Theoretical Investigation of Dephosphorylation of Phosphate Monoesters on CeO2(111). Catal. Today 2018, 312, 141–148. 10.1016/j.cattod.2018.02.033. DOI
Janos P.; Kuran P.; Kormunda M.; Stengl V.; Grygar T. M.; Dosek M.; Stastny M.; Ederer J.; Pilarova V.; Vrtoch L. Cerium Dioxide as a New Reactive Sorbent for Fast Degradation of Parathion Methyl and Some Other Organophosphates. Journal of Rare Earths 2014, 32 (4), 360–370. 10.1016/S1002-0721(14)60079-X. DOI
Bhasker-Ranganath S.; Xu Y. Hydrolysis of acetamide on Low-Index CeO2 Surfaces: Ceria as a Deamidation and General De-Esterification Catalyst. ACS Catal. 2022, 12 (16), 10222–10234. 10.1021/acscatal.2c02514. PubMed DOI PMC
Wang Y.; Wang F.; Song Q.; Xin Q.; Xu S.; Xu J. Heterogeneous Ceria Catalyst with Water-Tolerant Lewis Acidic Sites for One-Pot Synthesis of 1,3-Diols via Prins Condensation and Hydrolysis Reactions. J. Am. Chem. Soc. 2013, 135 (4), 1506–1515. 10.1021/ja310498c. PubMed DOI
Henych J.; Št́astný M.; Ederer J.; Němečková Z.; Pogorzelska A.; Tolasz J.; Kormunda M.; Ryšánek P.; Bażanów B.; Stygar D.; Mazanec K.; Janoš P. How the Surface Chemical Properties of Nanoceria Are Related to Its Enzyme-like, Antiviral and Degradation Activity. Environ. Sci. Nano 2022, 9 (9), 3485–3501. 10.1039/d2en00173j. DOI
Ederer J.; Janoš P.; Št́astný M.; Henych J.; Ederer K.; Slušná M. Š.; Tolasz J. Nanocrystalline Cerium Oxide for Catalytic Degradation of Paraoxon Methyl: Influence of CeO2 Surface Properties. J. Environ. Chem. Eng. 2021, 9 (5), 10622910.1016/j.jece.2021.106229. DOI
Janoš P.; Ederer J.; Došek M.; Štojdl J.; Henych J.; Tolasz J.; Kormunda M.; Mazanec K. Can. Cerium Oxide Serve as a Phosphodiesterase-Mimetic Nanozyme?. Environ. Sci. Nano 2019, 6 (12), 3684–3698. 10.1039/C9EN00815B. DOI
Schilling C.; Hofmann A.; Hess C.; Ganduglia-Pirovano M. V. Raman Spectra of Polycrystalline CeO2: A Density Functional Theory Study. J. Phys. Chem. C 2017, 121 (38), 20834–20849. 10.1021/acs.jpcc.7b06643. DOI
Lee Y.; He G.; Akey J. A.; Si R.; Flytzani-Stephanopoulos M.; Herman P. I. Raman Analysis of Mode Softening in Nanoparticle CeO2−δ and Au-CeO2−δ during CO Oxidation. J. Am. Chem. Soc. 2011, 133 (33), 12952–12955. 10.1021/ja204479j. PubMed DOI
Ziemba M.; Schilling C.; Verónica Ganduglia-Pirovano M.; Hess C. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Acc. Chem. Res. 2021, 54 (13), 2884–2893. 10.1021/acs.accounts.1c00226. PubMed DOI PMC
Thommes M.; Kaneko K.; Neimark A. V.; Olivier J. P.; Rodriguez-Reinoso F.; Rouquerol J.; Sing K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. 10.1515/pac-2014-1117. DOI
Gao Y.; Li R.; Chen S.; Luo L.; Cao T.; Huang W. Morphology-Dependent Interplay of Reduction Behaviors, Oxygen Vacancies and Hydroxyl Reactivity of CeO2 Nanocrystals. Phys. Chem. Chem. Phys. 2015, 17 (47), 31862–31871. 10.1039/C5CP04570C. PubMed DOI
Zhou Q.; Akber H.; Zhao A.; Yang F.; Liu Z. Interaction of Water with Ceria Thin Film. ChemCatChem. 2023, 15 (15), e20230031810.1002/cctc.202300318. DOI
Vayssilov N. G.; Mihaylov M.; St. Petkov P.; Hadjiivanov I. K.; Neyman M. K. Reassignment of the Vibrational Spectra of Carbonates, Formates, and Related Surface Species on Ceria: A Combined Density Functional and Infrared Spectroscopy Investigation. J. Phys. Chem. C 2011, 115 (47), 23435–23454. 10.1021/jp208050a. DOI
Badri A.; Binet C.; Lavalley J.-C. An FTIR Study of Surface Ceria Hydroxy Groups during a Redox Process with H2. Journal of the Chemical Society, Faraday Transactions 1996, 92 (23), 4669–4673. 10.1039/ft9969204669. DOI
Carchini G.; García-Melchor M.; Łodziana Z.; López N. Understanding and Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study. ACS Applied Materials & Interfaces 2016, 8 (1), 152–160. 10.1021/acsami.5b07905. PubMed DOI
Hadjiivanov K.Chapter Two - Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. In Advances in Catalysis; Jentoft F. C., Ed.; Academic Press, 2014; Vol. 57, pp. 99–318.
Luo L.; LaCoste J. D.; Khamidullina N. G.; Fox E.; Gang D. D.; Hernandez R.; Yan H. Investigate Interactions of Water with Mesoporous Ceria Using in Situ VT-DRIFTS. Surf. Sci. 2020, 691, 12148610.1016/j.susc.2019.121486. DOI
Zhang D.; Pan B.; Zhang H.; Ning P.; Xing B. Contribution of Different Sulfamethoxazole Species to Their Overall Adsorption on Functionalized Carbon Nanotubes. Environmental Science & Technology 2010, 44 (10), 3806–3811. 10.1021/es903851q. PubMed DOI
Peiris C.; Gunatilake S. R.; Mlsna T. E.; Mohan D.; Vithanage M. Biochar Based Removal of Antibiotic Sulfonamides and Tetracyclines in Aquatic Environments: A Critical Review. Bioresour. Technol. 2017, 246, 150–159. 10.1016/j.biortech.2017.07.150. PubMed DOI
Tan Z.; Wu T.-S.; Soo Y.-L.; Peng Y.-K. Unravelling the True Active Site for CeO2-Catalyzed Dephosphorylation. Appl. Catal., B 2020, 264, 11850810.1016/j.apcatb.2019.118508. DOI
Hamlin T. A.; Swart M.; Bickelhaupt F. M. Nucleophilic Substitution (SN2): Dependence on nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. ChemPhysChem 2018, 19 (11), 1315–1330. 10.1002/cphc.201701363. PubMed DOI PMC
Janoš P.; Ederer J.; Štastný M.; Tolasz J.; Henych J. Degradation of Parathion Methyl by Reactive Sorption on the Cerium Oxide Surface: The Effect of Solvent on the Degradation Efficiency. Arabian Journal of Chemistry 2022, 15 (6), 10385210.1016/j.arabjc.2022.103852. DOI
Li J.; Zhao L.; Feng M.; Huang C.-H.; Sun P. Abiotic Transformation and Ecotoxicity Change of sulfonamide Antibiotics in Environmental and Water Treatment Processes: A Critical Review. Water Res. 2021, 202, 11746310.1016/j.watres.2021.117463. PubMed DOI