Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases

. 2024 Jan 06 ; 10 (1) : . [epub] 20240106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38247768

Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.

Zobrazit více v PubMed

Arda O., Göksügür N., Tüzün Y. Basic Histological Structure and Functions of Facial Skin. Clin. Dermatol. 2014;32:3–13. doi: 10.1016/j.clindermatol.2013.05.021. PubMed DOI

Boer M., Duchnik E., Maleszka R., Marchlewicz M. Structural and Biophysical Characteristics of Human Skin in Maintaining Proper Epidermal Barrier Function. Adv. Dermatol. Allergol. 2016;1:1–5. doi: 10.5114/pdia.2015.48037. PubMed DOI PMC

Abdo J.M., Sopko N.A., Milner S.M. The Applied Anatomy of Human Skin: A Model for Regeneration. Wound Med. 2020;28:100179. doi: 10.1016/j.wndm.2020.100179. DOI

Baroni A., Buommino E., De Gregorio V., Ruocco E., Ruocco V., Wolf R. Structure and Function of the Epidermis Related to Barrier Properties. Clin. Dermatol. 2012;30:257–262. doi: 10.1016/j.clindermatol.2011.08.007. PubMed DOI

Xie J., Hao T., Li C., Wang X., Yu X., Liu L. Automatic Evaluation of Stratum Basale and Dermal Papillae Using Ultrahigh Resolution Optical Coherence Tomography. Biomed. Signal Process Control. 2019;53:101527. doi: 10.1016/j.bspc.2019.04.004. DOI

Maynard R.L., Downes N. Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research. Elsevier; Amsterdam, The Netherlands: 2019. The Skin or the Integument; pp. 303–315.

Barbieri J.S., Wanat K., Seykora J. Pathobiology of Human Disease. Elsevier; Amsterdam, The Netherlands: 2014. Skin: Basic Structure and Function; pp. 1134–1144.

McBain A.J., O’Neill C.A., Oates A. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2016. Skin Microbiology.

Proksch E., Brandner J.M., Jensen J. The Skin: An Indispensable Barrier. Exp. Dermatol. 2008;17:1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x. PubMed DOI

Nishifuji K., Yoon J.S. The Stratum Corneum: The Rampart of the Mammalian Body. Vet. Dermatol. 2013;24:60. doi: 10.1111/j.1365-3164.2012.01090.x. PubMed DOI

Tagami H. Location-related Differences in Structure and Function of the Stratum Corneum with Special Emphasis on Those of the Facial Skin. Int. J. Cosmet. Sci. 2008;30:413–434. doi: 10.1111/j.1468-2494.2008.00459.x. PubMed DOI

Rippa A.L., Kalabusheva E.P., Vorotelyak E.A. Regeneration of Dermis: Scarring and Cells Involved. Cells. 2019;8:607. doi: 10.3390/cells8060607. PubMed DOI PMC

Carroll R.G. Elsevier’s Integrated Physiology. Elsevier; Amsterdam, The Netherlands: 2007. The Integument; pp. 11–17.

Carlson B.M. Human Embryology and Developmental Biology. Elsevier; Amsterdam, The Netherlands: 2014. Integumentary, Skeletal, and Muscular Systems; pp. 156–192.

Wong R., Geyer S., Weninger W., Guimberteau J., Wong J.K. The Dynamic Anatomy and Patterning of Skin. Exp. Dermatol. 2016;25:92–98. doi: 10.1111/exd.12832. PubMed DOI

Woo W. Imaging Technologies and Transdermal Delivery in Skin Disorders. Wiley; Hoboken, NJ, USA: 2019. Skin Structure and Biology; pp. 1–14.

Roberts W. Air Pollution and Skin Disorders. Int. J. Womens Dermatol. 2021;7:91–97. doi: 10.1016/j.ijwd.2020.11.001. PubMed DOI PMC

Ju Q., Zouboulis C.C. Endocrine-Disrupting Chemicals and Skin Manifestations. Rev. Endocr. Metab. Disord. 2016;17:449–457. doi: 10.1007/s11154-016-9371-2. PubMed DOI

Gromkowska-Kępka K.J., Puścion-Jakubik A., Markiewicz-Żukowska R., Socha K. The Impact of Ultraviolet Radiation on Skin Photoaging—Review of in Vitro Studies. J. Cosmet. Dermatol. 2021;20:3427–3431. doi: 10.1111/jocd.14033. PubMed DOI PMC

Cao C., Xiao Z., Wu Y., Ge C. Diet and Skin Aging—From the Perspective of Food Nutrition. Nutrients. 2020;12:870. doi: 10.3390/nu12030870. PubMed DOI PMC

Ortiz A., Grando S.A. Smoking and the Skin. Int. J. Dermatol. 2012;51:250–262. doi: 10.1111/j.1365-4632.2011.05205.x. PubMed DOI

Liu S.W., Lien M.H., Fenske N.A. The Effects of Alcohol and Drug Abuse on the Skin. Clin. Dermatol. 2010;28:391–399. doi: 10.1016/j.clindermatol.2010.03.024. PubMed DOI

Lyu F., Wu T., Bian Y., Zhu K., Xu J., Li F. Stress and Its Impairment of Skin Barrier Function. Int. J. Dermatol. 2023;62:621–630. doi: 10.1111/ijd.16598. PubMed DOI

Dąbrowska A.K., Spano F., Derler S., Adlhart C., Spencer N.D., Rossi R.M. The Relationship between Skin Function, Barrier Properties, and Body-dependent Factors. Ski. Res. Technol. 2018;24:165–174. doi: 10.1111/srt.12424. PubMed DOI

Ita K., Silva M., Bassey R. Mechanical Properties of the Skin: What Do We Know? Curr. Cosmet. Sci. 2022;1:e070122200109. doi: 10.2174/2666779701666220107161901. DOI

Mortazavi S.M., Moghimi H.R. Skin Permeability, a Dismissed Necessity for Anti-wrinkle Peptide Performance. Int. J. Cosmet. Sci. 2022;44:232–248. doi: 10.1111/ics.12770. PubMed DOI

Parhi R., Mandru A. Enhancement of Skin Permeability with Thermal Ablation Techniques: Concept to Commercial Products. Drug Deliv. Transl. Res. 2021;11:817–841. doi: 10.1007/s13346-020-00823-3. PubMed DOI PMC

Lundborg M., Wennberg C.L., Narangifard A., Lindahl E., Norlén L. Predicting Drug Permeability through Skin Using Molecular Dynamics Simulation. J. Control. Release. 2018;283:269–279. doi: 10.1016/j.jconrel.2018.05.026. PubMed DOI

Alkilani A., McCrudden M.T., Donnelly R. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics. 2015;7:438–470. doi: 10.3390/pharmaceutics7040438. PubMed DOI PMC

Yu Y.-Q., Yang X., Wu X.-F., Fan Y.-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021;9:646554. doi: 10.3389/fbioe.2021.646554. PubMed DOI PMC

Narasimha Murthy S., Shivakumar H.N. Handbook of Non-Invasive Drug Delivery Systems. Elsevier; Amsterdam, The Netherlands: 2010. Topical and Transdermal Drug Delivery; pp. 1–36.

Kathe K., Kathpalia H. Film Forming Systems for Topical and Transdermal Drug Delivery. Asian J. Pharm. Sci. 2017;12:487–497. doi: 10.1016/j.ajps.2017.07.004. PubMed DOI PMC

Leppert W., Malec–Milewska M., Zajaczkowska R., Wordliczek J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules. 2018;23:681. doi: 10.3390/molecules23030681. PubMed DOI PMC

Prausnitz M.R., Langer R. Transdermal Drug Delivery. Nat. Biotechnol. 2008;26:1261–1268. doi: 10.1038/nbt.1504. PubMed DOI PMC

Majdi A., Sadigh-Eteghad S., Gjedde A. Effects of Transdermal Nicotine Delivery on Cognitive Outcomes: A Meta-analysis. Acta Neurol. Scand. 2021;144:179–191. doi: 10.1111/ane.13436. PubMed DOI

Buster J.E. Transdermal Menopausal Hormone Therapy: Delivery through Skin Changes the Rules. Expert Opin. Pharmacother. 2010;11:1489–1499. doi: 10.1517/14656561003774098. PubMed DOI

Sittl R. Transdermal Buprenorphine in the Treatment of Chronic Pain. Expert Rev. Neurother. 2005;5:315–323. doi: 10.1586/14737175.5.3.315. PubMed DOI

Rehman K., Zulfakar M.H. Recent Advances in Gel Technologies for Topical and Transdermal Drug Delivery. Drug Dev. Ind. Pharm. 2014;40:433–440. doi: 10.3109/03639045.2013.828219. PubMed DOI

Waghule T., Singhvi G., Dubey S.K., Pandey M.M., Gupta G., Singh M., Dua K. Microneedles: A Smart Approach and Increasing Potential for Transdermal Drug Delivery System. Biomed. Pharmacother. 2019;109:1249–1258. doi: 10.1016/j.biopha.2018.10.078. PubMed DOI

Sawarkar S., Ashtekar A. Transdermal Vitamin D Supplementation—A Potential Vitamin D Deficiency Treatment. J. Cosmet. Dermatol. 2020;19:28–32. doi: 10.1111/jocd.13085. PubMed DOI

Houck C.S., Sethna N.F. Transdermal Analgesia with Local Anesthetics in Children: Review, Update and Future Directions. Expert Rev. Neurother. 2005;5:625–634. doi: 10.1586/14737175.5.5.625. PubMed DOI

