In Situ Vanadium-Deficient Engineering of V2C MXene: A Pathway to Enhanced Zinc-Ion Batteries

. 2024 Sep ; 8 (9) : e2301461. [epub] 20240120

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38243881

Grantová podpora
23-05918S Czech Science Foundation (GACR)
19-27551X EXPRO project
2022J139 Natural Science Foundation of Ningbo
2022A-227-G Ningbo Yongjiang Talent Introduction Programme
CZ,02.01.01/00/22010/0003004 Ministry of Education Youth and Sports (MEYS)

This research examines vanadium-deficient V2C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+/V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.

Zobrazit více v PubMed

a) H. Zhang, L. Wang, H. Li, X. He, ACS Energy Lett. 2021, 6, 3719;

b) Y.‐Y. Peng, B. Akuzum, N. Kurra, M.‐Q. Zhao, M. Alhabeb, B. Anasori, E. C. Kumbur, H. N. Alshareef, M.‐D. Ger, Y. Gogotsi, Energy Environ. Sci. 2016, 9, 2847.

a) N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 2020, 49, 4203;

b) C. Li, X. Xie, S. Liang, J. Zhou, Energy Environ. Mater. 2020, 3, 146.

a) C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater. 2018, 30, 1705580;

b) H. Liu, J.‐G. Wang, W. Hua, Z. You, Z. Hou, J. Yang, C. Wei, F. Kang, Energy Storage Mater. 2021, 35, 731.

a) B. Raza, A. Naveed, J. Chen, H. Lu, T. Rasheed, J. Yang, Y. Nuli, J. Wang, Energy Storage Mater. 2022, 46, 523;

b) N. Liu, X. Wu, Y. Zhang, Y. Yin, C. Sun, Y. Mao, L. Fan, N. Zhang, Adv. Sci. 2020, 7, 2000146.

J. Guan, L. Shao, L. Yu, S. Wang, X. Shi, J. Cai, Z. Sun, Chem. Eng. J. 2022, 443, 136502.

a) J. Chen, Y. Ding, D. Yan, J. Huang, S. Peng, SusMat 2022, 2, 293;

b) P. Liu, W. Liu, K. Liu, Carbon Energy 2022, 4, 60.

a) X. Zhu, Z. Cao, W. Wang, H. Li, J. Dong, S. Gao, D. Xu, L. Li, J. Shen, M. Ye, ACS Nano 2021, 15, 2971;

b) S. Zhao, X. Luo, Y. Cheng, Z. Shi, T. Huang, S. Yang, H. Zheng, Y. Bi, J. Zhang, Q. Shi, M. Cao, C. Zhang, Y. Yue, Y. Ma, Chem. Eng. J. 2023, 454, 140360.

a) Y. Zhang, C. Ma, W. He, C. Zhang, L. Zhou, G. Wang, W. Wei, Prog. Nat. Sci.: Mater. Int. 2021, 31, 501;

b) Z. Xiao, Z. Li, X. Meng, R. Wang, J. Mater. Chem. A 2019, 7, 22730;

c) X. Li, Z. Huang, C. E. Shuck, G. Liang, Y. Gogotsi, C. Zhi, Nat. Rev. Chem. 2022, 6, 389.

a) R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat, Y. Zhao, R. Liu, J. Qin, ACS Appl. Energy Mater. 2020, 3, 4677;

b) M. Lu, H. Li, W. Han, J. Chen, W. Shi, J. Wang, X.‐M. Meng, J. Qi, H. Li, B. Zhang, W. Zhang, W. Zheng, J. Energy Chem. 2019, 31, 148;

c) Y. Wang, J. Shen, L.‐C. Xu, Z. Yang, R. Li, R. Liu, X. Li, Phys. Chem. Chem. Phys. 2019, 21, 18559;

d) W. Lv, G. Wu, X. Li, J. Li, Z. Li, Energy Storage Mater. 2022, 46, 138.

