Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38247768
PubMed Central
PMC10815052
DOI
10.3390/gels10010045
PII: gels10010045
Knihovny.cz E-zdroje
- Klíčová slova
- anti-aging, nanoemulgels, nanoemulsions, neuropathy, skin cancer, skin infection, skin inflammation, topical administration, transdermal administration, wound healing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
CICS UBI Health Sciences Research Centre University of Beira Interior 6201 001 Covilhã Portugal
Faculty of Pharmacy University of Coimbra Azinhaga de Santa Comba 3000 548 Coimbra Portugal
Faculty of Pharmacy University of Ljubljana Aškerčeva c 7 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Arda O., Göksügür N., Tüzün Y. Basic Histological Structure and Functions of Facial Skin. Clin. Dermatol. 2014;32:3–13. doi: 10.1016/j.clindermatol.2013.05.021. PubMed DOI
Boer M., Duchnik E., Maleszka R., Marchlewicz M. Structural and Biophysical Characteristics of Human Skin in Maintaining Proper Epidermal Barrier Function. Adv. Dermatol. Allergol. 2016;1:1–5. doi: 10.5114/pdia.2015.48037. PubMed DOI PMC
Abdo J.M., Sopko N.A., Milner S.M. The Applied Anatomy of Human Skin: A Model for Regeneration. Wound Med. 2020;28:100179. doi: 10.1016/j.wndm.2020.100179. DOI
Baroni A., Buommino E., De Gregorio V., Ruocco E., Ruocco V., Wolf R. Structure and Function of the Epidermis Related to Barrier Properties. Clin. Dermatol. 2012;30:257–262. doi: 10.1016/j.clindermatol.2011.08.007. PubMed DOI
Xie J., Hao T., Li C., Wang X., Yu X., Liu L. Automatic Evaluation of Stratum Basale and Dermal Papillae Using Ultrahigh Resolution Optical Coherence Tomography. Biomed. Signal Process Control. 2019;53:101527. doi: 10.1016/j.bspc.2019.04.004. DOI
Maynard R.L., Downes N. Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research. Elsevier; Amsterdam, The Netherlands: 2019. The Skin or the Integument; pp. 303–315.
Barbieri J.S., Wanat K., Seykora J. Pathobiology of Human Disease. Elsevier; Amsterdam, The Netherlands: 2014. Skin: Basic Structure and Function; pp. 1134–1144.
McBain A.J., O’Neill C.A., Oates A. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2016. Skin Microbiology.
Proksch E., Brandner J.M., Jensen J. The Skin: An Indispensable Barrier. Exp. Dermatol. 2008;17:1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x. PubMed DOI
Nishifuji K., Yoon J.S. The Stratum Corneum: The Rampart of the Mammalian Body. Vet. Dermatol. 2013;24:60. doi: 10.1111/j.1365-3164.2012.01090.x. PubMed DOI
Tagami H. Location-related Differences in Structure and Function of the Stratum Corneum with Special Emphasis on Those of the Facial Skin. Int. J. Cosmet. Sci. 2008;30:413–434. doi: 10.1111/j.1468-2494.2008.00459.x. PubMed DOI
Rippa A.L., Kalabusheva E.P., Vorotelyak E.A. Regeneration of Dermis: Scarring and Cells Involved. Cells. 2019;8:607. doi: 10.3390/cells8060607. PubMed DOI PMC
Carroll R.G. Elsevier’s Integrated Physiology. Elsevier; Amsterdam, The Netherlands: 2007. The Integument; pp. 11–17.
Carlson B.M. Human Embryology and Developmental Biology. Elsevier; Amsterdam, The Netherlands: 2014. Integumentary, Skeletal, and Muscular Systems; pp. 156–192.
Wong R., Geyer S., Weninger W., Guimberteau J., Wong J.K. The Dynamic Anatomy and Patterning of Skin. Exp. Dermatol. 2016;25:92–98. doi: 10.1111/exd.12832. PubMed DOI
Woo W. Imaging Technologies and Transdermal Delivery in Skin Disorders. Wiley; Hoboken, NJ, USA: 2019. Skin Structure and Biology; pp. 1–14.
Roberts W. Air Pollution and Skin Disorders. Int. J. Womens Dermatol. 2021;7:91–97. doi: 10.1016/j.ijwd.2020.11.001. PubMed DOI PMC
Ju Q., Zouboulis C.C. Endocrine-Disrupting Chemicals and Skin Manifestations. Rev. Endocr. Metab. Disord. 2016;17:449–457. doi: 10.1007/s11154-016-9371-2. PubMed DOI
Gromkowska-Kępka K.J., Puścion-Jakubik A., Markiewicz-Żukowska R., Socha K. The Impact of Ultraviolet Radiation on Skin Photoaging—Review of in Vitro Studies. J. Cosmet. Dermatol. 2021;20:3427–3431. doi: 10.1111/jocd.14033. PubMed DOI PMC
Cao C., Xiao Z., Wu Y., Ge C. Diet and Skin Aging—From the Perspective of Food Nutrition. Nutrients. 2020;12:870. doi: 10.3390/nu12030870. PubMed DOI PMC
Ortiz A., Grando S.A. Smoking and the Skin. Int. J. Dermatol. 2012;51:250–262. doi: 10.1111/j.1365-4632.2011.05205.x. PubMed DOI
Liu S.W., Lien M.H., Fenske N.A. The Effects of Alcohol and Drug Abuse on the Skin. Clin. Dermatol. 2010;28:391–399. doi: 10.1016/j.clindermatol.2010.03.024. PubMed DOI
Lyu F., Wu T., Bian Y., Zhu K., Xu J., Li F. Stress and Its Impairment of Skin Barrier Function. Int. J. Dermatol. 2023;62:621–630. doi: 10.1111/ijd.16598. PubMed DOI
Dąbrowska A.K., Spano F., Derler S., Adlhart C., Spencer N.D., Rossi R.M. The Relationship between Skin Function, Barrier Properties, and Body-dependent Factors. Ski. Res. Technol. 2018;24:165–174. doi: 10.1111/srt.12424. PubMed DOI
Ita K., Silva M., Bassey R. Mechanical Properties of the Skin: What Do We Know? Curr. Cosmet. Sci. 2022;1:e070122200109. doi: 10.2174/2666779701666220107161901. DOI
Mortazavi S.M., Moghimi H.R. Skin Permeability, a Dismissed Necessity for Anti-wrinkle Peptide Performance. Int. J. Cosmet. Sci. 2022;44:232–248. doi: 10.1111/ics.12770. PubMed DOI
Parhi R., Mandru A. Enhancement of Skin Permeability with Thermal Ablation Techniques: Concept to Commercial Products. Drug Deliv. Transl. Res. 2021;11:817–841. doi: 10.1007/s13346-020-00823-3. PubMed DOI PMC
Lundborg M., Wennberg C.L., Narangifard A., Lindahl E., Norlén L. Predicting Drug Permeability through Skin Using Molecular Dynamics Simulation. J. Control. Release. 2018;283:269–279. doi: 10.1016/j.jconrel.2018.05.026. PubMed DOI
Alkilani A., McCrudden M.T., Donnelly R. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics. 2015;7:438–470. doi: 10.3390/pharmaceutics7040438. PubMed DOI PMC
Yu Y.-Q., Yang X., Wu X.-F., Fan Y.-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021;9:646554. doi: 10.3389/fbioe.2021.646554. PubMed DOI PMC
Narasimha Murthy S., Shivakumar H.N. Handbook of Non-Invasive Drug Delivery Systems. Elsevier; Amsterdam, The Netherlands: 2010. Topical and Transdermal Drug Delivery; pp. 1–36.