Touitou E., Natsheh H. Topical Administration of Drugs Incorporated in Carriers Containing Phospholipid Soft Vesicles for the Treatment of Skin Medical Conditions. Pharmaceutics. 2021;13:2129. doi: 10.3390/pharmaceutics13122129. PubMed DOI PMC

Singh Malik D., Mital N., Kaur G. Topical Drug Delivery Systems: A Patent Review. Expert Opin. Ther. Pat. 2016;26:213–228. doi: 10.1517/13543776.2016.1131267. PubMed DOI

Roberts M.S., Cheruvu H.S., Mangion S.E., Alinaghi A., Benson H.A.E., Mohammed Y., Holmes A., van der Hoek J., Pastore M., Grice J.E. Topical Drug Delivery: History, Percutaneous Absorption, and Product Development. Adv. Drug Deliv. Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929. PubMed DOI

Bonamonte D., De Marco A., Giuffrida R., Conforti C., Barlusconi C., Foti C., Romita P. Topical Antibiotics in the Dermatological Clinical Practice: Indications, Efficacy, and Adverse Effects. Dermatol. Ther. 2020;33:e13824. doi: 10.1111/dth.13824. PubMed DOI

Lé A.M., Torres T. New Topical Therapies for Psoriasis. Am. J. Clin. Dermatol. 2022;23:13–24. doi: 10.1007/s40257-021-00649-w. PubMed DOI

Lax S.J., Harvey J., Axon E., Howells L., Santer M., Ridd M.J., Lawton S., Langan S., Roberts A., Ahmed A., et al. Strategies for Using Topical Corticosteroids in Children and Adults with Eczema. Cochrane Database Syst. Rev. 2022;2022:CD013356. doi: 10.1002/14651858.CD013356.pub2. PubMed DOI PMC

Piraccini B.M., Blume-Peytavi U., Scarci F., Jansat J.M., Falqués M., Otero R., Tamarit M.L., Galván J., Tebbs V., Massana E. Efficacy and Safety of Topical Finasteride Spray Solution for Male Androgenetic Alopecia: A Phase III, Randomized, Controlled Clinical Trial. J. Eur. Acad. Dermatol. Venereol. 2022;36:286–294. doi: 10.1111/jdv.17738. PubMed DOI PMC

Ivens U.I., Steinkjer B., Serup J., Tetens V. Ointment Is Evenly Spread on the Skin, in Contrast to Creams and Solutions. Br. J. Dermatol. 2001;145:264–267. doi: 10.1046/j.1365-2133.2001.04344.x. PubMed DOI

Ridd M.J., Santer M., MacNeill S.J., Sanderson E., Wells S., Webb D., Banks J., Sutton E., Roberts A., Liddiard L., et al. Effectiveness and Safety of Lotion, Cream, Gel, and Ointment Emollients for Childhood Eczema: A Pragmatic, Randomised, Phase 4, Superiority Trial. Lancet Child. Adolesc. Health. 2022;6:522–532. doi: 10.1016/S2352-4642(22)00146-8. PubMed DOI

Zhang Q., Grice J., Wang G., Roberts M. Cutaneous Metabolism in Transdermal Drug Delivery. Curr. Drug Metab. 2009;10:227–235. doi: 10.2174/138920009787846350. PubMed DOI

Svensson C.K. Biotransformation of Drugs in Human Skin. Drug Metab. Dispos. 2009;37:247–253. doi: 10.1124/dmd.108.024794. PubMed DOI

Mugglestone C.J., Mariz S., Lane M.E. The Development and Registration of Topical Pharmaceuticals. Int. J. Pharm. 2012;435:22–26. doi: 10.1016/j.ijpharm.2012.03.052. PubMed DOI

Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC

Sultana A., Zare M., Thomas V., Kumar T.S.S., Ramakrishna S. Nano-Based Drug Delivery Systems: Conventional Drug Delivery Routes, Recent Developments and Future Prospects. Med. Drug Discov. 2022;15:100134. doi: 10.1016/j.medidd.2022.100134. DOI

Demetzos C., Pippa N. Advanced Drug Delivery Nanosystems (ADDnSs): A Mini-Review. Drug Deliv. 2014;21:250–257. doi: 10.3109/10717544.2013.844745. PubMed DOI

Pires P.C., Santos A.O. Nanosystems in Nose-to-Brain Drug Delivery: A Review of Non-Clinical Brain Targeting Studies. J. Control. Release. 2018;270:89–100. doi: 10.1016/j.jconrel.2017.11.047. PubMed DOI

Zhang L., Gu F., Chan J., Wang A., Langer R., Farokhzad O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI

Rezić I. Nanoparticles for Biomedical Application and Their Synthesis. Polymers. 2022;14:4961. doi: 10.3390/polym14224961. PubMed DOI PMC

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Afzal O., Altamimi A.S.A., Nadeem M.S., Alzarea S.I., Almalki W.H., Tariq A., Mubeen B., Murtaza B.N., Iftikhar S., Riaz N., et al. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials. 2022;12:4494. doi: 10.3390/nano12244494. PubMed DOI PMC

Abdel-Mageed H.M., AbuelEzz N.Z., Radwan R.A., Mohamed S.A. Nanoparticles in Nanomedicine: A Comprehensive Updated Review on Current Status, Challenges and Emerging Opportunities. J. Microencapsul. 2021;38:414–436. doi: 10.1080/02652048.2021.1942275. PubMed DOI

Ferreira M.D., Duarte J., Veiga F., Paiva-Santos A.C., Pires P.C. Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promising Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. Pharmaceutics. 2023;15:678. doi: 10.3390/pharmaceutics15020678. PubMed DOI PMC

Yusuf A., Almotairy A.R.Z., Henidi H., Alshehri O.Y., Aldughaim M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers. 2023;15:1596. doi: 10.3390/polym15071596. PubMed DOI PMC

Sechi M., Sanna V., Pala N. Targeted Therapy Using Nanotechnology: Focus on Cancer. Int. J. Nanomed. 2014;9:467–483. doi: 10.2147/IJN.S36654. PubMed DOI PMC

Khan I., Saeed K., Khan I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Christian P., Von der Kammer F., Baalousha M., Hofmann T. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology. 2008;17:326–343. doi: 10.1007/s10646-008-0213-1. PubMed DOI

Hore M.J.A. Polymers on Nanoparticles: Structure & Dynamics. Soft Matter. 2019;15:1120–1134. doi: 10.1039/C8SM02110D. PubMed DOI

Moradifar N., Kiani A.A., Veiskaramian A., Karami K. Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review. Curr. Cardiol. Rev. 2022;18:e110621194025. doi: 10.2174/1573403X17666210611115823. PubMed DOI PMC

Khalid K., Tan X., Mohd Zaid H.F., Tao Y., Lye Chew C., Chu D.-T., Lam M.K., Ho Y.-C., Lim J.W., Chin Wei L. Advanced in Developmental Organic and Inorganic Nanomaterial: A Review. Bioengineered. 2020;11:328–355. doi: 10.1080/21655979.2020.1736240. PubMed DOI PMC

Alshammari B.H., Lashin M.M.A., Mahmood M.A., Al-Mubaddel F.S., Ilyas N., Rahman N., Sohail M., Khan A., Abdullaev S.S., Khan R. Organic and Inorganic Nanomaterials: Fabrication, Properties and Applications. RSC Adv. 2023;13:13735–13785. doi: 10.1039/D3RA01421E. PubMed DOI PMC

Jafari S., Derakhshankhah H., Alaei L., Fattahi A., Varnamkhasti B.S., Saboury A.A. Mesoporous Silica Nanoparticles for Therapeutic/Diagnostic Applications. Biomed. Pharmacother. 2019;109:1100–1111. doi: 10.1016/j.biopha.2018.10.167. PubMed DOI

Li Z., Zhang Y., Feng N. Mesoporous Silica Nanoparticles: Synthesis, Classification, Drug Loading, Pharmacokinetics, Biocompatibility, and Application in Drug Delivery. Expert Opin. Drug Deliv. 2019;16:219–237. doi: 10.1080/17425247.2019.1575806. PubMed DOI

Jain P., Hassan N., Iqbal Z., Dilnawaz F. Mesoporous Silica Nanoparticles: A Versatile Platform for Biomedical Applications. Recent. Pat. Drug Deliv. Formul. 2019;12:228–237. doi: 10.2174/1872211313666181203152859. PubMed DOI

Porrang S., Davaran S., Rahemi N., Allahyari S., Mostafavi E. How Advancing Are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int. J. Nanomed. 2022;17:1803–1827. doi: 10.2147/IJN.S353349. PubMed DOI PMC

Huang R., Shen Y.-W., Guan Y.-Y., Jiang Y.-X., Wu Y., Rahman K., Zhang L.-J., Liu H.-J., Luan X. Mesoporous Silica Nanoparticles: Facile Surface Functionalization and Versatile Biomedical Applications in Oncology. Acta Biomater. 2020;116:1–15. doi: 10.1016/j.actbio.2020.09.009. PubMed DOI

He H., Pham-Huy L.A., Dramou P., Xiao D., Zuo P., Pham-Huy C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed. Res. Int. 2013;2013:578290. doi: 10.1155/2013/578290. PubMed DOI PMC

