Concerted Reactive Adsorption and Photocatalytic Degradation of Bisphenol-S on Molybdenum Cluster-Modified Nanoceria
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40899625
PubMed Central
PMC12442080
DOI
10.1021/acs.inorgchem.5c02157
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Bisphenol-S (BPS) is a widespread toxic industrial pollutant and endocrine disruptor of growing environmental concern. This study investigates the use of porous nanoceria particles (CeO2) functionalized with octahedral molybdenum clusters (Mo6) for the removal of waterborne BPS through a combined mechanism of reactive adsorption and photodegradation. Although immobilization of Mo6 cluster reduced the overall surface area of CeO2, BPS adsorption and partial decomposition in the dark were enhanced due to chemical specificity and surface interactions introduced by the Mo6 clusters. Upon UV-A irradiation, quenching of the phosphorescence of the clusters indicated photoinduced electron transfer from Mo6 to CeO2, which facilitated hydroxyl radical generation and improved BPS photocatalytic degradation. Unlike bare nanoceria, the Mo6@CeO2 composite initially retained the intermediate 4-hydroxybenzenesulfonic acid formed in the dark, but subsequently released it, along with phenol and other degradation products, under light. This controlled photodesorption was coupled with stable performance over multiple degradation cycles. Under simulated solar irradiation, the composite achieved a 3-fold increase in BPS removal efficiency compared to bare nanoceria. These findings highlight the synergistic interplay between Mo6 clusters and nanoceria and reflects the potential of this composite material for effective water remediation.
Zobrazit více v PubMed
Gusain R., Gupta K., Joshi P., Khatri O. P.. Adsorptive Removal and Photocatalytic Degradation of Organic Pollutants Using Metal Oxides and Their Composites: A Comprehensive Review. Adv. Colloid Interface Sci. 2019;272:102009. doi: 10.1016/j.cis.2019.102009. PubMed DOI
Balgooyen S., Alaimo P. J., Remucal C. K., Ginder-Vogel M.. Structural Transformation of MnO2 during the Oxidation of Bisphenol A. Environ. Sci. Technol. 2017;51:6053–6062. doi: 10.1021/acs.est.6b05904. PubMed DOI
Li S., Shan S., Chen S., Li H., Li Z., Liang Y., Fei J., Xie L., Li J.. Photocatalytic Degradation of Hazardous Organic Pollutants in Water by Fe-MOFs and Their Composites: A Review. Journal of Environmental Chemical Engineering. 2021;9:105967. doi: 10.1016/j.jece.2021.105967. DOI
Loganathan P., Vigneswaran S., Kandasamy J., Nguyen T. V., Katarzyna Cuprys A., Ratnaweera H.. Bisphenols in Water: Occurrence, Effects, and Mitigation Strategies. Chemosphere. 2023;328:138560. doi: 10.1016/j.chemosphere.2023.138560. PubMed DOI
Zhang F., Gutiérrez R. A., Lustemberg P. G., Liu Z., Rui N., Wu T., Ramírez P. J., Xu W., Idriss H., Ganduglia-Pirovano M. V., Senanayake S. D., Rodriguez J. A.. Metal–Support Interactions and C1 Chemistry: Transforming Pt-CeO2 into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catal. 2021;11:1613–1623. doi: 10.1021/acscatal.0c04694. PubMed DOI PMC
Vernekar A. A., Das T., Mugesh G.. Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angew. Chem., Int. Ed. 2016;55:1412–1416. doi: 10.1002/anie.201510355. PubMed DOI
Kuchma M. H., Komanski C. B., Colon J., Teblum A., Masunov A. E., Alvarado B., Babu S., Seal S., Summy J., Baker C. H.. Phosphate Ester Hydrolysis of Biologically Relevant Molecules by Cerium Oxide Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6:738–744. doi: 10.1016/j.nano.2010.05.004. PubMed DOI
Henych J., Št́astný M., Kříženecká S., Čundrle J., Tolasz J., Dušková T., Kormunda M., Ederer J., Stehlík Š., Ryšánek P., Neubertová V., Janoš P.. Ceria-Catalyzed Hydrolytic Cleavage of Sulfonamides. Inorg. Chem. 2024;63:2298–2309. doi: 10.1021/acs.inorgchem.3c04367. PubMed DOI PMC
Ahmed S., Khan F. S. A., Mubarak N. M., Khalid M., Tan Y. H., Mazari S. A., Karri R. R., Abdullah E. C.. Emerging Pollutants and Their Removal Using Visible-Light Responsive Photocatalysis – A Comprehensive Review. Journal of Environmental Chemical Engineering. 2021;9:106643. doi: 10.1016/j.jece.2021.106643. DOI
Maverick A. W., Najdzionek J. S., MacKenzie D., Nocera D. G., Gray H. B.. Spectroscopic, Electrochemical, and Photochemical Properties of Molybdenum(II) and Tungsten(II) Halide Clusters. J. Am. Chem. Soc. 1983;105:1878–1882. doi: 10.1021/ja00345a034. DOI
Kirakci K., Kubát P., Langmaier J., Polívka T., Fuciman M., Fejfarová K., Lang K.. A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I) Dalton Transactions. 2013;42(19):7224–7232. doi: 10.1039/c3dt32863e. PubMed DOI