Kathe K., Kathpalia H. Film Forming Systems for Topical and Transdermal Drug Delivery. Asian J. Pharm. Sci. 2017;12:487–497. doi: 10.1016/j.ajps.2017.07.004. PubMed DOI PMC
Leppert W., Malec–Milewska M., Zajaczkowska R., Wordliczek J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules. 2018;23:681. doi: 10.3390/molecules23030681. PubMed DOI PMC
Prausnitz M.R., Langer R. Transdermal Drug Delivery. Nat. Biotechnol. 2008;26:1261–1268. doi: 10.1038/nbt.1504. PubMed DOI PMC
Majdi A., Sadigh-Eteghad S., Gjedde A. Effects of Transdermal Nicotine Delivery on Cognitive Outcomes: A Meta-analysis. Acta Neurol. Scand. 2021;144:179–191. doi: 10.1111/ane.13436. PubMed DOI
Buster J.E. Transdermal Menopausal Hormone Therapy: Delivery through Skin Changes the Rules. Expert Opin. Pharmacother. 2010;11:1489–1499. doi: 10.1517/14656561003774098. PubMed DOI
Sittl R. Transdermal Buprenorphine in the Treatment of Chronic Pain. Expert Rev. Neurother. 2005;5:315–323. doi: 10.1586/14737175.5.3.315. PubMed DOI
Rehman K., Zulfakar M.H. Recent Advances in Gel Technologies for Topical and Transdermal Drug Delivery. Drug Dev. Ind. Pharm. 2014;40:433–440. doi: 10.3109/03639045.2013.828219. PubMed DOI
Waghule T., Singhvi G., Dubey S.K., Pandey M.M., Gupta G., Singh M., Dua K. Microneedles: A Smart Approach and Increasing Potential for Transdermal Drug Delivery System. Biomed. Pharmacother. 2019;109:1249–1258. doi: 10.1016/j.biopha.2018.10.078. PubMed DOI
Sawarkar S., Ashtekar A. Transdermal Vitamin D Supplementation—A Potential Vitamin D Deficiency Treatment. J. Cosmet. Dermatol. 2020;19:28–32. doi: 10.1111/jocd.13085. PubMed DOI
Houck C.S., Sethna N.F. Transdermal Analgesia with Local Anesthetics in Children: Review, Update and Future Directions. Expert Rev. Neurother. 2005;5:625–634. doi: 10.1586/14737175.5.5.625. PubMed DOI
Touitou E., Natsheh H. Topical Administration of Drugs Incorporated in Carriers Containing Phospholipid Soft Vesicles for the Treatment of Skin Medical Conditions. Pharmaceutics. 2021;13:2129. doi: 10.3390/pharmaceutics13122129. PubMed DOI PMC
Singh Malik D., Mital N., Kaur G. Topical Drug Delivery Systems: A Patent Review. Expert Opin. Ther. Pat. 2016;26:213–228. doi: 10.1517/13543776.2016.1131267. PubMed DOI
Roberts M.S., Cheruvu H.S., Mangion S.E., Alinaghi A., Benson H.A.E., Mohammed Y., Holmes A., van der Hoek J., Pastore M., Grice J.E. Topical Drug Delivery: History, Percutaneous Absorption, and Product Development. Adv. Drug Deliv. Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929. PubMed DOI
Bonamonte D., De Marco A., Giuffrida R., Conforti C., Barlusconi C., Foti C., Romita P. Topical Antibiotics in the Dermatological Clinical Practice: Indications, Efficacy, and Adverse Effects. Dermatol. Ther. 2020;33:e13824. doi: 10.1111/dth.13824. PubMed DOI
Lé A.M., Torres T. New Topical Therapies for Psoriasis. Am. J. Clin. Dermatol. 2022;23:13–24. doi: 10.1007/s40257-021-00649-w. PubMed DOI
Lax S.J., Harvey J., Axon E., Howells L., Santer M., Ridd M.J., Lawton S., Langan S., Roberts A., Ahmed A., et al. Strategies for Using Topical Corticosteroids in Children and Adults with Eczema. Cochrane Database Syst. Rev. 2022;2022:CD013356. doi: 10.1002/14651858.CD013356.pub2. PubMed DOI PMC
Piraccini B.M., Blume-Peytavi U., Scarci F., Jansat J.M., Falqués M., Otero R., Tamarit M.L., Galván J., Tebbs V., Massana E. Efficacy and Safety of Topical Finasteride Spray Solution for Male Androgenetic Alopecia: A Phase III, Randomized, Controlled Clinical Trial. J. Eur. Acad. Dermatol. Venereol. 2022;36:286–294. doi: 10.1111/jdv.17738. PubMed DOI PMC
Ivens U.I., Steinkjer B., Serup J., Tetens V. Ointment Is Evenly Spread on the Skin, in Contrast to Creams and Solutions. Br. J. Dermatol. 2001;145:264–267. doi: 10.1046/j.1365-2133.2001.04344.x. PubMed DOI
Ridd M.J., Santer M., MacNeill S.J., Sanderson E., Wells S., Webb D., Banks J., Sutton E., Roberts A., Liddiard L., et al. Effectiveness and Safety of Lotion, Cream, Gel, and Ointment Emollients for Childhood Eczema: A Pragmatic, Randomised, Phase 4, Superiority Trial. Lancet Child. Adolesc. Health. 2022;6:522–532. doi: 10.1016/S2352-4642(22)00146-8. PubMed DOI
Zhang Q., Grice J., Wang G., Roberts M. Cutaneous Metabolism in Transdermal Drug Delivery. Curr. Drug Metab. 2009;10:227–235. doi: 10.2174/138920009787846350. PubMed DOI
Svensson C.K. Biotransformation of Drugs in Human Skin. Drug Metab. Dispos. 2009;37:247–253. doi: 10.1124/dmd.108.024794. PubMed DOI
Mugglestone C.J., Mariz S., Lane M.E. The Development and Registration of Topical Pharmaceuticals. Int. J. Pharm. 2012;435:22–26. doi: 10.1016/j.ijpharm.2012.03.052. PubMed DOI
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
Sultana A., Zare M., Thomas V., Kumar T.S.S., Ramakrishna S. Nano-Based Drug Delivery Systems: Conventional Drug Delivery Routes, Recent Developments and Future Prospects. Med. Drug Discov. 2022;15:100134. doi: 10.1016/j.medidd.2022.100134. DOI