Rahamathulla M., Bhosale R.R., Osmani R.A.M., Mahima K.C., Johnson A.P., Hani U., Ghazwani M., Begum M.Y., Alshehri S., Ghoneim M.M., et al. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. Materials. 2021;14:6707. doi: 10.3390/ma14216707. PubMed DOI PMC

Zhang C., Wu L., de Perrot M., Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front. Oncol. 2021;11:693814. doi: 10.3389/fonc.2021.693814. PubMed DOI PMC

Zare H., Ahmadi S., Ghasemi A., Ghanbari M., Rabiee N., Bagherzadeh M., Karimi M., Webster T.J., Hamblin M.R., Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021;16:1681–1706. doi: 10.2147/IJN.S299448. PubMed DOI PMC

Pu Z., Wei Y., Sun Y., Wang Y., Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. Int. J. Nanomed. 2022;17:6157–6180. doi: 10.2147/IJN.S384592. PubMed DOI PMC

Din F.U., Aman W., Ullah I., Qureshi O.S., Mustapha O., Shafique S., Zeb A. Effective Use of Nanocarriers as Drug Delivery Systems for the Treatment of Selected Tumors. Int. J. Nanomed. 2017;12:7291–7309. doi: 10.2147/IJN.S146315. PubMed DOI PMC

Francis A.P., Devasena T. Toxicity of Carbon Nanotubes: A Review. Toxicol. Ind. Health. 2018;34:200–210. doi: 10.1177/0748233717747472. PubMed DOI

Kobayashi N., Izumi H., Morimoto Y. Review of Toxicity Studies of Carbon Nanotubes. J. Occup. Health. 2017;59:394–407. doi: 10.1539/joh.17-0089-RA. PubMed DOI PMC

López-Dávila V., Seifalian A.M., Loizidou M. Organic Nanocarriers for Cancer Drug Delivery. Curr. Opin. Pharmacol. 2012;12:414–419. doi: 10.1016/j.coph.2012.02.011. PubMed DOI

Palazzolo S., Bayda S., Hadla M., Caligiuri I., Corona G., Toffoli G., Rizzolio F. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. Curr. Med. Chem. 2018;25:4224–4268. doi: 10.2174/0929867324666170830113755. PubMed DOI

Calzoni E., Cesaretti A., Polchi A., Di Michele A., Tancini B., Emiliani C. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J. Funct. Biomater. 2019;10:4. doi: 10.3390/jfb10010004. PubMed DOI PMC

Hadinoto K., Sundaresan A., Cheow W.S. Lipid–Polymer Hybrid Nanoparticles as a New Generation Therapeutic Delivery Platform: A Review. Eur. J. Pharm. Biopharm. 2013;85:427–443. doi: 10.1016/j.ejpb.2013.07.002. PubMed DOI

Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9:12. doi: 10.3390/pharmaceutics9020012. PubMed DOI PMC

Nsairat H., Khater D., Sayed U., Odeh F., Al Bawab A., Alshaer W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon. 2022;8:e09394. doi: 10.1016/j.heliyon.2022.e09394. PubMed DOI PMC

Liu P., Chen G., Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022;27:1372. doi: 10.3390/molecules27041372. PubMed DOI PMC

Pires P.C., Paiva-Santos A.C., Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals. 2023;16:1424. doi: 10.3390/ph16101424. PubMed DOI PMC

Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC

Taher M., Susanti D., Haris M.S., Rushdan A.A., Widodo R.T., Syukri Y., Khotib J. PEGylated Liposomes Enhance the Effect of Cytotoxic Drug: A Review. Heliyon. 2023;9:e13823. doi: 10.1016/j.heliyon.2023.e13823. PubMed DOI PMC

Luo W.-C., Lu X. Solid Lipid Nanoparticles for Drug Delivery. Methods Mol. Biol. 2023;2622:139–146. doi: 10.1007/978-1-0716-2954-3_12. PubMed DOI

Paliwal R., Paliwal S.R., Kenwat R., Das Kurmi B., Sahu M.K. Solid Lipid Nanoparticles: A Review on Recent Perspectives and Patents. Expert Opin. Ther. Pat. 2020;30:179–194. doi: 10.1080/13543776.2020.1720649. PubMed DOI

zur Mühlen A., Schwarz C., Mehnert W. Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery—Drug Release and Release Mechanism. Eur. J. Pharm. Biopharm. 1998;45:149–155. doi: 10.1016/S0939-6411(97)00150-1. PubMed DOI

Corzo C., Meindl C., Lochmann D., Reyer S., Salar-Behzadi S. Novel Approach for Overcoming the Stability Challenges of Lipid-Based Excipients. Part 3: Application of Polyglycerol Esters of Fatty Acids for the next Generation of Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm. 2020;152:44–55. doi: 10.1016/j.ejpb.2020.04.027. PubMed DOI

Jain A., Bhardwaj K., Bansal M. Polymeric Micelles as Drug Delivery System: Recent Advances, Approaches, Applications and Patents. Curr. Drug Saf. 2024;19:163–171. doi: 10.2174/1574886318666230605120433. PubMed DOI

Hwang D., Ramsey J.D., Kabanov A.V. Polymeric Micelles for the Delivery of Poorly Soluble Drugs: From Nanoformulation to Clinical Approval. Adv. Drug Deliv. Rev. 2020;156:80–118. doi: 10.1016/j.addr.2020.09.009. PubMed DOI PMC

Ghosh B., Biswas S. Polymeric Micelles in Cancer Therapy: State of the Art. J. Control. Release. 2021;332:127–147. doi: 10.1016/j.jconrel.2021.02.016. PubMed DOI

Zielińska A., Carreiró F., Oliveira A.M., Neves A., Pires B., Venkatesh D.N., Durazzo A., Lucarini M., Eder P., Silva A.M., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020;25:3731. doi: 10.3390/molecules25163731. PubMed DOI PMC

Begines B., Ortiz T., Pérez-Aranda M., Martínez G., Merinero M., Argüelles-Arias F., Alcudia A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials. 2020;10:1403. doi: 10.3390/nano10071403. PubMed DOI PMC

Makadia H.K., Siegel S.J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC

Sharma S., Parveen R., Chatterji B.P. Toxicology of Nanoparticles in Drug Delivery. Curr. Pathobiol. Rep. 2021;9:133–144. doi: 10.1007/s40139-021-00227-z. PubMed DOI PMC

Perumal S., Atchudan R., Lee W. A Review of Polymeric Micelles and Their Applications. Polymers. 2022;14:2510. doi: 10.3390/polym14122510. PubMed DOI PMC

Desai N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012;14:282–295. doi: 10.1208/s12248-012-9339-4. PubMed DOI PMC

Herdiana Y., Wathoni N., Shamsuddin S., Muchtaridi M. Scale-up Polymeric-Based Nanoparticles Drug Delivery Systems: Development and Challenges. OpenNano. 2022;7:100048. doi: 10.1016/j.onano.2022.100048. DOI

Muthu M.S., Wilson B. Challenges Posed by the Scale-up of Nanomedicines. Nanomedicine. 2012;7:307–309. doi: 10.2217/nnm.12.3. PubMed DOI

Yukuyama M.N., Kato E.T.M., Lobenberg R., Bou-Chacra N.A. Challenges and Future Prospects of Nanoemulsion as a Drug Delivery System. Curr. Pharm. Des. 2017;23:495–508. doi: 10.2174/1381612822666161027111957. PubMed DOI

Singh Y., Meher J.G., Raval K., Khan F.A., Chaurasia M., Jain N.K., Chourasia M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release. 2017;252:28–49. doi: 10.1016/j.jconrel.2017.03.008. PubMed DOI

Pires P.C., Paiva-Santos A.C., Veiga F. Nano and Microemulsions for the Treatment of Depressive and Anxiety Disorders: An Efficient Approach to Improve Solubility, Brain Bioavailability and Therapeutic Efficacy. Pharmaceutics. 2022;14:2825. doi: 10.3390/pharmaceutics14122825. PubMed DOI PMC

Mariyate J., Bera A. A Critical Review on Selection of Microemulsions or Nanoemulsions for Enhanced Oil Recovery. J. Mol. Liq. 2022;353:118791. doi: 10.1016/j.molliq.2022.118791. DOI

Azeem A., Rizwan M., Ahmad F.J., Iqbal Z., Khar R.K., Aqil M., Talegaonkar S. Nanoemulsion Components Screening and Selection: A Technical Note. AAPS PharmSciTech. 2009;10:69–76. doi: 10.1208/s12249-008-9178-x. PubMed DOI PMC

Almeida F., Corrêa M., Zaera A.M., Garrigues T., Isaac V. Influence of Different Surfactants on Development of Nanoemulsion Containing Fixed Oil from an Amazon Palm Species. Colloids Surf. A Physicochem. Eng. Asp. 2022;643:128721. doi: 10.1016/j.colsurfa.2022.128721. DOI

Koroleva M., Nagovitsina T., Yurtov E. Nanoemulsions Stabilized by Non-Ionic Surfactants: Stability and Degradation Mechanisms. Phys. Chem. Chem. Phys. 2018;20:10369–10377. doi: 10.1039/C7CP07626F. PubMed DOI

Mushtaq A., Mohd Wani S., Malik A.R., Gull A., Ramniwas S., Ahmad Nayik G., Ercisli S., Alina Marc R., Ullah R., Bari A. Recent Insights into Nanoemulsions: Their Preparation, Properties and Applications. Food Chem. X. 2023;18:100684. doi: 10.1016/j.fochx.2023.100684. PubMed DOI PMC