Kirakci K., Kubát P., Dušek M., Fejfarová K., Šícha V., Mosinger J., Lang K.. A Highly Luminescent Hexanuclear Molybdenum Cluster – A Promising Candidate toward Photoactive Materials. Eur. J. Inorg. Chem. 2012;2012(19):3107–3111. doi: 10.1002/ejic.201200402. DOI
Kirakci K., Zelenka J., Rumlová M., Cvačka J., Ruml T., Lang K.. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities. Biomaterials Science. 2019;7(4):1386–1392. doi: 10.1039/C8BM01564C. PubMed DOI
Kirakci K., Demel J., Hynek J., Zelenka J., Rumlová M., Ruml T., Lang K.. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg. Chem. 2019;58:16546–16552. doi: 10.1021/acs.inorgchem.9b02569. PubMed DOI
Kirakci K., Nguyen T. K. N., Grasset F., Uchikoshi T., Zelenka J., Kubát P., Ruml T., Lang K.. Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light. ACS Appl. Mater. Interfaces. 2020;12:52492–52499. doi: 10.1021/acsami.0c19036. PubMed DOI
Barras A., Cordier S., Boukherroub R.. Fast Photocatalytic Degradation of Rhodamine B over [Mo6Br8(N3)6]2– Cluster Units under Sun Light Irradiation. Applied Catalysis B: Environmental. 2012;123–124:1–8. doi: 10.1016/j.apcatb.2012.04.006. DOI
Marchuk M. V., Asanov I. P., Panafidin M. A., Vorotnikov Y. A., Shestopalov M. A.. Nano TiO2 and Molybdenum/Tungsten Iodide Octahedral Clusters: Synergism in UV/Visible-Light Driven Degradation of Organic Pollutants. Nanomaterials. 2022;12:4282. doi: 10.3390/nano12234282. PubMed DOI PMC
Guégan R., Cheng X., Huang X., Němečková Z., Kubáňová M., Zelenka J., Ruml T., Grasset F., Sugahara Y., Lang K., Kirakci K.. Graphene Oxide Sheets Decorated with Octahedral Molybdenum Cluster Complexes for Enhanced Photoinactivation of Staphylococcus Aureus. Inorg. Chem. 2023;62:14243–14251. doi: 10.1021/acs.inorgchem.3c01502. PubMed DOI PMC
Casanova-Chafer J., Garcia-Aboal R., Atienzar P., Feliz M., Llobet E.. Octahedral Molybdenum Iodide Clusters Supported on Graphene for Resistive and Optical Gas Sensing. ACS Appl. Mater. Interfaces. 2022;14:57122–57132. doi: 10.1021/acsami.2c15716. PubMed DOI PMC
Nguyen T. K. N., Ishii S., Renaud A., Grasset F., Cordier S., Dumait N., Fudouzi H., Uchikoshi T.. Effect of an Aromatic Sulfonate Ligand on the Photovoltaic Performance of Molybdenum Cluster-Sensitized Solar Cells. ACS Applied Energy Materials. 2024;7:760–773. doi: 10.1021/acsaem.3c02823. DOI
Puche M., García-Aboal R., Mikhaylov M. A., Sokolov M. N., Atienzar P., Feliz M.. Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo6 Iodide Clusters Supported on Graphene Oxide. Nanomaterials. 2020;10:1259. doi: 10.3390/nano10071259. PubMed DOI PMC
Schoonover J. R., Zietlow T. C., Clark D. L., Heppert J. A., Chisholm M. H., Gray H. B., Sattelberger A. P., Woodruff W. H.. Resonance Raman Spectra of [M6X8Y6]2‑ Cluster Complexes (M = Mo, W; X, Y = Cl, Br, I) Inorg. Chem. 1996;35(22):6606–6613. doi: 10.1021/ic960184b. PubMed DOI
Diana E., Gatterer K., Kettle S. F. A.. The Vibrational Spectroscopy of the Coordinated Azide Anion; a Theoretical Study. Phys. Chem. Chem. Phys. 2016;18:414–425. doi: 10.1039/C5CP05566K. PubMed DOI
Schilling C., Hofmann A., Hess C., Ganduglia-Pirovano M. V.. Raman Spectra of Polycrystalline CeO2: A Density Functional Theory Study. J. Phys. Chem. C. 2017;121(38):20834–20849. doi: 10.1021/acs.jpcc.7b06643. DOI
Henych J., Št́astný M., Ederer J., Němečková Z., Pogorzelska A., Tolasz J., Kormunda M., Ryšánek P., Bażanów B., Stygar D., Mazanec K., Janoš P.. How the Surface Chemical Properties of Nanoceria Are Related to Its Enzyme-like, Antiviral and Degradation Activity. Environ. Sci.: Nano. 2022;9(9):3485–3501. doi: 10.1039/D2EN00173J. DOI
Xiao Y., Tan S., Wang D.. et al. CeO2/BiOIO3 Heterojunction with Oxygen Vacancies and Ce4+/Ce3+ Redox Centers Synergistically Enhanced Photocatalytic Removal of Heavy Metals . Appl. Surf. Sci. 2020;526:147116. doi: 10.1016/j.apsusc.2020.147116. DOI
Alvarez-Corena J. R., Bergendahl J. A., Hart F. L.. Photocatalytic Oxidation of Five Contaminants of Emerging Concern by UV/TiO2: Identification of Intermediates and Degradation Pathways. Environ. Eng. Sci. 2016;33:140–147. doi: 10.1089/ees.2015.0388. DOI
Kirakci K., Kubát P., Kučeráková M., Šícha V., Gbelcová H., Lovecká P., Grznárová P., Ruml T., Lang K.. Water-Soluble Octahedral Molybdenum Cluster Compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: Syntheses, Luminescence, and in vitro Studies. Inorg. Chim. Acta. 2016;441:42–49. doi: 10.1016/j.ica.2015.10.043. DOI