Demetzos C., Pippa N. Advanced Drug Delivery Nanosystems (ADDnSs): A Mini-Review. Drug Deliv. 2014;21:250–257. doi: 10.3109/10717544.2013.844745. PubMed DOI
Pires P.C., Santos A.O. Nanosystems in Nose-to-Brain Drug Delivery: A Review of Non-Clinical Brain Targeting Studies. J. Control. Release. 2018;270:89–100. doi: 10.1016/j.jconrel.2017.11.047. PubMed DOI
Zhang L., Gu F., Chan J., Wang A., Langer R., Farokhzad O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI
Rezić I. Nanoparticles for Biomedical Application and Their Synthesis. Polymers. 2022;14:4961. doi: 10.3390/polym14224961. PubMed DOI PMC
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
Afzal O., Altamimi A.S.A., Nadeem M.S., Alzarea S.I., Almalki W.H., Tariq A., Mubeen B., Murtaza B.N., Iftikhar S., Riaz N., et al. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials. 2022;12:4494. doi: 10.3390/nano12244494. PubMed DOI PMC
Abdel-Mageed H.M., AbuelEzz N.Z., Radwan R.A., Mohamed S.A. Nanoparticles in Nanomedicine: A Comprehensive Updated Review on Current Status, Challenges and Emerging Opportunities. J. Microencapsul. 2021;38:414–436. doi: 10.1080/02652048.2021.1942275. PubMed DOI
Ferreira M.D., Duarte J., Veiga F., Paiva-Santos A.C., Pires P.C. Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promising Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. Pharmaceutics. 2023;15:678. doi: 10.3390/pharmaceutics15020678. PubMed DOI PMC
Yusuf A., Almotairy A.R.Z., Henidi H., Alshehri O.Y., Aldughaim M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers. 2023;15:1596. doi: 10.3390/polym15071596. PubMed DOI PMC
Sechi M., Sanna V., Pala N. Targeted Therapy Using Nanotechnology: Focus on Cancer. Int. J. Nanomed. 2014;9:467–483. doi: 10.2147/IJN.S36654. PubMed DOI PMC
Khan I., Saeed K., Khan I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Christian P., Von der Kammer F., Baalousha M., Hofmann T. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology. 2008;17:326–343. doi: 10.1007/s10646-008-0213-1. PubMed DOI
Hore M.J.A. Polymers on Nanoparticles: Structure & Dynamics. Soft Matter. 2019;15:1120–1134. doi: 10.1039/C8SM02110D. PubMed DOI
Moradifar N., Kiani A.A., Veiskaramian A., Karami K. Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review. Curr. Cardiol. Rev. 2022;18:e110621194025. doi: 10.2174/1573403X17666210611115823. PubMed DOI PMC
Khalid K., Tan X., Mohd Zaid H.F., Tao Y., Lye Chew C., Chu D.-T., Lam M.K., Ho Y.-C., Lim J.W., Chin Wei L. Advanced in Developmental Organic and Inorganic Nanomaterial: A Review. Bioengineered. 2020;11:328–355. doi: 10.1080/21655979.2020.1736240. PubMed DOI PMC
Alshammari B.H., Lashin M.M.A., Mahmood M.A., Al-Mubaddel F.S., Ilyas N., Rahman N., Sohail M., Khan A., Abdullaev S.S., Khan R. Organic and Inorganic Nanomaterials: Fabrication, Properties and Applications. RSC Adv. 2023;13:13735–13785. doi: 10.1039/D3RA01421E. PubMed DOI PMC
Jafari S., Derakhshankhah H., Alaei L., Fattahi A., Varnamkhasti B.S., Saboury A.A. Mesoporous Silica Nanoparticles for Therapeutic/Diagnostic Applications. Biomed. Pharmacother. 2019;109:1100–1111. doi: 10.1016/j.biopha.2018.10.167. PubMed DOI
Li Z., Zhang Y., Feng N. Mesoporous Silica Nanoparticles: Synthesis, Classification, Drug Loading, Pharmacokinetics, Biocompatibility, and Application in Drug Delivery. Expert Opin. Drug Deliv. 2019;16:219–237. doi: 10.1080/17425247.2019.1575806. PubMed DOI
Jain P., Hassan N., Iqbal Z., Dilnawaz F. Mesoporous Silica Nanoparticles: A Versatile Platform for Biomedical Applications. Recent. Pat. Drug Deliv. Formul. 2019;12:228–237. doi: 10.2174/1872211313666181203152859. PubMed DOI
Porrang S., Davaran S., Rahemi N., Allahyari S., Mostafavi E. How Advancing Are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int. J. Nanomed. 2022;17:1803–1827. doi: 10.2147/IJN.S353349. PubMed DOI PMC
Huang R., Shen Y.-W., Guan Y.-Y., Jiang Y.-X., Wu Y., Rahman K., Zhang L.-J., Liu H.-J., Luan X. Mesoporous Silica Nanoparticles: Facile Surface Functionalization and Versatile Biomedical Applications in Oncology. Acta Biomater. 2020;116:1–15. doi: 10.1016/j.actbio.2020.09.009. PubMed DOI
He H., Pham-Huy L.A., Dramou P., Xiao D., Zuo P., Pham-Huy C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed. Res. Int. 2013;2013:578290. doi: 10.1155/2013/578290. PubMed DOI PMC
Rahamathulla M., Bhosale R.R., Osmani R.A.M., Mahima K.C., Johnson A.P., Hani U., Ghazwani M., Begum M.Y., Alshehri S., Ghoneim M.M., et al. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. Materials. 2021;14:6707. doi: 10.3390/ma14216707. PubMed DOI PMC
Zhang C., Wu L., de Perrot M., Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front. Oncol. 2021;11:693814. doi: 10.3389/fonc.2021.693814. PubMed DOI PMC
Zare H., Ahmadi S., Ghasemi A., Ghanbari M., Rabiee N., Bagherzadeh M., Karimi M., Webster T.J., Hamblin M.R., Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021;16:1681–1706. doi: 10.2147/IJN.S299448. PubMed DOI PMC