Ashaolu T.J. Nanoemulsions for Health, Food, and Cosmetics: A Review. Environ. Chem. Lett. 2021;19:3381–3395. doi: 10.1007/s10311-021-01216-9. PubMed DOI PMC

Kotta S., Khan A.W., Ansari S.H., Sharma R.K., Ali J. Formulation of Nanoemulsion: A Comparison between Phase Inversion Composition Method and High-Pressure Homogenization Method. Drug Deliv. 2015;22:455–466. doi: 10.3109/10717544.2013.866992. PubMed DOI

Espitia P.J.P., Fuenmayor C.A., Otoni C.G. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2019;18:264–285. doi: 10.1111/1541-4337.12405. PubMed DOI

Yukuyama M.N., Ghisleni D.D.M., Pinto T.J.A., Bou-Chacra N.A. Nanoemulsion: Process Selection and Application in Cosmetics—A Review. Int. J. Cosmet. Sci. 2016;38:13–24. doi: 10.1111/ics.12260. PubMed DOI

Anton N., Vandamme T.F. The Universality of Low-Energy Nano-Emulsification. Int. J. Pharm. 2009;377:142–147. doi: 10.1016/j.ijpharm.2009.05.014. PubMed DOI

Sadurní N., Solans C., Azemar N., García-Celma M.J. Studies on the Formation of O/W Nano-Emulsions, by Low-Energy Emulsification Methods, Suitable for Pharmaceutical Applications. Eur. J. Pharm. Sci. 2005;26:438–445. doi: 10.1016/j.ejps.2005.08.001. PubMed DOI

Rao J., McClements D.J. Stabilization of Phase Inversion Temperature Nanoemulsions by Surfactant Displacement. J. Agric. Food Chem. 2010;58:7059–7066. doi: 10.1021/jf100990r. PubMed DOI

Ren G., Sun Z., Wang Z., Zheng X., Xu Z., Sun D. Nanoemulsion Formation by the Phase Inversion Temperature Method Using Polyoxypropylene Surfactants. J. Colloid. Interface Sci. 2019;540:177–184. doi: 10.1016/j.jcis.2019.01.018. PubMed DOI

Chuesiang P., Siripatrawan U., Sanguandeekul R., McLandsborough L., Julian McClements D. Optimization of Cinnamon Oil Nanoemulsions Using Phase Inversion Temperature Method: Impact of Oil Phase Composition and Surfactant Concentration. J. Colloid. Interface Sci. 2018;514:208–216. doi: 10.1016/j.jcis.2017.11.084. PubMed DOI

Bouchemal K., Briançon S., Perrier E., Fessi H. Nano-Emulsion Formulation Using Spontaneous Emulsification: Solvent, Oil and Surfactant Optimisation. Int. J. Pharm. 2004;280:241–251. doi: 10.1016/j.ijpharm.2004.05.016. PubMed DOI

Akram S., Anton N., Omran Z., Vandamme T. Water-in-Oil Nano-Emulsions Prepared by Spontaneous Emulsification: New Insights on the Formulation Process. Pharmaceutics. 2021;13:1030. doi: 10.3390/pharmaceutics13071030. PubMed DOI PMC

Lefebvre G., Riou J., Bastiat G., Roger E., Frombach K., Gimel J.-C., Saulnier P., Calvignac B. Spontaneous Nano-Emulsification: Process Optimization and Modeling for the Prediction of the Nanoemulsion’s Size and Polydispersity. Int. J. Pharm. 2017;534:220–228. doi: 10.1016/j.ijpharm.2017.10.017. PubMed DOI

Gupta A. Nanoparticles for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2020. Nanoemulsions; pp. 371–384.

Mehanna M.M., Mneimneh A.T. Formulation and Applications of Lipid-Based Nanovehicles: Spotlight on Self-Emulsifying Systems. Adv. Pharm. Bull. 2020;11:56–67. doi: 10.34172/apb.2021.006. PubMed DOI PMC

Preeti, Sambhakar S., Malik R., Bhatia S., Al Harrasi A., Rani C., Saharan R., Kumar S., Geeta, Sehrawat R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica. 2023;2023:6640103. doi: 10.1155/2023/6640103. PubMed DOI PMC

Gupta A., Eral H.B., Hatton T.A., Doyle P.S. Nanoemulsions: Formation, Properties and Applications. Soft Matter. 2016;12:2826–2841. doi: 10.1039/C5SM02958A. PubMed DOI

Jaiswal M., Dudhe R., Sharma P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech. 2015;5:123–127. doi: 10.1007/s13205-014-0214-0. PubMed DOI PMC

Sabjan K.B., Munawar S.M., Rajendiran D., Vinoji S.K., Kasinathan K. Nanoemulsion as Oral Drug Delivery—A Review. Curr. Drug Res. Rev. 2020;12:4–15. doi: 10.2174/2589977511666191024173508. PubMed DOI

Aithal G.C., Narayan R., Nayak U.Y. Nanoemulgel: A Promising Phase in Drug Delivery. Curr. Pharm. Des. 2020;26:279–291. doi: 10.2174/1381612826666191226100241. PubMed DOI

Choudhury H., Gorain B., Pandey M., Chatterjee L.A., Sengupta P., Das A., Molugulu N., Kesharwani P. Recent Update on Nanoemulgel as Topical Drug Delivery System. J. Pharm. Sci. 2017;106:1736–1751. doi: 10.1016/j.xphs.2017.03.042. PubMed DOI

Anand K., Ray S., Rahman M., Shaharyar A., Bhowmik R., Bera R., Karmakar S. Nano-Emulgel: Emerging as a Smarter Topical Lipidic Emulsion-Based Nanocarrier for Skin Healthcare Applications. Recent. Pat. Antiinfect. Drug Discov. 2019;14:16–35. doi: 10.2174/1574891X14666190717111531. PubMed DOI

Donthi M.R., Munnangi S.R., Krishna K.V., Saha R.N., Singhvi G., Dubey S.K. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics. 2023;15:164. doi: 10.3390/pharmaceutics15010164. PubMed DOI PMC

Sengupta P., Chatterjee B. Potential and Future Scope of Nanoemulgel Formulation for Topical Delivery of Lipophilic Drugs. Int. J. Pharm. 2017;526:353–365. doi: 10.1016/j.ijpharm.2017.04.068. PubMed DOI

Salem H.F., Kharshoum R.M., Abou-Taleb H.A., Naguib D.M. Nanosized Nasal Emulgel of Resveratrol: Preparation, Optimization, in Vitro Evaluation and in Vivo Pharmacokinetic Study. Drug Dev. Ind. Pharm. 2019;45:1624–1634. doi: 10.1080/03639045.2019.1648500. PubMed DOI

Nagaraja S., Basavarajappa G.M., Attimarad M., Pund S. Topical Nanoemulgel for the Treatment of Skin Cancer: Proof-of-Technology. Pharmaceutics. 2021;13:902. doi: 10.3390/pharmaceutics13060902. PubMed DOI PMC

Vichare R., Crelli C., Liu L., Das A.C., McCallin R., Zor F., Kulahci Y., Gorantla V.S., Janjic J.M. A Reversibly Thermoresponsive, Theranostic Nanoemulgel for Tacrolimus Delivery to Activated Macrophages: Formulation and In Vitro Validation. Pharmaceutics. 2023;15:2372. doi: 10.3390/pharmaceutics15102372. PubMed DOI PMC

Ansari M.N., Soliman G.A., Rehman N.U., Anwer M.K. Crisaborole Loaded Nanoemulsion Based Chitosan Gel: Formulation, Physicochemical Characterization and Wound Healing Studies. Gels. 2022;8:318. doi: 10.3390/gels8050318. PubMed DOI PMC

Jeengar M.K., Rompicharla S.V.K., Shrivastava S., Chella N., Shastri N.R., Naidu V.G.M., Sistla R. Emu Oil Based Nano-Emulgel for Topical Delivery of Curcumin. Int. J. Pharm. 2016;506:222–236. doi: 10.1016/j.ijpharm.2016.04.052. PubMed DOI

Pund S., Pawar S., Gangurde S., Divate D. Transcutaneous Delivery of Leflunomide Nanoemulgel: Mechanistic Investigation into Physicomechanical Characteristics, in Vitro Anti-Psoriatic and Anti-Melanoma Activity. Int. J. Pharm. 2015;487:148–156. doi: 10.1016/j.ijpharm.2015.04.015. PubMed DOI

Aggarwal G., Dhawan B., Harikumar S. Enhanced Transdermal Permeability of Piroxicam through Novel Nanoemulgel Formulation. Int. J. Pharm. Investig. 2014;4:65. doi: 10.4103/2230-973X.133053. PubMed DOI PMC

Lee J.Y., Lee S.H., Hwangbo S.A., Lee T.G. A Comparison of Gelling Agents for Stable, Surfactant-Free Oil-in-Water Emulsions. Materials. 2022;15:6462. doi: 10.3390/ma15186462. PubMed DOI PMC

Morsy M.A., Abdel-Latif R.G., Nair A.B., Venugopala K.N., Ahmed A.F., Elsewedy H.S., Shehata T.M. Preparation and Evaluation of Atorvastatin-Loaded Nanoemulgel on Wound-Healing Efficacy. Pharmaceutics. 2019;11:609. doi: 10.3390/pharmaceutics11110609. PubMed DOI PMC

