Graphene Oxide Sheets Decorated with Octahedral Molybdenum Cluster Complexes for Enhanced Photoinactivation of Staphylococcus aureus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37608779
PubMed Central
PMC10481373
DOI
10.1021/acs.inorgchem.3c01502
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- lidé MeSH
- molybden farmakologie MeSH
- reaktivní formy kyslíku MeSH
- stafylokokové infekce * MeSH
- Staphylococcus aureus * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- graphene oxide MeSH Prohlížeč
- molybden MeSH
- reaktivní formy kyslíku MeSH
The emergence of multidrug-resistant microbial pathogens poses a significant threat, severely limiting the options for effective antibiotic therapy. This challenge can be overcome through the photoinactivation of pathogenic bacteria using materials generating reactive oxygen species upon exposure to visible light. These species target vital components of living cells, significantly reducing the likelihood of resistance development by the targeted pathogens. In our research, we have developed a nanocomposite material consisting of an aqueous colloidal suspension of graphene oxide sheets adorned with nanoaggregates of octahedral molybdenum cluster complexes. The negative charge of the graphene oxide and the positive charge of the nanoaggregates promoted their electrostatic interaction in aqueous medium and close cohesion between the colloids. Upon illumination with blue light, the colloidal system exerted a potent antibacterial effect against planktonic cultures of Staphylococcus aureus largely surpassing the individual contributions of the components. The underlying mechanism behind this phenomenon lies in the photoinduced electron transfer from the nanoaggregates of the cluster complexes to the graphene oxide sheets, which triggers the generation of reactive oxygen species. Thus, leveraging the unique properties of graphene oxide and light-harvesting octahedral molybdenum cluster complexes can open more effective and resilient antibacterial strategies.
Institute of Inorganic Chemistry of the Czech Academy of Sciences Husinec Řež 250 68 Czech Republic
Univ Rennes CNRS Institut des Sciences Chimiques de Rennes UMR 6226 Rennes 35000 France
Zobrazit více v PubMed
O’Gara J. P. Into the Storm: Chasing the Opportunistic Pathogen Staphylococcus aureus from Skin Colonisation to Life-Threatening Infections. Environ. Microbiol. 2017, 19, 3823–3833. 10.1111/1462-2920.13833. PubMed DOI
Schito G. C. The Importance of the Development of Antibiotic Resistance in Staphylococcus aureus. Clin. Microbiol. Infect. 2006, 12, 3–8. 10.1111/j.1469-0691.2006.01343.x. PubMed DOI
Kirakci K.; Zelenka J.; Rumlová M.; Cvačka J.; Ruml T.; Lang K. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities. Biomater. Sci. 2019, 7, 1386–1392. 10.1039/C8BM01564C. PubMed DOI
Kirakci K.; Kubáňová M.; Přibyl T.; Rumlová M.; Zelenka J.; Ruml T.; Lang K. A Cell Membrane Targeting Molybdenum-Iodine Nanocluster: Rational Ligand Design toward Enhanced Photodynamic Activity. Inorg. Chem. 2022, 61, 5076–5083. 10.1021/acs.inorgchem.2c00040. PubMed DOI