Pu Z., Wei Y., Sun Y., Wang Y., Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. Int. J. Nanomed. 2022;17:6157–6180. doi: 10.2147/IJN.S384592. PubMed DOI PMC
Din F.U., Aman W., Ullah I., Qureshi O.S., Mustapha O., Shafique S., Zeb A. Effective Use of Nanocarriers as Drug Delivery Systems for the Treatment of Selected Tumors. Int. J. Nanomed. 2017;12:7291–7309. doi: 10.2147/IJN.S146315. PubMed DOI PMC
Francis A.P., Devasena T. Toxicity of Carbon Nanotubes: A Review. Toxicol. Ind. Health. 2018;34:200–210. doi: 10.1177/0748233717747472. PubMed DOI
Kobayashi N., Izumi H., Morimoto Y. Review of Toxicity Studies of Carbon Nanotubes. J. Occup. Health. 2017;59:394–407. doi: 10.1539/joh.17-0089-RA. PubMed DOI PMC
López-Dávila V., Seifalian A.M., Loizidou M. Organic Nanocarriers for Cancer Drug Delivery. Curr. Opin. Pharmacol. 2012;12:414–419. doi: 10.1016/j.coph.2012.02.011. PubMed DOI
Palazzolo S., Bayda S., Hadla M., Caligiuri I., Corona G., Toffoli G., Rizzolio F. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. Curr. Med. Chem. 2018;25:4224–4268. doi: 10.2174/0929867324666170830113755. PubMed DOI
Calzoni E., Cesaretti A., Polchi A., Di Michele A., Tancini B., Emiliani C. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J. Funct. Biomater. 2019;10:4. doi: 10.3390/jfb10010004. PubMed DOI PMC
Hadinoto K., Sundaresan A., Cheow W.S. Lipid–Polymer Hybrid Nanoparticles as a New Generation Therapeutic Delivery Platform: A Review. Eur. J. Pharm. Biopharm. 2013;85:427–443. doi: 10.1016/j.ejpb.2013.07.002. PubMed DOI
Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9:12. doi: 10.3390/pharmaceutics9020012. PubMed DOI PMC
Nsairat H., Khater D., Sayed U., Odeh F., Al Bawab A., Alshaer W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon. 2022;8:e09394. doi: 10.1016/j.heliyon.2022.e09394. PubMed DOI PMC
Liu P., Chen G., Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022;27:1372. doi: 10.3390/molecules27041372. PubMed DOI PMC
Pires P.C., Paiva-Santos A.C., Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals. 2023;16:1424. doi: 10.3390/ph16101424. PubMed DOI PMC
Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC
Taher M., Susanti D., Haris M.S., Rushdan A.A., Widodo R.T., Syukri Y., Khotib J. PEGylated Liposomes Enhance the Effect of Cytotoxic Drug: A Review. Heliyon. 2023;9:e13823. doi: 10.1016/j.heliyon.2023.e13823. PubMed DOI PMC
Luo W.-C., Lu X. Solid Lipid Nanoparticles for Drug Delivery. Methods Mol. Biol. 2023;2622:139–146. doi: 10.1007/978-1-0716-2954-3_12. PubMed DOI
Paliwal R., Paliwal S.R., Kenwat R., Das Kurmi B., Sahu M.K. Solid Lipid Nanoparticles: A Review on Recent Perspectives and Patents. Expert Opin. Ther. Pat. 2020;30:179–194. doi: 10.1080/13543776.2020.1720649. PubMed DOI
zur Mühlen A., Schwarz C., Mehnert W. Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery—Drug Release and Release Mechanism. Eur. J. Pharm. Biopharm. 1998;45:149–155. doi: 10.1016/S0939-6411(97)00150-1. PubMed DOI
Corzo C., Meindl C., Lochmann D., Reyer S., Salar-Behzadi S. Novel Approach for Overcoming the Stability Challenges of Lipid-Based Excipients. Part 3: Application of Polyglycerol Esters of Fatty Acids for the next Generation of Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm. 2020;152:44–55. doi: 10.1016/j.ejpb.2020.04.027. PubMed DOI
Jain A., Bhardwaj K., Bansal M. Polymeric Micelles as Drug Delivery System: Recent Advances, Approaches, Applications and Patents. Curr. Drug Saf. 2024;19:163–171. doi: 10.2174/1574886318666230605120433. PubMed DOI
Hwang D., Ramsey J.D., Kabanov A.V. Polymeric Micelles for the Delivery of Poorly Soluble Drugs: From Nanoformulation to Clinical Approval. Adv. Drug Deliv. Rev. 2020;156:80–118. doi: 10.1016/j.addr.2020.09.009. PubMed DOI PMC
Ghosh B., Biswas S. Polymeric Micelles in Cancer Therapy: State of the Art. J. Control. Release. 2021;332:127–147. doi: 10.1016/j.jconrel.2021.02.016. PubMed DOI
Zielińska A., Carreiró F., Oliveira A.M., Neves A., Pires B., Venkatesh D.N., Durazzo A., Lucarini M., Eder P., Silva A.M., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020;25:3731. doi: 10.3390/molecules25163731. PubMed DOI PMC
Begines B., Ortiz T., Pérez-Aranda M., Martínez G., Merinero M., Argüelles-Arias F., Alcudia A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials. 2020;10:1403. doi: 10.3390/nano10071403. PubMed DOI PMC
Makadia H.K., Siegel S.J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC
Sharma S., Parveen R., Chatterji B.P. Toxicology of Nanoparticles in Drug Delivery. Curr. Pathobiol. Rep. 2021;9:133–144. doi: 10.1007/s40139-021-00227-z. PubMed DOI PMC
Perumal S., Atchudan R., Lee W. A Review of Polymeric Micelles and Their Applications. Polymers. 2022;14:2510. doi: 10.3390/polym14122510. PubMed DOI PMC
Desai N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012;14:282–295. doi: 10.1208/s12248-012-9339-4. PubMed DOI PMC