Rehman A., Iqbal M., Khan B.A., Khan M.K., Huwaimel B., Alshehri S., Alamri A.H., Alzhrani R.M., Bukhary D.M., Safhi A.Y., et al. Fabrication, In Vitro, and In Vivo Assessment of Eucalyptol-Loaded Nanoemulgel as a Novel Paradigm for Wound Healing. Pharmaceutics. 2022;14:1971. doi: 10.3390/pharmaceutics14091971. PubMed DOI PMC

Yeo E., Yew Chieng C.J., Choudhury H., Pandey M., Gorain B. Tocotrienols-Rich Naringenin Nanoemulgel for the Management of Diabetic Wound: Fabrication, Characterization and Comparative in Vitro Evaluations. Curr. Res. Pharmacol. Drug Discov. 2021;2:100019. doi: 10.1016/j.crphar.2021.100019. PubMed DOI PMC

Algahtani M.S., Ahmad M.Z., Shaikh I.A., Abdel-Wahab B.A., Nourein I.H., Ahmad J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules. 2021;26:3863. doi: 10.3390/molecules26133863. PubMed DOI PMC

Algahtani M.S., Ahmad M.Z., Nourein I.H., Albarqi H.A., Alyami H.S., Alyami M.H., Alqahtani A.A., Alasiri A., Algahtani T.S., Mohammed A.A., et al. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation. Gels. 2021;7:213. doi: 10.3390/gels7040213. PubMed DOI PMC

Tayah D.Y., Eid A.M. Development of Miconazole Nitrate Nanoparticles Loaded in Nanoemulgel to Improve Its Antifungal Activity. Saudi Pharm. J. 2023;31:526–534. doi: 10.1016/j.jsps.2023.02.005. PubMed DOI PMC

Ullah I., Alhodaib A., Naz I., Ahmad W., Ullah H., Amin A., Nawaz A. Fabrication of Novel Omeprazole-Based Chitosan Coated Nanoemulgel Formulation for Potential Anti-Microbia; In Vitro and Ex Vivo Characterizations. Polymers. 2023;15:1298. doi: 10.3390/polym15051298. PubMed DOI PMC

Vartak R., Menon S., Patki M., Billack B., Patel K. Ebselen Nanoemulgel for the Treatment of Topical Fungal Infection. Eur. J. Pharm. Sci. 2020;148:105323. doi: 10.1016/j.ejps.2020.105323. PubMed DOI

Mahtab A., Anwar M., Mallick N., Naz Z., Jain G.K., Ahmad F.J. Transungual Delivery of Ketoconazole Nanoemulgel for the Effective Management of Onychomycosis. AAPS PharmSciTech. 2016;17:1477–1490. doi: 10.1208/s12249-016-0488-0. PubMed DOI

Almostafa M.M., Elsewedy H.S., Shehata T.M., Soliman W.E. Novel Formulation of Fusidic Acid Incorporated into a Myrrh-Oil-Based Nanoemulgel for the Enhancement of Skin Bacterial Infection Treatment. Gels. 2022;8:245. doi: 10.3390/gels8040245. PubMed DOI PMC

Algahtani M.S., Ahmad M.Z., Nourein I.H., Ahmad J. Co-Delivery of Imiquimod and Curcumin by Nanoemugel for Improved Topical Delivery and Reduced Psoriasis-Like Skin Lesions. Biomolecules. 2020;10:968. doi: 10.3390/biom10070968. PubMed DOI PMC

Shehata T.M., Elnahas H.M., Elsewedy H.S. Development, Characterization and Optimization of the Anti-Inflammatory Influence of Meloxicam Loaded into a Eucalyptus Oil-Based Nanoemulgel. Gels. 2022;8:262. doi: 10.3390/gels8050262. PubMed DOI PMC

Abdallah M.H., Abu Lila A.S., Unissa R., Elsewedy H.S., Elghamry H.A., Soliman M.S. Preparation, Characterization and Evaluation of Anti-Inflammatory and Anti-Nociceptive Effects of Brucine-Loaded Nanoemulgel. Colloids Surf. B Biointerfaces. 2021;205:111868. doi: 10.1016/j.colsurfb.2021.111868. PubMed DOI

Saab M., Raafat K., El-Maradny H. Transdermal Delivery of Capsaicin Nanoemulgel: Optimization, Skin Permeation and in Vivo Activity Against Diabetic Neuropathy. Adv. Pharm. Bull. 2021;12:780. doi: 10.34172/apb.2022.080. PubMed DOI PMC

Algahtani M.S., Ahmad M.Z., Ahmad J. Nanoemulgel for Improved Topical Delivery of Retinyl Palmitate: Formulation Design and Stability Evaluation. Nanomaterials. 2020;10:848. doi: 10.3390/nano10050848. PubMed DOI PMC

Childs D.R., Murthy A.S. Overview of Wound Healing and Management. Surg. Clin. N. Am. 2017;97:189–207. doi: 10.1016/j.suc.2016.08.013. PubMed DOI

Cañedo-Dorantes L., Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflam. 2019;2019:3706315. doi: 10.1155/2019/3706315. PubMed DOI PMC

Wang P.-H., Huang B.-S., Horng H.-C., Yeh C.-C., Chen Y.-J. Wound Healing. J. Chin. Med. Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002. PubMed DOI

Tottoli E.M., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020;12:735. doi: 10.3390/pharmaceutics12080735. PubMed DOI PMC

Velnar T., Bailey T., Smrkolj V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009;37:1528–1542. doi: 10.1177/147323000903700531. PubMed DOI

Almadani Y.H., Vorstenbosch J., Davison P.G., Murphy A.M. Wound Healing: A Comprehensive Review. Semin. Plast. Surg. 2021;35:141–144. doi: 10.1055/s-0041-1731791. PubMed DOI PMC

Gordts S., Muthuramu I., Amin R., Jacobs F., De Geest B. The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals. 2014;7:419–432. doi: 10.3390/ph7040419. PubMed DOI PMC

Bogachkov Y.Y., Chen L., Le Master E., Fancher I.S., Zhao Y., Aguilar V., Oh M.-J., Wary K.K., DiPietro L.A., Levitan I. LDL Induces Cholesterol Loading and Inhibits Endothelial Proliferation and Angiogenesis in Matrigels: Correlation with Impaired Angiogenesis during Wound Healing. Am. J. Physiol. Cell Physiol. 2020;318:C762–C776. doi: 10.1152/ajpcell.00495.2018. PubMed DOI PMC

Hata Y., Iida O., Okamoto S., Ishihara T., Nanto K., Tsujimura T., Higashino N., Toyoshima T., Nakao S., Fukunaga M., et al. Clinical Outcomes of Patients with Cholesterol Crystal Embolism Accompanied by Lower Extremity Wound. Angiology. 2023:00033197231195671. doi: 10.1177/00033197231195671. PubMed DOI

Farsaei S., Khalili H., Farboud E.S. Potential Role of Statins on Wound Healing: Review of the Literature. Int. Wound J. 2012;9:238–247. doi: 10.1111/j.1742-481X.2011.00888.x. PubMed DOI PMC

Fitzmaurice G.J., McWilliams B., Nölke L., Redmond J.M., McGuinness J.G., O’Donnell M.E. Do Statins Have a Role in the Promotion of Postoperative Wound Healing in Cardiac Surgical Patients? Ann. Thorac. Surg. 2014;98:756–764. doi: 10.1016/j.athoracsur.2014.02.089. PubMed DOI

Toker S., Gulcan E., Çaycı M.K., Olgun E.G., Erbilen E., Özay Y. Topical Atorvastatin in the Treatment of Diabetic Wounds. Am. J. Med. Sci. 2009;338:201–204. doi: 10.1097/MAJ.0b013e3181aaf209. PubMed DOI

Falagas M.E., Makris G.C., Matthaiou D.K., Rafailidis P.I. Statins for Infection and Sepsis: A Systematic Review of the Clinical Evidence. J. Antimicrob. Chemother. 2008;61:774–785. doi: 10.1093/jac/dkn019. PubMed DOI

Suzuki-Banhesse V.F., Azevedo F.F., Araujo E.P., do Amaral M.E.C., Caricilli A.M., Saad M.J.A., Lima M.H.M. Effect of Atorvastatin on Wound Healing in Rats. Biol. Res. Nurs. 2015;17:159–168. doi: 10.1177/1099800414537348. PubMed DOI

Raziyeva K., Kim Y., Zharkinbekov Z., Kassymbek K., Jimi S., Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules. 2021;11:700. doi: 10.3390/biom11050700. PubMed DOI PMC

Hurlow J., Bowler P.G. Acute and Chronic Wound Infections: Microbiological, Immunological, Clinical and Therapeutic Distinctions. J. Wound Care. 2022;31:436–445. doi: 10.12968/jowc.2022.31.5.436. PubMed DOI

Mulyaningsih S., Sporer F., Reichling J., Wink M. Antibacterial Activity of Essential Oils from Eucalyptus and of Selected Components against Multidrug-Resistant Bacterial Pathogens. Pharm. Biol. 2011;49:893–899. doi: 10.3109/13880209.2011.553625. PubMed DOI

Vijayakumar K., Manigandan V., Jeyapragash D., Bharathidasan V., Anandharaj B., Sathya M. Eucalyptol Inhibits Biofilm Formation of Streptococcus Pyogenes and Its Mediated Virulence Factors. J. Med. Microbiol. 2020;69:1308–1318. doi: 10.1099/jmm.0.001253. PubMed DOI