Beltrán A.; Mikhailov M.; Sokolov M. N.; Pérez-Laguna V.; Rezusta A.; Revillo M. J.; Galindo F. A Photobleaching Resistant Polymer Supported Hexanuclear Molybdenum Iodide Cluster for Photocatalytic Oxygenations and Photodynamic Inactivation of Staphylococcus aureus. J. Mater. Chem. B 2016, 4, 5975–5979. 10.1039/C6TB01966H. PubMed DOI
Felip-León C.; Arnau del Valle C.; Pérez-Laguna V.; Isabel Millán-Lou M.; Miravet J. F.; Mikhailov M.; Sokolov M. N.; Rezusta-López A.; Galindo F. Superior Performance of Macroporous over Gel Type Polystyrene as a Support for the Development of Photo-Bactericidal Materials. J. Mater. Chem. B 2017, 5, 6058–6064. 10.1039/C7TB01478C. PubMed DOI
Kirakci K.; Nguyen T. K. N.; Grasset F.; Uchikoshi T.; Zelenka J.; Kubát P.; Ruml T.; Lang K. Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light. ACS Appl. Mater. Interfaces 2020, 12, 52492–52499. 10.1021/acsami.0c19036. PubMed DOI
Vorotnikova N. A.; Alekseev A. Y.; Vorotnikov Y. A.; Evtushok D. V.; Molard Y.; Amela-Cortes M.; Cordier S.; Smolentsev A. I.; Burton C. G.; Kozhin P. M.; Zhu P.; Topham P. D.; Mironov Y. V.; Bradley M.; Efremova O. A.; Shestopalov M. A. Octahedral Molybdenum Cluster as a Photoactive Antimicrobial Additive to a Fluoroplastic. Mater. Sci. Eng., C 2019, 105, 11015010.1016/j.msec.2019.110150. PubMed DOI
Nguyen N. T. K.; Lebastard C.; Wilmet M.; Dumait N.; Renaud A.; Cordier S.; Ohashi N.; Uchikoshi T.; Grasset F. A Review on Functional Nanoarchitectonics Nanocomposites Based on Octahedral Metal Atom Clusters (Nb6, Mo6, Ta6, W6, Re6): Inorganic 0D and 2D Powders and Films. Sci. Technol. Adv. Mater. 2022, 23, 547–578. 10.1080/14686996.2022.2119101. PubMed DOI PMC
Maverick A. W.; Najdzionek J. S.; MacKenzie D.; Nocera D. G.; Gray H. B. Spectroscopic, Electrochemical, and Photochemical Properties of Molybdenum(II) and Tungsten(II) Halide Clusters. J. Am. Chem. Soc. 1983, 105, 1878–1882. 10.1021/ja00345a034. DOI
Kirakci K.; Kubát P.; Dušek M.; Fejfarová K.; Šícha V.; Mosinger J.; Lang K. A Highly Luminescent Hexanuclear Molybdenum Cluster – A Promising Candidate toward Photoactive Materials. Eur. J. Inorg. Chem. 2012, 2012, 3107–3111. 10.1002/ejic.201200402. DOI
Kirakci K.; Kubát P.; Langmaier J.; Polívka T.; Fuciman M.; Fejfarová K.; Lang K. A Comparative Study of the Redox and Excited State Properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I). Dalton Trans. 2013, 42, 7224–7232. 10.1039/C3DT32863E. PubMed DOI
Liu S.; Zeng T. H.; Hofmann M.; Burcombe E.; Wei J.; Jiang R.; Kong J.; Chen Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5, 6971–6980. 10.1021/nn202451x. PubMed DOI
McCoy T. M.; Turpin G.; Teo B. M.; Tabor R. F. Graphene Oxide: a Surfactant or Particle?. Curr. Opin. Colloid Interface Sci. 2019, 39, 98–109. 10.1016/j.cocis.2019.01.010. DOI
Zhao Y.; Hsieh H.-S.; Wang M.; Jafvert C. T. Light-Independent Redox Reactions of Graphene Oxide in Water: Electron Transfer from NADH through Graphene Oxide to Molecular Oxygen, Producing Reactive Oxygen Species. Carbon 2017, 123, 216–222. 10.1016/j.carbon.2017.07.048. DOI