Herdiana Y., Wathoni N., Shamsuddin S., Muchtaridi M. Scale-up Polymeric-Based Nanoparticles Drug Delivery Systems: Development and Challenges. OpenNano. 2022;7:100048. doi: 10.1016/j.onano.2022.100048. DOI
Muthu M.S., Wilson B. Challenges Posed by the Scale-up of Nanomedicines. Nanomedicine. 2012;7:307–309. doi: 10.2217/nnm.12.3. PubMed DOI
Yukuyama M.N., Kato E.T.M., Lobenberg R., Bou-Chacra N.A. Challenges and Future Prospects of Nanoemulsion as a Drug Delivery System. Curr. Pharm. Des. 2017;23:495–508. doi: 10.2174/1381612822666161027111957. PubMed DOI
Singh Y., Meher J.G., Raval K., Khan F.A., Chaurasia M., Jain N.K., Chourasia M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release. 2017;252:28–49. doi: 10.1016/j.jconrel.2017.03.008. PubMed DOI
Pires P.C., Paiva-Santos A.C., Veiga F. Nano and Microemulsions for the Treatment of Depressive and Anxiety Disorders: An Efficient Approach to Improve Solubility, Brain Bioavailability and Therapeutic Efficacy. Pharmaceutics. 2022;14:2825. doi: 10.3390/pharmaceutics14122825. PubMed DOI PMC
Mariyate J., Bera A. A Critical Review on Selection of Microemulsions or Nanoemulsions for Enhanced Oil Recovery. J. Mol. Liq. 2022;353:118791. doi: 10.1016/j.molliq.2022.118791. DOI
Azeem A., Rizwan M., Ahmad F.J., Iqbal Z., Khar R.K., Aqil M., Talegaonkar S. Nanoemulsion Components Screening and Selection: A Technical Note. AAPS PharmSciTech. 2009;10:69–76. doi: 10.1208/s12249-008-9178-x. PubMed DOI PMC
Almeida F., Corrêa M., Zaera A.M., Garrigues T., Isaac V. Influence of Different Surfactants on Development of Nanoemulsion Containing Fixed Oil from an Amazon Palm Species. Colloids Surf. A Physicochem. Eng. Asp. 2022;643:128721. doi: 10.1016/j.colsurfa.2022.128721. DOI
Koroleva M., Nagovitsina T., Yurtov E. Nanoemulsions Stabilized by Non-Ionic Surfactants: Stability and Degradation Mechanisms. Phys. Chem. Chem. Phys. 2018;20:10369–10377. doi: 10.1039/C7CP07626F. PubMed DOI
Mushtaq A., Mohd Wani S., Malik A.R., Gull A., Ramniwas S., Ahmad Nayik G., Ercisli S., Alina Marc R., Ullah R., Bari A. Recent Insights into Nanoemulsions: Their Preparation, Properties and Applications. Food Chem. X. 2023;18:100684. doi: 10.1016/j.fochx.2023.100684. PubMed DOI PMC
Ashaolu T.J. Nanoemulsions for Health, Food, and Cosmetics: A Review. Environ. Chem. Lett. 2021;19:3381–3395. doi: 10.1007/s10311-021-01216-9. PubMed DOI PMC
Kotta S., Khan A.W., Ansari S.H., Sharma R.K., Ali J. Formulation of Nanoemulsion: A Comparison between Phase Inversion Composition Method and High-Pressure Homogenization Method. Drug Deliv. 2015;22:455–466. doi: 10.3109/10717544.2013.866992. PubMed DOI
Espitia P.J.P., Fuenmayor C.A., Otoni C.G. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2019;18:264–285. doi: 10.1111/1541-4337.12405. PubMed DOI
Yukuyama M.N., Ghisleni D.D.M., Pinto T.J.A., Bou-Chacra N.A. Nanoemulsion: Process Selection and Application in Cosmetics—A Review. Int. J. Cosmet. Sci. 2016;38:13–24. doi: 10.1111/ics.12260. PubMed DOI
Anton N., Vandamme T.F. The Universality of Low-Energy Nano-Emulsification. Int. J. Pharm. 2009;377:142–147. doi: 10.1016/j.ijpharm.2009.05.014. PubMed DOI
Sadurní N., Solans C., Azemar N., García-Celma M.J. Studies on the Formation of O/W Nano-Emulsions, by Low-Energy Emulsification Methods, Suitable for Pharmaceutical Applications. Eur. J. Pharm. Sci. 2005;26:438–445. doi: 10.1016/j.ejps.2005.08.001. PubMed DOI
Rao J., McClements D.J. Stabilization of Phase Inversion Temperature Nanoemulsions by Surfactant Displacement. J. Agric. Food Chem. 2010;58:7059–7066. doi: 10.1021/jf100990r. PubMed DOI
Ren G., Sun Z., Wang Z., Zheng X., Xu Z., Sun D. Nanoemulsion Formation by the Phase Inversion Temperature Method Using Polyoxypropylene Surfactants. J. Colloid. Interface Sci. 2019;540:177–184. doi: 10.1016/j.jcis.2019.01.018. PubMed DOI
Chuesiang P., Siripatrawan U., Sanguandeekul R., McLandsborough L., Julian McClements D. Optimization of Cinnamon Oil Nanoemulsions Using Phase Inversion Temperature Method: Impact of Oil Phase Composition and Surfactant Concentration. J. Colloid. Interface Sci. 2018;514:208–216. doi: 10.1016/j.jcis.2017.11.084. PubMed DOI
Bouchemal K., Briançon S., Perrier E., Fessi H. Nano-Emulsion Formulation Using Spontaneous Emulsification: Solvent, Oil and Surfactant Optimisation. Int. J. Pharm. 2004;280:241–251. doi: 10.1016/j.ijpharm.2004.05.016. PubMed DOI
Akram S., Anton N., Omran Z., Vandamme T. Water-in-Oil Nano-Emulsions Prepared by Spontaneous Emulsification: New Insights on the Formulation Process. Pharmaceutics. 2021;13:1030. doi: 10.3390/pharmaceutics13071030. PubMed DOI PMC
Lefebvre G., Riou J., Bastiat G., Roger E., Frombach K., Gimel J.-C., Saulnier P., Calvignac B. Spontaneous Nano-Emulsification: Process Optimization and Modeling for the Prediction of the Nanoemulsion’s Size and Polydispersity. Int. J. Pharm. 2017;534:220–228. doi: 10.1016/j.ijpharm.2017.10.017. PubMed DOI
Gupta A. Nanoparticles for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2020. Nanoemulsions; pp. 371–384.