a) R. Ibragimova, P. Rinke, H.‐P. Komsa, Chem. Mater. 2022, 34, 2896;

b) S. Zhou, Y. Zhao, R. Shi, Y. Wang, A. Ashok, F. Héraly, T. Zhang, J. Yuan, Adv. Mater. 2022, 34, 2204388.

a) K. L. Firestein, J. F. S. Fernando, C. Zhang, C.‐E. M. Lewis, D. V. Golberg, ACS Appl. Nano Mater. 2022, 5, 12117;

b) K. Matthews, T. Zhang, C. E. Shuck, A. Vahidmohammadi, Y. Gogotsi, Chem. Mater. 2021, 34, 499.

a) W. Zhang, J. Ming, W. Zhao, X. Dong, M. N. Hedhili, P. M. F. J. Costa, H. N. Alshareef, Adv. Funct. Mater. 2019, 29, 1903641;

b) C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong, J. Z. Jiang, J. Phys. Chem. C 2012, 116, 4000;

c) T. Xiong, Y. Zhang, W. S. V. Lee, J. Xue, Adv. Energy Mater. 2020, 10, 2001769.

C. G. Pope, J. Chem. Educ. 1997, 74, 129.

U. Holzwarth, N. Gibson, Nat. Nanotechnol. 2011, 6, 534.

H. Wu, M. Almalki, X. Xu, Y. Lei, F. Ming, A. Mallick, V. Roddatis, S. Lopatin, O. Shekhah, M. Eddaoudi, J. Am. Chem. Soc. 2019, 141, 20037.

J. Mei, G. A. Ayoko, C. Hu, J. M. Bell, Z. Sun, Sustainable Mater. Technol. 2020, 25, e00156.

a) H. T. T. Nguyen, D. Jung, C.‐Y. Park, D. J. Kang, Mater. Chem. Phys. 2015, 165, 19;

b) J. Xia, H. Guo, G. Yu, Q. Chen, Y. Liu, Q. Liu, Y. Luo, T. Li, E. Traversa, Catal. Lett. 2021, 151, 3516.

c) Y. Liu, Y. Jiang, Z. Hu, J. Peng, W. Lai, D. Wu, S. Zuo, J. Zhang, B. Chen, Z. Dai, Y. Yang, Y. Huang, W. Zhang, W. Zhao, W. Zhang, L. Wang, S. Chou, Adv. Funct. Mater. 2021, 31, 2008033.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. De Gryse, J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167.

S. Zada, W. Dai, Z. Kai, H. Lu, X. Meng, Y. Zhang, Y. Cheng, F. Yan, P. Fu, X. Zhang, H. Dong, Angew. Chem., Int. Ed. 2020, 59, 6601.

L. Liu, D. Peng, Q. Ma, Z. Jiang, J. Wang, J. Qian, Micro Nano Lett. 2019, 11, 1.

B. Ahmed, D. H. Anjum, M. N. Hedhili, Y. Gogotsi, H. N. Alshareef, Nanoscale 2016, 8, 7580.

S. Shen, D. Ma, K. Ouyang, Y. Chen, M. Yang, Y. Wang, S. Sun, H. Mi, L. Sun, C. He, P. Zhang, Adv. Funct. Mater. 2023, 33, 2304255.

S. Khamsanga, R. Pornprasertsuk, T. Yonezawa, A. A. Mohamad, S. Kheawhom, Sci. Rep. 2019, 9, 8441.

J. Gertzen, P. Levecque, T. Rampai, T. Van Heerden, Materials 2020, 14, 77.

a) K. Yao, Z. Xu, J. Huang, M. Ma, L. Fu, X. Shen, J. Li, M. Fu, Small 2019, 15, 1805405;

b) S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou, J. Qin, C. Sun, Y. Yu, Z.‐S. Wu, X. Bao, Energy Environ. Sci. 2020, 13, 821.

F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen, L. Wang, Q. Hu, Q. Huang, A. Zhou, J. Electrochem. Soc. 2017, 164, A709.

G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.

a) G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169;

b) P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.

G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...