Guo Z.; Zhang P.; Xie C.; Voyiatzis E.; Faserl K.; Chetwynd A. J.; Monikh F. A.; Melagraki G.; Zhang Z.; Peijnenburg W. J. G. M.; Afantitis A.; Chen C.; Lynch I. Defining the Surface Oxygen Threshold That Switches the Interaction Mode of Graphene Oxide with Bacteria. ACS Nano 2023, 17, 6350–6361. 10.1021/acsnano.2c10961. PubMed DOI PMC
Yadav S.; Singh Raman A. P.; Meena H.; Goswami A. G.; Bhawna; Kumar V.; Jain P.; Kumar G.; Sagar M.; Rana D. K.; Bahadur I.; Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS Omega 2022, 7, 35387–35445. 10.1021/acsomega.2c03171. PubMed DOI PMC
Chen C.; Yu W.; Liu T.; Cao S.; Tsang Y. Graphene oxide/WS2/Mg-doped ZnO Nanocomposites for Solar-Light Catalytic and Anti-Bacterial Applications. Sol. Energy Mater. Sol. Cells 2017, 160, 43–53. 10.1016/j.solmat.2016.10.020. DOI
Gayathri S.; Jayabal P.; Kottaisamy M.; Ramakrishnan V. Synthesis of ZnO Decorated Graphene Nanocomposite for Enhanced Photocatalytic Properties. J. Appl. Phys. 2014, 115, 173504.10.1063/1.4874877. DOI
Tao Y.; Lin Y.; Huang Z.; Ren J.; Qu X. Incorporating Graphene Oxide and Gold Nanoclusters: a Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity over a Broad pH Range and its Application for Cancer Cell Detection. Adv. Mater. 2013, 25, 2594–2599. 10.1002/adma.201204419. PubMed DOI
Wang B.; Moon J. R.; Ryu S.; Park K. D.; Kim J.-H. Antibacterial 3D Graphene Composite Gel with Polyaspartamide and Tannic Acid Containing In Situ Generated Ag Nanoparticle. Polym. Compos. 2020, 41, 2578–2587. 10.1002/pc.25556. DOI
Wang Y.-W.; Cao A.; Jiang Y.; Zhang X.; Liu J.-H.; Liu Y.; Wang H. Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria. ACS Appl. Mater. Interfaces 2014, 6, 2791–2798. 10.1021/am4053317. PubMed DOI
Zhou L.; Jiang H.; Wei S.; Ge X.; Zhou J.; Shen J. High-Efficiency Loading of Hypocrellin B on Graphene Oxide for Photodynamic Therapy. Carbon 2012, 50, 5594–5604. 10.1016/j.carbon.2012.08.013. DOI
Monteiro A. R.; Neves M. G. P. M. S.; Trindade T. Functionalization of Graphene Oxide with Porphyrins: Synthetic Routes and Biological Applications. ChemPlusChem 2020, 85, 1857–1880. 10.1002/cplu.202000455. PubMed DOI
Feliz M.; Atienzar P.; Amela-Cortés M.; Dumait N.; Lemoine P.; Molard Y.; Cordier S. Supramolecular Anchoring of Octahedral Molybdenum Clusters onto Graphene and Their Synergies in Photocatalytic Water Reduction. Inorg. Chem. 2019, 58, 15443–15454. 10.1021/acs.inorgchem.9b02529. PubMed DOI
Puche M.; García-Aboal R.; Mikhaylov M. A.; Sokolov M. N.; Atienzar P.; Feliz M. Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo6 Iodide Clusters Supported on Graphene Oxide. Nanomaterials 2020, 10, 1259.10.3390/nano10071259. PubMed DOI PMC
Casanova-Chafer J.; Garcia-Aboal R.; Atienzar P.; Feliz M.; Llobet E. Octahedral Molybdenum Iodide Clusters Supported on Graphene for Resistive and Optical Gas Sensing. ACS Appl. Mater. Interfaces 2022, 14, 57122–57132. 10.1021/acsami.2c15716. PubMed DOI PMC