Baltzis D., Eleftheriadou I., Veves A. Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Adv. Ther. 2014;31:817–836. doi: 10.1007/s12325-014-0140-x. PubMed DOI

Okur M.E., Bülbül E.Ö., Mutlu G., Eleftherıadou K., Karantas I.D., Okur N.Ü., Siafaka P.I. An Updated Review for the Diabetic Wound Healing Systems. Curr. Drug Targets. 2022;23:393–419. doi: 10.2174/1389450122666210914104428. PubMed DOI

Jais S. Various Types of Wounds That Diabetic Patients Can Develop: A Narrative Review. Clin. Pathol. 2023;16:2632010X231205366. doi: 10.1177/2632010X231205366. PubMed DOI PMC

Ahsan H., Ahad A., Iqbal J., Siddiqui W.A. Pharmacological Potential of Tocotrienols: A Review. Nutr. Metab. 2014;11:52. doi: 10.1186/1743-7075-11-52. PubMed DOI PMC

Zainal Z., Khaza’ai H., Kutty Radhakrishnan A., Chang S.K. Therapeutic Potential of Palm Oil Vitamin E-Derived Tocotrienols in Inflammation and Chronic Diseases: Evidence from Preclinical and Clinical Studies. Food Res. Int. 2022;156:111175. doi: 10.1016/j.foodres.2022.111175. PubMed DOI

Kandhare A.D., Alam J., Patil M.V.K., Sinha A., Bodhankar S.L. Wound Healing Potential of Naringin Ointment Formulation via Regulating the Expression of Inflammatory, Apoptotic and Growth Mediators in Experimental Rats. Pharm. Biol. 2016;54:419–432. doi: 10.3109/13880209.2015.1038755. PubMed DOI

Kandhare A.D., Ghosh P., Bodhankar S.L. Naringin, a Flavanone Glycoside, Promotes Angiogenesis and Inhibits Endothelial Apoptosis through Modulation of Inflammatory and Growth Factor Expression in Diabetic Foot Ulcer in Rats. Chem. Biol. Interact. 2014;219:101–112. doi: 10.1016/j.cbi.2014.05.012. PubMed DOI

Kmail A., Said O., Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr. Issues Mol. Biol. 2023;45:9039–9059. doi: 10.3390/cimb45110567. PubMed DOI PMC

Sallehuddin N., Nordin A., Bt Hj Idrus R., Fauzi M.B. Nigella Sativa and Its Active Compound, Thymoquinone, Accelerate Wound Healing in an In Vivo Animal Model: A Comprehensive Review. Int. J. Environ. Res. Public. Health. 2020;17:4160. doi: 10.3390/ijerph17114160. PubMed DOI PMC

Rajabian A., Hosseinzadeh H. Nuts and Seeds in Health and Disease Prevention. Elsevier; Amsterdam, The Netherlands: 2020. Dermatological Effects of Nigella Sativa and Its Constituent, Thymoquinone; pp. 329–355.

Kumari A., Raina N., Wahi A., Goh K.W., Sharma P., Nagpal R., Jain A., Ming L.C., Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics. 2022;14:2288. doi: 10.3390/pharmaceutics14112288. PubMed DOI PMC

Tejada S., Manayi A., Daglia M., Nabavi S.F., Sureda A., Hajheydari Z., Gortzi O., Pazoki-Toroudi H., Nabavi S.M. Wound Healing Effects of Curcumin: A Short Review. Curr. Pharm. Biotechnol. 2016;17:1002–1007. doi: 10.2174/1389201017666160721123109. PubMed DOI

Khatun M., Nur M.A., Biswas S., Khan M., Amin M.Z. Assessment of the Anti-Oxidant, Anti-Inflammatory and Anti-Bacterial Activities of Different Types of Turmeric (Curcuma Longa) Powder in Bangladesh. J. Agric. Food Res. 2021;6:100201. doi: 10.1016/j.jafr.2021.100201. DOI

Vitiello A., Ferrara F., Boccellino M., Ponzo A., Cimmino C., Comberiati E., Zovi A., Clemente S., Sabbatucci M. Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines. 2023;11:1063. doi: 10.3390/biomedicines11041063. PubMed DOI PMC

Salam M.A., Al-Amin M.Y., Salam M.T., Pawar J.S., Akhter N., Rabaan A.A., Alqumber M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare. 2023;11:1946. doi: 10.3390/healthcare11131946. PubMed DOI PMC

Fothergill A.W. Miconazole: A Historical Perspective. Expert Rev. Anti Infect. Ther. 2006;4:171–175. doi: 10.1586/14787210.4.2.171. PubMed DOI

Quatresooz P., Vroome V., Borgers M., Cauwenbergh G., Piérard G.E. Novelties in the Multifaceted Miconazole Effects on Skin Disorders. Expert Opin. Pharmacother. 2008;9:1927–1934. doi: 10.1517/14656566.9.11.1927. PubMed DOI

Gatta L. Antimicrobial Activity of Esomeprazole versus Omeprazole against Helicobacter Pylori. J. Antimicrob. Chemother. 2003;51:439–442. doi: 10.1093/jac/dkg085. PubMed DOI

Anagnostopoulos G.K., Tsiakos S., Margantinis G., Kostopoulos P., Arvanitidis D. Esomeprazole versus Omeprazole for the Eradication of Helicobacter Pylori Infection. J. Clin. Gastroenterol. 2004;38:503–506. doi: 10.1097/01.mcg.0000129061.54277.c6. PubMed DOI

Kumar L., Verma S., Bhardwaj A., Vaidya S., Vaidya B. Eradication of Superficial Fungal Infections by Conventional and Novel Approaches: A Comprehensive Review. Artif. Cells Nanomed. Biotechnol. 2014;42:32–46. doi: 10.3109/21691401.2013.769446. PubMed DOI

Wu Y., Hu S., Wu C., Gu F., Yang Y. Probiotics: Potential Novel Therapeutics Against Fungal Infections. Front. Cell Infect. Microbiol. 2022;11:793419. doi: 10.3389/fcimb.2021.793419. PubMed DOI PMC

Rauseo A.M., Coler-Reilly A., Larson L., Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect. Dis. 2020;7:ofaa016. doi: 10.1093/ofid/ofaa016. PubMed DOI PMC

Garland M., Hryckowian A.J., Tholen M., Oresic Bender K., Van Treuren W.W., Loscher S., Sonnenburg J.L., Bogyo M. The Clinical Drug Ebselen Attenuates Inflammation and Promotes Microbiome Recovery in Mice after Antibiotic Treatment for CDI. Cell Rep. Med. 2020;1:100005. doi: 10.1016/j.xcrm.2020.100005. PubMed DOI PMC

Sarma B.K., Mugesh G. Antioxidant Activity of the Anti-Inflammatory Compound Ebselen: A Reversible Cyclization Pathway via Selenenic and Seleninic Acid Intermediates. Chem. Eur. J. 2008;14:10603–10614. doi: 10.1002/chem.200801258. PubMed DOI

Maślanka M., Mucha A. Antibacterial Activity of Ebselen. Int. J. Mol. Sci. 2023;24:1610. doi: 10.3390/ijms24021610. PubMed DOI PMC

Leung A.K.C., Lam J.M., Leong K.F., Hon K.L., Barankin B., Leung A.A.M., Wong A.H.C. Onychomycosis: An Updated Review. Recent. Pat. Inflamm. Allergy Drug Discov. 2020;14:32–45. doi: 10.2174/1872213X13666191026090713. PubMed DOI PMC

Gupta A.K., Stec N., Summerbell R.C., Shear N.H., Piguet V., Tosti A., Piraccini B.M. Onychomycosis: A Review. J. Eur. Acad. Dermatol. Venereol. 2020;34:1972–1990. doi: 10.1111/jdv.16394. PubMed DOI

Ahmed I.S., Elnahas O.S., Assar N.H., Gad A.M., El Hosary R. Nanocrystals of Fusidic Acid for Dual Enhancement of Dermal Delivery and Antibacterial Activity: In Vitro, Ex Vivo and In Vivo Evaluation. Pharmaceutics. 2020;12:199. doi: 10.3390/pharmaceutics12030199. PubMed DOI PMC

Pfaller M.A., Castanheira M., Sader H.S., Jones R.N. Evaluation of the Activity of Fusidic Acid Tested against Contemporary Gram-Positive Clinical Isolates from the USA and Canada. Int. J. Antimicrob. Agents. 2010;35:282–287. doi: 10.1016/j.ijantimicag.2009.10.023. PubMed DOI

Curbete M.M., Salgado H.R.N. A Critical Review of the Properties of Fusidic Acid and Analytical Methods for Its Determination. Crit. Rev. Anal. Chem. 2016;46:352–360. doi: 10.1080/10408347.2015.1084225. PubMed DOI

Algarin Y.A., Jambusaria-Pahlajani A., Ruiz E., Patel V.A. Advances in Topical Treatments of Cutaneous Malignancies. Am. J. Clin. Dermatol. 2023;24:69–80. doi: 10.1007/s40257-022-00731-x. PubMed DOI

Hidalgo L., Saldías-Fuentes C., Carrasco K., Halpern A.C., Mao J.J., Navarrete-Dechent C. Complementary and Alternative Therapies in Skin Cancer a Literature Review of Biologically Active Compounds. Dermatol. Ther. 2022;35:e15842. doi: 10.1111/dth.15842. PubMed DOI PMC

