Concerted Reactive Adsorption and Photocatalytic Degradation of Bisphenol-S on Molybdenum Cluster-Modified Nanoceria

. 2025 Sep 15 ; 64 (36) : 18166-18174. [epub] 20250903

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40899625

Bisphenol-S (BPS) is a widespread toxic industrial pollutant and endocrine disruptor of growing environmental concern. This study investigates the use of porous nanoceria particles (CeO2) functionalized with octahedral molybdenum clusters (Mo6) for the removal of waterborne BPS through a combined mechanism of reactive adsorption and photodegradation. Although immobilization of Mo6 cluster reduced the overall surface area of CeO2, BPS adsorption and partial decomposition in the dark were enhanced due to chemical specificity and surface interactions introduced by the Mo6 clusters. Upon UV-A irradiation, quenching of the phosphorescence of the clusters indicated photoinduced electron transfer from Mo6 to CeO2, which facilitated hydroxyl radical generation and improved BPS photocatalytic degradation. Unlike bare nanoceria, the Mo6@CeO2 composite initially retained the intermediate 4-hydroxybenzenesulfonic acid formed in the dark, but subsequently released it, along with phenol and other degradation products, under light. This controlled photodesorption was coupled with stable performance over multiple degradation cycles. Under simulated solar irradiation, the composite achieved a 3-fold increase in BPS removal efficiency compared to bare nanoceria. These findings highlight the synergistic interplay between Mo6 clusters and nanoceria and reflects the potential of this composite material for effective water remediation.

Zobrazit více v PubMed

Gusain R., Gupta K., Joshi P., Khatri O. P.. Adsorptive Removal and Photocatalytic Degradation of Organic Pollutants Using Metal Oxides and Their Composites: A Comprehensive Review. Adv. Colloid Interface Sci. 2019;272:102009. doi: 10.1016/j.cis.2019.102009. PubMed DOI

Balgooyen S., Alaimo P. J., Remucal C. K., Ginder-Vogel M.. Structural Transformation of MnO2 during the Oxidation of Bisphenol A. Environ. Sci. Technol. 2017;51:6053–6062. doi: 10.1021/acs.est.6b05904. PubMed DOI

Li S., Shan S., Chen S., Li H., Li Z., Liang Y., Fei J., Xie L., Li J.. Photocatalytic Degradation of Hazardous Organic Pollutants in Water by Fe-MOFs and Their Composites: A Review. Journal of Environmental Chemical Engineering. 2021;9:105967. doi: 10.1016/j.jece.2021.105967. DOI

Loganathan P., Vigneswaran S., Kandasamy J., Nguyen T. V., Katarzyna Cuprys A., Ratnaweera H.. Bisphenols in Water: Occurrence, Effects, and Mitigation Strategies. Chemosphere. 2023;328:138560. doi: 10.1016/j.chemosphere.2023.138560. PubMed DOI

Zhang F., Gutiérrez R. A., Lustemberg P. G., Liu Z., Rui N., Wu T., Ramírez P. J., Xu W., Idriss H., Ganduglia-Pirovano M. V., Senanayake S. D., Rodriguez J. A.. Metal–Support Interactions and C1 Chemistry: Transforming Pt-CeO2 into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catal. 2021;11:1613–1623. doi: 10.1021/acscatal.0c04694. PubMed DOI PMC

Vernekar A. A., Das T., Mugesh G.. Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angew. Chem., Int. Ed. 2016;55:1412–1416. doi: 10.1002/anie.201510355. PubMed DOI

Kuchma M. H., Komanski C. B., Colon J., Teblum A., Masunov A. E., Alvarado B., Babu S., Seal S., Summy J., Baker C. H.. Phosphate Ester Hydrolysis of Biologically Relevant Molecules by Cerium Oxide Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6:738–744. doi: 10.1016/j.nano.2010.05.004. PubMed DOI

Henych J., Št́astný M., Kříženecká S., Čundrle J., Tolasz J., Dušková T., Kormunda M., Ederer J., Stehlík Š., Ryšánek P., Neubertová V., Janoš P.. Ceria-Catalyzed Hydrolytic Cleavage of Sulfonamides. Inorg. Chem. 2024;63:2298–2309. doi: 10.1021/acs.inorgchem.3c04367. PubMed DOI PMC

Ahmed S., Khan F. S. A., Mubarak N. M., Khalid M., Tan Y. H., Mazari S. A., Karri R. R., Abdullah E. C.. Emerging Pollutants and Their Removal Using Visible-Light Responsive Photocatalysis – A Comprehensive Review. Journal of Environmental Chemical Engineering. 2021;9:106643. doi: 10.1016/j.jece.2021.106643. DOI

Maverick A. W., Najdzionek J. S., MacKenzie D., Nocera D. G., Gray H. B.. Spectroscopic, Electrochemical, and Photochemical Properties of Molybdenum­(II) and Tungsten­(II) Halide Clusters. J. Am. Chem. Soc. 1983;105:1878–1882. doi: 10.1021/ja00345a034. DOI

Kirakci K., Kubát P., Langmaier J., Polívka T., Fuciman M., Fejfarová K., Lang K.. A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I) Dalton Transactions. 2013;42(19):7224–7232. doi: 10.1039/c3dt32863e. PubMed DOI

Kirakci K., Kubát P., Dušek M., Fejfarová K., Šícha V., Mosinger J., Lang K.. A Highly Luminescent Hexanuclear Molybdenum Cluster – A Promising Candidate toward Photoactive Materials. Eur. J. Inorg. Chem. 2012;2012(19):3107–3111. doi: 10.1002/ejic.201200402. DOI