Mehanna M.M., Mneimneh A.T. Formulation and Applications of Lipid-Based Nanovehicles: Spotlight on Self-Emulsifying Systems. Adv. Pharm. Bull. 2020;11:56–67. doi: 10.34172/apb.2021.006. PubMed DOI PMC
Preeti, Sambhakar S., Malik R., Bhatia S., Al Harrasi A., Rani C., Saharan R., Kumar S., Geeta, Sehrawat R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica. 2023;2023:6640103. doi: 10.1155/2023/6640103. PubMed DOI PMC
Gupta A., Eral H.B., Hatton T.A., Doyle P.S. Nanoemulsions: Formation, Properties and Applications. Soft Matter. 2016;12:2826–2841. doi: 10.1039/C5SM02958A. PubMed DOI
Jaiswal M., Dudhe R., Sharma P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech. 2015;5:123–127. doi: 10.1007/s13205-014-0214-0. PubMed DOI PMC
Sabjan K.B., Munawar S.M., Rajendiran D., Vinoji S.K., Kasinathan K. Nanoemulsion as Oral Drug Delivery—A Review. Curr. Drug Res. Rev. 2020;12:4–15. doi: 10.2174/2589977511666191024173508. PubMed DOI
Aithal G.C., Narayan R., Nayak U.Y. Nanoemulgel: A Promising Phase in Drug Delivery. Curr. Pharm. Des. 2020;26:279–291. doi: 10.2174/1381612826666191226100241. PubMed DOI
Choudhury H., Gorain B., Pandey M., Chatterjee L.A., Sengupta P., Das A., Molugulu N., Kesharwani P. Recent Update on Nanoemulgel as Topical Drug Delivery System. J. Pharm. Sci. 2017;106:1736–1751. doi: 10.1016/j.xphs.2017.03.042. PubMed DOI
Anand K., Ray S., Rahman M., Shaharyar A., Bhowmik R., Bera R., Karmakar S. Nano-Emulgel: Emerging as a Smarter Topical Lipidic Emulsion-Based Nanocarrier for Skin Healthcare Applications. Recent. Pat. Antiinfect. Drug Discov. 2019;14:16–35. doi: 10.2174/1574891X14666190717111531. PubMed DOI
Donthi M.R., Munnangi S.R., Krishna K.V., Saha R.N., Singhvi G., Dubey S.K. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics. 2023;15:164. doi: 10.3390/pharmaceutics15010164. PubMed DOI PMC
Sengupta P., Chatterjee B. Potential and Future Scope of Nanoemulgel Formulation for Topical Delivery of Lipophilic Drugs. Int. J. Pharm. 2017;526:353–365. doi: 10.1016/j.ijpharm.2017.04.068. PubMed DOI
Salem H.F., Kharshoum R.M., Abou-Taleb H.A., Naguib D.M. Nanosized Nasal Emulgel of Resveratrol: Preparation, Optimization, in Vitro Evaluation and in Vivo Pharmacokinetic Study. Drug Dev. Ind. Pharm. 2019;45:1624–1634. doi: 10.1080/03639045.2019.1648500. PubMed DOI
Nagaraja S., Basavarajappa G.M., Attimarad M., Pund S. Topical Nanoemulgel for the Treatment of Skin Cancer: Proof-of-Technology. Pharmaceutics. 2021;13:902. doi: 10.3390/pharmaceutics13060902. PubMed DOI PMC
Vichare R., Crelli C., Liu L., Das A.C., McCallin R., Zor F., Kulahci Y., Gorantla V.S., Janjic J.M. A Reversibly Thermoresponsive, Theranostic Nanoemulgel for Tacrolimus Delivery to Activated Macrophages: Formulation and In Vitro Validation. Pharmaceutics. 2023;15:2372. doi: 10.3390/pharmaceutics15102372. PubMed DOI PMC
Ansari M.N., Soliman G.A., Rehman N.U., Anwer M.K. Crisaborole Loaded Nanoemulsion Based Chitosan Gel: Formulation, Physicochemical Characterization and Wound Healing Studies. Gels. 2022;8:318. doi: 10.3390/gels8050318. PubMed DOI PMC
Jeengar M.K., Rompicharla S.V.K., Shrivastava S., Chella N., Shastri N.R., Naidu V.G.M., Sistla R. Emu Oil Based Nano-Emulgel for Topical Delivery of Curcumin. Int. J. Pharm. 2016;506:222–236. doi: 10.1016/j.ijpharm.2016.04.052. PubMed DOI
Pund S., Pawar S., Gangurde S., Divate D. Transcutaneous Delivery of Leflunomide Nanoemulgel: Mechanistic Investigation into Physicomechanical Characteristics, in Vitro Anti-Psoriatic and Anti-Melanoma Activity. Int. J. Pharm. 2015;487:148–156. doi: 10.1016/j.ijpharm.2015.04.015. PubMed DOI
Aggarwal G., Dhawan B., Harikumar S. Enhanced Transdermal Permeability of Piroxicam through Novel Nanoemulgel Formulation. Int. J. Pharm. Investig. 2014;4:65. doi: 10.4103/2230-973X.133053. PubMed DOI PMC
Lee J.Y., Lee S.H., Hwangbo S.A., Lee T.G. A Comparison of Gelling Agents for Stable, Surfactant-Free Oil-in-Water Emulsions. Materials. 2022;15:6462. doi: 10.3390/ma15186462. PubMed DOI PMC
Morsy M.A., Abdel-Latif R.G., Nair A.B., Venugopala K.N., Ahmed A.F., Elsewedy H.S., Shehata T.M. Preparation and Evaluation of Atorvastatin-Loaded Nanoemulgel on Wound-Healing Efficacy. Pharmaceutics. 2019;11:609. doi: 10.3390/pharmaceutics11110609. PubMed DOI PMC
Rehman A., Iqbal M., Khan B.A., Khan M.K., Huwaimel B., Alshehri S., Alamri A.H., Alzhrani R.M., Bukhary D.M., Safhi A.Y., et al. Fabrication, In Vitro, and In Vivo Assessment of Eucalyptol-Loaded Nanoemulgel as a Novel Paradigm for Wound Healing. Pharmaceutics. 2022;14:1971. doi: 10.3390/pharmaceutics14091971. PubMed DOI PMC
Yeo E., Yew Chieng C.J., Choudhury H., Pandey M., Gorain B. Tocotrienols-Rich Naringenin Nanoemulgel for the Management of Diabetic Wound: Fabrication, Characterization and Comparative in Vitro Evaluations. Curr. Res. Pharmacol. Drug Discov. 2021;2:100019. doi: 10.1016/j.crphar.2021.100019. PubMed DOI PMC
Algahtani M.S., Ahmad M.Z., Shaikh I.A., Abdel-Wahab B.A., Nourein I.H., Ahmad J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules. 2021;26:3863. doi: 10.3390/molecules26133863. PubMed DOI PMC
Algahtani M.S., Ahmad M.Z., Nourein I.H., Albarqi H.A., Alyami H.S., Alyami M.H., Alqahtani A.A., Alasiri A., Algahtani T.S., Mohammed A.A., et al. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation. Gels. 2021;7:213. doi: 10.3390/gels7040213. PubMed DOI PMC