Barras A.; Das M. R.; Devarapalli R. R.; Shelke M. V.; Cordier S.; Szunerits S.; Boukherroub R. One-Pot Synthesis of Gold Nanoparticle/Molybdenum Cluster/Graphene Oxide Nanocomposite and Its Photocatalytic Activity. Appl. Catal., B 2013, 130-131, 270–276. 10.1016/j.apcatb.2012.11.017. DOI
Feliz M.; Puche M.; Atienzar P.; Concepción P.; Cordier S.; Molard Y. In Situ Generation of Active Molybdenum Octahedral Clusters for Photocatalytic Hydrogen Production from Water. ChemSusChem 2016, 9, 1963–1971. 10.1002/cssc.201600381. PubMed DOI
Hummers W. S. Jr.; Offeman R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.10.1021/ja01539a017. DOI
Paredes J. I.; Villar-Rodil S.; Martínez-Alonso A.; Tascón J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24, 10560–10564. 10.1021/la801744a. PubMed DOI
Priante F.; Salim M.; Ottaviano L.; Perrozzi F. XPS study of Graphene Oxide Reduction Induced by (100) and (111)-Oriented Si Substrates. Nanotechnology 2018, 29, 07570410.1088/1361-6528/aaa320. PubMed DOI
Kirakci K.; Zelenka J.; Rumlová M.; Martinčík J.; Nikl M.; Ruml T.; Lang K. Octahedral Molybdenum Clusters as Radiosensitizers for X-Ray Induced Photodynamic Therapy. J. Mater. Chem. B 2018, 6, 4301–4307. 10.1039/c8tb00893k. PubMed DOI
Sciortino F.; Cuny J.; Grasset F.; Lagrost C.; Lemoine P.; Moréac A.; Molard Y.; Takei T.; Cordier S.; Chevance S.; Gauffre F. The Ouzo Effect to Selectively Assemble Molybdenum Clusters into Nanomarbles or Nanocapsules with Increased HER Activity. Chem. Commun. 2018, 54, 13387–13390. 10.1039/c8cc07402j. PubMed DOI
Koncošová M.; Rumlová M.; Mikyšková R.; Reiniš M.; Zelenka J.; Ruml T.; Kirakci K.; Lang K. Avenue to X-Ray-Induced Photodynamic Therapy of Prostatic Carcinoma with Octahedral Molybdenum Cluster Nanoparticles. J. Mater. Chem. B 2022, 10, 3303–3310. 10.1039/d2tb00141a. PubMed DOI
Felip-León C.; Puche M.; Miravet J. F.; Galindo F.; Feliz M. A Spectroscopic Study to Assess the Photogeneration of Singlet Oxygen by Graphene Oxide. Mater. Lett. 2019, 251, 45–51. 10.1016/j.matlet.2019.05.001. DOI
Panda S.; Rout T. K.; Prusty A. D.; Ajayan P. M.; Nayak S. Electron Transfer Directed Antibacterial Properties of Graphene Oxide on Metals. Adv. Mater. 2018, 30, 170214910.1002/adma.201702149. PubMed DOI
Chong Y.; Ge C.; Fang G.; Wu R.; Zhang H.; Chai Z.; Chen C.; Yin J.-J. Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer. Environ. Sci. Technol. 2017, 51, 10154–10161. 10.1021/acs.est.7b00663. PubMed DOI
Vinoth R.; Babu S. G.; Bharti V.; Gupta V.; Navaneethan M.; Bhat S. V.; Muthamizhchelvan C.; Ramamurthy P. C.; Sharma C.; Aswal D. K.; Hayakawa Y.; Neppolian B. Ruthenium Based Metallopolymer Grafted Reduced Graphene Oxide as a New Hybrid Solar Light Harvester in Polymer Solar Cells. Sci. Rep. 2017, 7.10.1038/srep43133. PubMed DOI PMC
Zappacosta R.; Di Giulio M.; Ettorre V.; Bosco D.; Hadad C.; Siani G.; Di Bartolomeo S.; Cataldi A.; Cellini L.; Fontana A. Liposome-Induced Exfoliation of Graphite to Few-Layer Graphene Dispersion with Antibacterial Activity. J. Mater. Chem. B 2015, 3, 6520–6527. 10.1039/c5tb00798d. PubMed DOI