Kirakci K., Zelenka J., Rumlová M., Cvačka J., Ruml T., Lang K.. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities. Biomaterials Science. 2019;7(4):1386–1392. doi: 10.1039/C8BM01564C. PubMed DOI

Kirakci K., Demel J., Hynek J., Zelenka J., Rumlová M., Ruml T., Lang K.. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg. Chem. 2019;58:16546–16552. doi: 10.1021/acs.inorgchem.9b02569. PubMed DOI

Kirakci K., Nguyen T. K. N., Grasset F., Uchikoshi T., Zelenka J., Kubát P., Ruml T., Lang K.. Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light. ACS Appl. Mater. Interfaces. 2020;12:52492–52499. doi: 10.1021/acsami.0c19036. PubMed DOI

Barras A., Cordier S., Boukherroub R.. Fast Photocatalytic Degradation of Rhodamine B over [Mo6Br8(N3)6]2– Cluster Units under Sun Light Irradiation. Applied Catalysis B: Environmental. 2012;123–124:1–8. doi: 10.1016/j.apcatb.2012.04.006. DOI

Marchuk M. V., Asanov I. P., Panafidin M. A., Vorotnikov Y. A., Shestopalov M. A.. Nano TiO2 and Molybdenum/Tungsten Iodide Octahedral Clusters: Synergism in UV/Visible-Light Driven Degradation of Organic Pollutants. Nanomaterials. 2022;12:4282. doi: 10.3390/nano12234282. PubMed DOI PMC

Guégan R., Cheng X., Huang X., Němečková Z., Kubáňová M., Zelenka J., Ruml T., Grasset F., Sugahara Y., Lang K., Kirakci K.. Graphene Oxide Sheets Decorated with Octahedral Molybdenum Cluster Complexes for Enhanced Photoinactivation of Staphylococcus Aureus. Inorg. Chem. 2023;62:14243–14251. doi: 10.1021/acs.inorgchem.3c01502. PubMed DOI PMC

Casanova-Chafer J., Garcia-Aboal R., Atienzar P., Feliz M., Llobet E.. Octahedral Molybdenum Iodide Clusters Supported on Graphene for Resistive and Optical Gas Sensing. ACS Appl. Mater. Interfaces. 2022;14:57122–57132. doi: 10.1021/acsami.2c15716. PubMed DOI PMC

Nguyen T. K. N., Ishii S., Renaud A., Grasset F., Cordier S., Dumait N., Fudouzi H., Uchikoshi T.. Effect of an Aromatic Sulfonate Ligand on the Photovoltaic Performance of Molybdenum Cluster-Sensitized Solar Cells. ACS Applied Energy Materials. 2024;7:760–773. doi: 10.1021/acsaem.3c02823. DOI

Puche M., García-Aboal R., Mikhaylov M. A., Sokolov M. N., Atienzar P., Feliz M.. Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo6 Iodide Clusters Supported on Graphene Oxide. Nanomaterials. 2020;10:1259. doi: 10.3390/nano10071259. PubMed DOI PMC

Schoonover J. R., Zietlow T. C., Clark D. L., Heppert J. A., Chisholm M. H., Gray H. B., Sattelberger A. P., Woodruff W. H.. Resonance Raman Spectra of [M6X8Y6]2‑ Cluster Complexes (M = Mo, W; X, Y = Cl, Br, I) Inorg. Chem. 1996;35(22):6606–6613. doi: 10.1021/ic960184b. PubMed DOI

Diana E., Gatterer K., Kettle S. F. A.. The Vibrational Spectroscopy of the Coordinated Azide Anion; a Theoretical Study. Phys. Chem. Chem. Phys. 2016;18:414–425. doi: 10.1039/C5CP05566K. PubMed DOI

Schilling C., Hofmann A., Hess C., Ganduglia-Pirovano M. V.. Raman Spectra of Polycrystalline CeO2: A Density Functional Theory Study. J. Phys. Chem. C. 2017;121(38):20834–20849. doi: 10.1021/acs.jpcc.7b06643. DOI

Henych J., Št́astný M., Ederer J., Němečková Z., Pogorzelska A., Tolasz J., Kormunda M., Ryšánek P., Bażanów B., Stygar D., Mazanec K., Janoš P.. How the Surface Chemical Properties of Nanoceria Are Related to Its Enzyme-like, Antiviral and Degradation Activity. Environ. Sci.: Nano. 2022;9(9):3485–3501. doi: 10.1039/D2EN00173J. DOI

Xiao Y., Tan S., Wang D.. et al. CeO2/BiOIO3 Heterojunction with Oxygen Vacancies and Ce4+/Ce3+ Redox Centers Synergistically Enhanced Photocatalytic Removal of Heavy Metals . Appl. Surf. Sci. 2020;526:147116. doi: 10.1016/j.apsusc.2020.147116. DOI

Alvarez-Corena J. R., Bergendahl J. A., Hart F. L.. Photocatalytic Oxidation of Five Contaminants of Emerging Concern by UV/TiO2: Identification of Intermediates and Degradation Pathways. Environ. Eng. Sci. 2016;33:140–147. doi: 10.1089/ees.2015.0388. DOI

Kirakci K., Kubát P., Kučeráková M., Šícha V., Gbelcová H., Lovecká P., Grznárová P., Ruml T., Lang K.. Water-Soluble Octahedral Molybdenum Cluster Compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: Syntheses, Luminescence, and in vitro Studies. Inorg. Chim. Acta. 2016;441:42–49. doi: 10.1016/j.ica.2015.10.043. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...