Tayah D.Y., Eid A.M. Development of Miconazole Nitrate Nanoparticles Loaded in Nanoemulgel to Improve Its Antifungal Activity. Saudi Pharm. J. 2023;31:526–534. doi: 10.1016/j.jsps.2023.02.005. PubMed DOI PMC
Ullah I., Alhodaib A., Naz I., Ahmad W., Ullah H., Amin A., Nawaz A. Fabrication of Novel Omeprazole-Based Chitosan Coated Nanoemulgel Formulation for Potential Anti-Microbia; In Vitro and Ex Vivo Characterizations. Polymers. 2023;15:1298. doi: 10.3390/polym15051298. PubMed DOI PMC
Vartak R., Menon S., Patki M., Billack B., Patel K. Ebselen Nanoemulgel for the Treatment of Topical Fungal Infection. Eur. J. Pharm. Sci. 2020;148:105323. doi: 10.1016/j.ejps.2020.105323. PubMed DOI
Mahtab A., Anwar M., Mallick N., Naz Z., Jain G.K., Ahmad F.J. Transungual Delivery of Ketoconazole Nanoemulgel for the Effective Management of Onychomycosis. AAPS PharmSciTech. 2016;17:1477–1490. doi: 10.1208/s12249-016-0488-0. PubMed DOI
Almostafa M.M., Elsewedy H.S., Shehata T.M., Soliman W.E. Novel Formulation of Fusidic Acid Incorporated into a Myrrh-Oil-Based Nanoemulgel for the Enhancement of Skin Bacterial Infection Treatment. Gels. 2022;8:245. doi: 10.3390/gels8040245. PubMed DOI PMC
Algahtani M.S., Ahmad M.Z., Nourein I.H., Ahmad J. Co-Delivery of Imiquimod and Curcumin by Nanoemugel for Improved Topical Delivery and Reduced Psoriasis-Like Skin Lesions. Biomolecules. 2020;10:968. doi: 10.3390/biom10070968. PubMed DOI PMC
Shehata T.M., Elnahas H.M., Elsewedy H.S. Development, Characterization and Optimization of the Anti-Inflammatory Influence of Meloxicam Loaded into a Eucalyptus Oil-Based Nanoemulgel. Gels. 2022;8:262. doi: 10.3390/gels8050262. PubMed DOI PMC
Abdallah M.H., Abu Lila A.S., Unissa R., Elsewedy H.S., Elghamry H.A., Soliman M.S. Preparation, Characterization and Evaluation of Anti-Inflammatory and Anti-Nociceptive Effects of Brucine-Loaded Nanoemulgel. Colloids Surf. B Biointerfaces. 2021;205:111868. doi: 10.1016/j.colsurfb.2021.111868. PubMed DOI
Saab M., Raafat K., El-Maradny H. Transdermal Delivery of Capsaicin Nanoemulgel: Optimization, Skin Permeation and in Vivo Activity Against Diabetic Neuropathy. Adv. Pharm. Bull. 2021;12:780. doi: 10.34172/apb.2022.080. PubMed DOI PMC
Algahtani M.S., Ahmad M.Z., Ahmad J. Nanoemulgel for Improved Topical Delivery of Retinyl Palmitate: Formulation Design and Stability Evaluation. Nanomaterials. 2020;10:848. doi: 10.3390/nano10050848. PubMed DOI PMC
Childs D.R., Murthy A.S. Overview of Wound Healing and Management. Surg. Clin. N. Am. 2017;97:189–207. doi: 10.1016/j.suc.2016.08.013. PubMed DOI
Cañedo-Dorantes L., Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflam. 2019;2019:3706315. doi: 10.1155/2019/3706315. PubMed DOI PMC
Wang P.-H., Huang B.-S., Horng H.-C., Yeh C.-C., Chen Y.-J. Wound Healing. J. Chin. Med. Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002. PubMed DOI
Tottoli E.M., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020;12:735. doi: 10.3390/pharmaceutics12080735. PubMed DOI PMC
Velnar T., Bailey T., Smrkolj V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009;37:1528–1542. doi: 10.1177/147323000903700531. PubMed DOI
Almadani Y.H., Vorstenbosch J., Davison P.G., Murphy A.M. Wound Healing: A Comprehensive Review. Semin. Plast. Surg. 2021;35:141–144. doi: 10.1055/s-0041-1731791. PubMed DOI PMC
Gordts S., Muthuramu I., Amin R., Jacobs F., De Geest B. The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals. 2014;7:419–432. doi: 10.3390/ph7040419. PubMed DOI PMC
Bogachkov Y.Y., Chen L., Le Master E., Fancher I.S., Zhao Y., Aguilar V., Oh M.-J., Wary K.K., DiPietro L.A., Levitan I. LDL Induces Cholesterol Loading and Inhibits Endothelial Proliferation and Angiogenesis in Matrigels: Correlation with Impaired Angiogenesis during Wound Healing. Am. J. Physiol. Cell Physiol. 2020;318:C762–C776. doi: 10.1152/ajpcell.00495.2018. PubMed DOI PMC
Hata Y., Iida O., Okamoto S., Ishihara T., Nanto K., Tsujimura T., Higashino N., Toyoshima T., Nakao S., Fukunaga M., et al. Clinical Outcomes of Patients with Cholesterol Crystal Embolism Accompanied by Lower Extremity Wound. Angiology. 2023:00033197231195671. doi: 10.1177/00033197231195671. PubMed DOI
Farsaei S., Khalili H., Farboud E.S. Potential Role of Statins on Wound Healing: Review of the Literature. Int. Wound J. 2012;9:238–247. doi: 10.1111/j.1742-481X.2011.00888.x. PubMed DOI PMC
Fitzmaurice G.J., McWilliams B., Nölke L., Redmond J.M., McGuinness J.G., O’Donnell M.E. Do Statins Have a Role in the Promotion of Postoperative Wound Healing in Cardiac Surgical Patients? Ann. Thorac. Surg. 2014;98:756–764. doi: 10.1016/j.athoracsur.2014.02.089. PubMed DOI
Toker S., Gulcan E., Çaycı M.K., Olgun E.G., Erbilen E., Özay Y. Topical Atorvastatin in the Treatment of Diabetic Wounds. Am. J. Med. Sci. 2009;338:201–204. doi: 10.1097/MAJ.0b013e3181aaf209. PubMed DOI
Falagas M.E., Makris G.C., Matthaiou D.K., Rafailidis P.I. Statins for Infection and Sepsis: A Systematic Review of the Clinical Evidence. J. Antimicrob. Chemother. 2008;61:774–785. doi: 10.1093/jac/dkn019. PubMed DOI
Suzuki-Banhesse V.F., Azevedo F.F., Araujo E.P., do Amaral M.E.C., Caricilli A.M., Saad M.J.A., Lima M.H.M. Effect of Atorvastatin on Wound Healing in Rats. Biol. Res. Nurs. 2015;17:159–168. doi: 10.1177/1099800414537348. PubMed DOI
Raziyeva K., Kim Y., Zharkinbekov Z., Kassymbek K., Jimi S., Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules. 2021;11:700. doi: 10.3390/biom11050700. PubMed DOI PMC