Conforti C., Corneli P., Harwood C., Zalaudek I. Evolving Role of Systemic Therapies in Non-Melanoma Skin Cancer. Clin. Oncol. 2019;31:759–768. doi: 10.1016/j.clon.2019.08.011. PubMed DOI

Salari N., Faraji F., Jafarpour S., Faraji F., Rasoulpoor S., Dokaneheifard S., Mohammadi M. Anti-Cancer Activity of Chrysin in Cancer Therapy: A Systematic Review. Indian J. Surg. Oncol. 2022;13:681–690. doi: 10.1007/s13193-022-01550-6. PubMed DOI PMC

Kasala E.R., Bodduluru L.N., Madana R.M., Athira K.V., Gogoi R., Barua C.C. Chemopreventive and Therapeutic Potential of Chrysin in Cancer: Mechanistic Perspectives. Toxicol. Lett. 2015;233:214–225. doi: 10.1016/j.toxlet.2015.01.008. PubMed DOI

Talebi M., Talebi M., Farkhondeh T., Simal-Gandara J., Kopustinskiene D.M., Bernatoniene J., Samarghandian S. Emerging Cellular and Molecular Mechanisms Underlying Anticancer Indications of Chrysin. Cancer Cell Int. 2021;21:214. doi: 10.1186/s12935-021-01906-y. PubMed DOI PMC

Chang S.-H., Wu C.-Y., Chuang K.-C., Huang S.-W., Li Z.-Y., Wang S.-T., Lai Z.-L., Chang C.-C., Chen Y.-J., Wong T.-W., et al. Imiquimod Accelerated Antitumor Response by Targeting Lysosome Adaptation in Skin Cancer Cells. J. Investig. Dermatol. 2021;141:2219–2228. doi: 10.1016/j.jid.2021.01.034. PubMed DOI

Bubna A. Imiquimod—Its Role in the Treatment of Cutaneous Malignancies. Indian J. Pharmacol. 2015;47:354. doi: 10.4103/0253-7613.161249. PubMed DOI PMC

Lelli D., Pedone C., Sahebkar A. Curcumin and Treatment of Melanoma: The Potential Role of MicroRNAs. Biomed. Pharmacother. 2017;88:832–834. doi: 10.1016/j.biopha.2017.01.078. PubMed DOI

Phillips J.M., Clark C., Herman-Ferdinandez L., Moore-Medlin T., Rong X., Gill J.R., Clifford J.L., Abreo F., Nathan C.O. Curcumin Inhibits Skin Squamous Cell Carcinoma Tumor Growth In Vivo. Otolaryngol. Head Neck Surg. 2011;145:58–63. doi: 10.1177/0194599811400711. PubMed DOI

van der Fits L., Mourits S., Voerman J.S.A., Kant M., Boon L., Laman J.D., Cornelissen F., Mus A.-M., Florencia E., Prens E.P., et al. Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis. J. Immunol. 2009;182:5836–5845. doi: 10.4049/jimmunol.0802999. PubMed DOI

Carlos E.C.D.S., Cristovão G.A., Silva A.A., de Santos Ribeiro B.C., Romana-Souza B. Imiquimod-induced Ex Vivo Model of Psoriatic Human Skin via Interleukin-17A Signalling of T Cells and Langerhans Cells. Exp. Dermatol. 2022;31:1791–1799. doi: 10.1111/exd.14659. PubMed DOI

Griffiths C.E.M., Armstrong A.W., Gudjonsson J.E., Barker J.N.W.N. Psoriasis. Lancet. 2021;397:1301–1315. doi: 10.1016/S0140-6736(20)32549-6. PubMed DOI

Raharja A., Mahil S.K., Barker J.N. Psoriasis: A Brief Overview. Clin. Med. 2021;21:170–173. doi: 10.7861/clinmed.2021-0257. PubMed DOI PMC

Armstrong A.W., Read C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis. JAMA. 2020;323:1945. doi: 10.1001/jama.2020.4006. PubMed DOI

Herrmann M.L., Schleyerbach R., Kirschbaum B.J. Leflunomide: An Immunomodulatory Drug for the Treatment of Rheumatoid Arthritis and Other Autoimmune Diseases. Immunopharmacology. 2000;47:273–289. doi: 10.1016/S0162-3109(00)00191-0. PubMed DOI

Alamri R.D., Elmeligy M.A., Albalawi G.A., Alquayr S.M., Alsubhi S.S., El-Ghaiesh S.H. Leflunomide an Immunomodulator with Antineoplastic and Antiviral Potentials but Drug-Induced Liver Injury: A Comprehensive Review. Int. Immunopharmacol. 2021;93:107398. doi: 10.1016/j.intimp.2021.107398. PubMed DOI PMC

Boehncke W.-H. Immunomodulatory Drugs for Psoriasis. BMJ. 2003;327:634–635. doi: 10.1136/bmj.327.7416.634. PubMed DOI PMC

Nagai N., Ogata F., Otake H., Kawasaki N. Oral Administration System Based on Meloxicam Nanocrystals: Decreased Dose Due to High Bioavailability Attenuates Risk of Gastrointestinal Side Effects. Pharmaceutics. 2020;12:313. doi: 10.3390/pharmaceutics12040313. PubMed DOI PMC

Rostom A., Goldkind L., Laine L. Nonsteroidal Anti-Inflammatory Drugs and Hepatic Toxicity: A Systematic Review of Randomized Controlled Trials in Arthritis Patients. Clin. Gastroenterol. Hepatol. 2005;3:489–498. doi: 10.1016/S1542-3565(04)00777-3. PubMed DOI

Jain B., Jain N., Jain S., Teja P.K., Chauthe S.K., Jain A. Exploring Brucine Alkaloid: A Comprehensive Review on Pharmacology, Therapeutic Applications, Toxicity, Extraction and Purification Techniques. Phytomed. Plus. 2023;3:100490. doi: 10.1016/j.phyplu.2023.100490. DOI

Song X., Wang Y., Chen H., Jin Y., Wang Z., Lu Y., Wang Y. Dosage-Efficacy Relationship and Pharmacodynamics Validation of Brucine Dissolving Microneedles against Rheumatoid Arthritis. J. Drug Deliv. Sci. Technol. 2021;63:102537. doi: 10.1016/j.jddst.2021.102537. DOI

Lu L., Huang R., Wu Y., Jin J.-M., Chen H.-Z., Zhang L.-J., Luan X. Brucine: A Review of Phytochemistry, Pharmacology, and Toxicology. Front. Pharmacol. 2020;11:377. doi: 10.3389/fphar.2020.00377. PubMed DOI PMC

Yin W., Wang T.-S., Yin F.-Z., Cai B.-C. Analgesic and Anti-Inflammatory Properties of Brucine and Brucine N-Oxide Extracted from Seeds of Strychnos Nux-Vomica. J. Ethnopharmacol. 2003;88:205–214. doi: 10.1016/S0378-8741(03)00224-1. PubMed DOI

Tang M., Zhu W., Yang Z., He C. Brucine Inhibits TNF-α-induced HFLS-RA Cell Proliferation by Activating the JNK Signaling Pathway. Exp. Ther. Med. 2019;18:735–740. doi: 10.3892/etm.2019.7582. PubMed DOI PMC

Elafros M.A., Andersen H., Bennett D.L., Savelieff M.G., Viswanathan V., Callaghan B.C., Feldman E.L. Towards Prevention of Diabetic Peripheral Neuropathy: Clinical Presentation, Pathogenesis, and New Treatments. Lancet Neurol. 2022;21:922–936. doi: 10.1016/S1474-4422(22)00188-0. PubMed DOI PMC

Jensen T.S., Karlsson P., Gylfadottir S.S., Andersen S.T., Bennett D.L., Tankisi H., Finnerup N.B., Terkelsen A.J., Khan K., Themistocleous A.C., et al. Painful and Non-Painful Diabetic Neuropathy, Diagnostic Challenges and Implications for Future Management. Brain. 2021;144:1632–1645. doi: 10.1093/brain/awab079. PubMed DOI PMC

Cernea S., Raz I. Management of Diabetic Neuropathy. Metabolism. 2021;123:154867. doi: 10.1016/j.metabol.2021.154867. PubMed DOI

Sharma S.K., Vij A.S., Sharma M. Mechanisms and Clinical Uses of Capsaicin. Eur. J. Pharmacol. 2013;720:55–62. doi: 10.1016/j.ejphar.2013.10.053. PubMed DOI

Lu M., Chen C., Lan Y., Xiao J., Li R., Huang J., Huang Q., Cao Y., Ho C.-T. Capsaicin—The Major Bioactive Ingredient of Chili Peppers: Bio-Efficacy and Delivery Systems. Food Funct. 2020;11:2848–2860. doi: 10.1039/D0FO00351D. PubMed DOI

Fernandes E.S., Cerqueira A.R.A., Soares A.G., Costa S.K.P. Drug Discovery from Mother Nature. Springer; Berlin/Heidelberg, Germany: 2016. Capsaicin and Its Role in Chronic Diseases; pp. 91–125. PubMed

Basith S., Cui M., Hong S., Choi S. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases. Molecules. 2016;21:966. doi: 10.3390/molecules21080966. PubMed DOI PMC

Abdel-Salam O.M.E., Mózsik G. Capsaicin, The Vanilloid Receptor TRPV1 Agonist in Neuroprotection: Mechanisms Involved and Significance. Neurochem. Res. 2023;48:3296–3315. doi: 10.1007/s11064-023-03983-z. PubMed DOI PMC

Fattori V., Hohmann M., Rossaneis A., Pinho-Ribeiro F., Verri W. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules. 2016;21:844. doi: 10.3390/molecules21070844. PubMed DOI PMC

Frydas S., Varvara G., Murmura G., Saggini A., Caraffa A., Antinolfi P., Tetè S., Tripodi D., Conti F., Cianchetti E., et al. Impact of Capsaicin on Mast Cell Inflammation. Int. J. Immunopathol. Pharmacol. 2013;26:597–600. doi: 10.1177/039463201302600303. PubMed DOI

Kim C.-S., Kawada T., Kim B.-S., Han I.-S., Choe S.-Y., Kurata T., Yu R. Capsaicin Exhibits Anti-Inflammatory Property by Inhibiting IkB-a Degradation in LPS-Stimulated Peritoneal Macrophages. Cell Signal. 2003;15:299–306. doi: 10.1016/S0898-6568(02)00086-4. PubMed DOI

Srinivasan K. Biological Activities of Red Pepper (Capsicum Annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016;56:1488–1500. doi: 10.1080/10408398.2013.772090. PubMed DOI

Rollyson W.D., Stover C.A., Brown K.C., Perry H.E., Stevenson C.D., McNees C.A., Ball J.G., Valentovic M.A., Dasgupta P. Bioavailability of Capsaicin and Its Implications for Drug Delivery. J. Control. Release. 2014;196:96–105. doi: 10.1016/j.jconrel.2014.09.027. PubMed DOI PMC

Babbar S., Marier J.-F., Mouksassi M.-S., Beliveau M., Vanhove G.F., Chanda S., Bley K. Pharmacokinetic Analysis of Capsaicin after Topical Administration of a High-Concentration Capsaicin Patch to Patients with Peripheral Neuropathic Pain. Ther. Drug Monit. 2009;31:502–510. doi: 10.1097/FTD.0b013e3181a8b200. PubMed DOI

Oliveira M.B., do Prado A.H., Bernegossi J., Sato C.S., Lourenço Brunetti I., Scarpa M.V., Leonardi G.R., Friberg S.E., Chorilli M. Topical Application of Retinyl Palmitate-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging. Biomed. Res. Int. 2014;2014:632570. doi: 10.1155/2014/632570. PubMed DOI PMC

Salem H.F., Kharshoum R.M., Awad S.M., Ahmed Mostafa M., Abou-Taleb H.A. Tailoring of Retinyl Palmitate-Based Ethosomal Hydrogel as a Novel Nanoplatform for Acne Vulgaris Management: Fabrication, Optimization, and Clinical Evaluation Employing a Split-Face Comparative Study. Int. J. Nanomed. 2021;16:4251–4276. doi: 10.2147/IJN.S301597. PubMed DOI PMC

Milosheska D., Roškar R. Use of Retinoids in Topical Antiaging Treatments: A Focused Review of Clinical Evidence for Conventional and Nanoformulations. Adv. Ther. 2022;39:5351–5375. doi: 10.1007/s12325-022-02319-7. PubMed DOI PMC

Nandy A., Lee E., Mandal A., Saremi R., Sharma S. Microencapsulation of Retinyl Palmitate by Melt Dispersion for Cosmetic Application. J. Microencapsul. 2020;37:205–219. doi: 10.1080/02652048.2020.1720029. PubMed DOI

Gholizadeh M., Basafa Roodi P., Abaj F., Shab-Bidar S., Saedisomeolia A., Asbaghi O., Lak M. Influence of Vitamin A Supplementation on Inflammatory Biomarkers in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Sci. Rep. 2022;12:21384. doi: 10.1038/s41598-022-23919-x. PubMed DOI PMC

Farooq U., Mahmood T., Shahzad Y., Yousaf A.M., Akhtar N. Comparative Efficacy of Two Anti-aging Products Containing Retinyl Palmitate in Healthy Human Volunteers. J. Cosmet. Dermatol. 2018;17:454–460. doi: 10.1111/jocd.12500. PubMed DOI

Fu P.P., Cheng S.-H., Coop L., Xia Q., Culp S.J., Tolleson W.H., Wamer W.G., Howard P.C. Photoreaction, Phototoxicity, and Photocarcinogenicity of Retinoids. J. Environ. Sci. Health Part. C. 2003;21:165–197. doi: 10.1081/GNC-120026235. PubMed DOI

Maugard T., Rejasse B., Legoy M.D. Synthesis of Water-Soluble Retinol Derivatives by Enzymatic Method. Biotechnol. Prog. 2002;18:424–428. doi: 10.1021/bp025508f. PubMed DOI

Suh D.-C., Kim Y., Kim H., Ro J., Cho S.-W., Yun G., Choi S.-U., Lee J. Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin. Biomol. Ther. 2014;22:73–77. doi: 10.4062/biomolther.2013.094. PubMed DOI PMC

Strati F., Neubert R.H.H., Opálka L., Kerth A., Brezesinski G. Non-Ionic Surfactants as Innovative Skin Penetration Enhancers: Insight in the Mechanism of Interaction with Simple 2D Stratum Corneum Model System. Eur. J. Pharm. Sci. 2021;157:105620. doi: 10.1016/j.ejps.2020.105620. PubMed DOI

Ren Q., Deng C., Meng U., Chen Y., Chen U., Sha X., Fang X. In Vitro, Ex Vivo, and In Vivo Evaluation of the Effect of Saturated Fat Acid Chain Length on the Transdermal Behavior of Ibuprofen-Loaded Microemulsions. J. Pharm. Sci. 2014;103:1680–1691. doi: 10.1002/jps.23958. PubMed DOI

Erdal M.S., Özhan G., Mat C., Özsoy Y., Güngör S. Colloidal Nanocarriers for the Enhanced Cutaneous Delivery of Naftifine: Characterization Studies and in Vitro and in Vivo Evaluations. Int. J. Nanomed. 2016;1027:1027–1037. doi: 10.2147/IJN.S96243. PubMed DOI PMC

Kim B.S., Won M., Yang, Lee K.M., Kim C.S. In Vitro Permeation Studies of Nanoemulsions Containing Ketoprofen as a Model Drug. Drug Deliv. 2008;15:465–469. doi: 10.1080/10717540802328599. PubMed DOI

Osborne D.W., Musakhanian J. Skin Penetration and Permeation Properties of Transcutol®—Neat or Diluted Mixtures. AAPS PharmSciTech. 2018;19:3512–3533. doi: 10.1208/s12249-018-1196-8. PubMed DOI PMC

Godwin D.A., Kim N.-H., Felton L.A. Influence of Transcutol® CG on the Skin Accumulation and Transdermal Permeation of Ultraviolet Absorbers. Eur. J. Pharm. Biopharm. 2002;53:23–27. doi: 10.1016/S0939-6411(01)00215-6. PubMed DOI

Antunes F.E., Gentile L., Oliviero Rossi C., Tavano L., Ranieri G.A. Gels of Pluronic F127 and Nonionic Surfactants from Rheological Characterization to Controlled Drug Permeation. Colloids Surf. B Biointerfaces. 2011;87:42–48. doi: 10.1016/j.colsurfb.2011.04.033. PubMed DOI

Zheng Y., Ouyang W.-Q., Wei Y.-P., Syed S., Hao C.-S., Wang B.-Z., Shang Y.-H. Effects of Carbopol 934 Proportion on Nanoemulsion Gel for Topical and Transdermal Drug Delivery: A Skin Permeation Study. Int. J. Nanomed. 2016;11:5971–5987. doi: 10.2147/IJN.S119286. PubMed DOI PMC

Babu R.J., Pandit J.K. Effect of Penetration Enhancers on the Release and Skin Permeation of Bupranolol from Reservoir-Type Transdermal Delivery Systems. Int. J. Pharm. 2005;288:325–334. doi: 10.1016/j.ijpharm.2004.10.008. PubMed DOI

De Jong W.H., Geertsma R.E., Borchard G. Regulatory Safety Evaluation of Nanomedical Products: Key Issues to Refine. Drug Deliv. Transl. Res. 2022;12:2042–2047. doi: 10.1007/s13346-022-01208-4. PubMed DOI PMC

Foulkes R., Man E., Thind J., Yeung S., Joy A., Hoskins C. The Regulation of Nanomaterials and Nanomedicines for Clinical Application: Current and Future Perspectives. Biomater. Sci. 2020;8:4653–4664. doi: 10.1039/D0BM00558D. PubMed DOI

Liu L., Bagia C., Janjic J.M. The First Scale-Up Production of Theranostic Nanoemulsions. Biores Open Access. 2015;4:218–228. doi: 10.1089/biores.2014.0030. PubMed DOI PMC

Adena S.K.R., Herneisey M., Pierce E., Hartmeier P.R., Adlakha S., Hosfeld M.A.I., Drennen J.K., Janjic J.M. Quality by Design Methodology Applied to Process Optimization and Scale up of Curcumin Nanoemulsions Produced by Catastrophic Phase Inversion. Pharmaceutics. 2021;13:880. doi: 10.3390/pharmaceutics13060880. PubMed DOI PMC

Paliwal R., Babu R.J., Palakurthi S. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. AAPS PharmSciTech. 2014;15:1527–1534. doi: 10.1208/s12249-014-0177-9. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...