Hurlow J., Bowler P.G. Acute and Chronic Wound Infections: Microbiological, Immunological, Clinical and Therapeutic Distinctions. J. Wound Care. 2022;31:436–445. doi: 10.12968/jowc.2022.31.5.436. PubMed DOI
Mulyaningsih S., Sporer F., Reichling J., Wink M. Antibacterial Activity of Essential Oils from Eucalyptus and of Selected Components against Multidrug-Resistant Bacterial Pathogens. Pharm. Biol. 2011;49:893–899. doi: 10.3109/13880209.2011.553625. PubMed DOI
Vijayakumar K., Manigandan V., Jeyapragash D., Bharathidasan V., Anandharaj B., Sathya M. Eucalyptol Inhibits Biofilm Formation of Streptococcus Pyogenes and Its Mediated Virulence Factors. J. Med. Microbiol. 2020;69:1308–1318. doi: 10.1099/jmm.0.001253. PubMed DOI
Baltzis D., Eleftheriadou I., Veves A. Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Adv. Ther. 2014;31:817–836. doi: 10.1007/s12325-014-0140-x. PubMed DOI
Okur M.E., Bülbül E.Ö., Mutlu G., Eleftherıadou K., Karantas I.D., Okur N.Ü., Siafaka P.I. An Updated Review for the Diabetic Wound Healing Systems. Curr. Drug Targets. 2022;23:393–419. doi: 10.2174/1389450122666210914104428. PubMed DOI
Jais S. Various Types of Wounds That Diabetic Patients Can Develop: A Narrative Review. Clin. Pathol. 2023;16:2632010X231205366. doi: 10.1177/2632010X231205366. PubMed DOI PMC
Ahsan H., Ahad A., Iqbal J., Siddiqui W.A. Pharmacological Potential of Tocotrienols: A Review. Nutr. Metab. 2014;11:52. doi: 10.1186/1743-7075-11-52. PubMed DOI PMC
Zainal Z., Khaza’ai H., Kutty Radhakrishnan A., Chang S.K. Therapeutic Potential of Palm Oil Vitamin E-Derived Tocotrienols in Inflammation and Chronic Diseases: Evidence from Preclinical and Clinical Studies. Food Res. Int. 2022;156:111175. doi: 10.1016/j.foodres.2022.111175. PubMed DOI
Kandhare A.D., Alam J., Patil M.V.K., Sinha A., Bodhankar S.L. Wound Healing Potential of Naringin Ointment Formulation via Regulating the Expression of Inflammatory, Apoptotic and Growth Mediators in Experimental Rats. Pharm. Biol. 2016;54:419–432. doi: 10.3109/13880209.2015.1038755. PubMed DOI
Kandhare A.D., Ghosh P., Bodhankar S.L. Naringin, a Flavanone Glycoside, Promotes Angiogenesis and Inhibits Endothelial Apoptosis through Modulation of Inflammatory and Growth Factor Expression in Diabetic Foot Ulcer in Rats. Chem. Biol. Interact. 2014;219:101–112. doi: 10.1016/j.cbi.2014.05.012. PubMed DOI
Kmail A., Said O., Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr. Issues Mol. Biol. 2023;45:9039–9059. doi: 10.3390/cimb45110567. PubMed DOI PMC
Sallehuddin N., Nordin A., Bt Hj Idrus R., Fauzi M.B. Nigella Sativa and Its Active Compound, Thymoquinone, Accelerate Wound Healing in an In Vivo Animal Model: A Comprehensive Review. Int. J. Environ. Res. Public. Health. 2020;17:4160. doi: 10.3390/ijerph17114160. PubMed DOI PMC
Rajabian A., Hosseinzadeh H. Nuts and Seeds in Health and Disease Prevention. Elsevier; Amsterdam, The Netherlands: 2020. Dermatological Effects of Nigella Sativa and Its Constituent, Thymoquinone; pp. 329–355.
Kumari A., Raina N., Wahi A., Goh K.W., Sharma P., Nagpal R., Jain A., Ming L.C., Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics. 2022;14:2288. doi: 10.3390/pharmaceutics14112288. PubMed DOI PMC
Tejada S., Manayi A., Daglia M., Nabavi S.F., Sureda A., Hajheydari Z., Gortzi O., Pazoki-Toroudi H., Nabavi S.M. Wound Healing Effects of Curcumin: A Short Review. Curr. Pharm. Biotechnol. 2016;17:1002–1007. doi: 10.2174/1389201017666160721123109. PubMed DOI
Khatun M., Nur M.A., Biswas S., Khan M., Amin M.Z. Assessment of the Anti-Oxidant, Anti-Inflammatory and Anti-Bacterial Activities of Different Types of Turmeric (Curcuma Longa) Powder in Bangladesh. J. Agric. Food Res. 2021;6:100201. doi: 10.1016/j.jafr.2021.100201. DOI
Vitiello A., Ferrara F., Boccellino M., Ponzo A., Cimmino C., Comberiati E., Zovi A., Clemente S., Sabbatucci M. Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines. 2023;11:1063. doi: 10.3390/biomedicines11041063. PubMed DOI PMC
Salam M.A., Al-Amin M.Y., Salam M.T., Pawar J.S., Akhter N., Rabaan A.A., Alqumber M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare. 2023;11:1946. doi: 10.3390/healthcare11131946. PubMed DOI PMC
Fothergill A.W. Miconazole: A Historical Perspective. Expert Rev. Anti Infect. Ther. 2006;4:171–175. doi: 10.1586/14787210.4.2.171. PubMed DOI
Quatresooz P., Vroome V., Borgers M., Cauwenbergh G., Piérard G.E. Novelties in the Multifaceted Miconazole Effects on Skin Disorders. Expert Opin. Pharmacother. 2008;9:1927–1934. doi: 10.1517/14656566.9.11.1927. PubMed DOI
Gatta L. Antimicrobial Activity of Esomeprazole versus Omeprazole against Helicobacter Pylori. J. Antimicrob. Chemother. 2003;51:439–442. doi: 10.1093/jac/dkg085. PubMed DOI
Anagnostopoulos G.K., Tsiakos S., Margantinis G., Kostopoulos P., Arvanitidis D. Esomeprazole versus Omeprazole for the Eradication of Helicobacter Pylori Infection. J. Clin. Gastroenterol. 2004;38:503–506. doi: 10.1097/01.mcg.0000129061.54277.c6. PubMed DOI
Kumar L., Verma S., Bhardwaj A., Vaidya S., Vaidya B. Eradication of Superficial Fungal Infections by Conventional and Novel Approaches: A Comprehensive Review. Artif. Cells Nanomed. Biotechnol. 2014;42:32–46. doi: 10.3109/21691401.2013.769446. PubMed DOI
Wu Y., Hu S., Wu C., Gu F., Yang Y. Probiotics: Potential Novel Therapeutics Against Fungal Infections. Front. Cell Infect. Microbiol. 2022;11:793419. doi: 10.3389/fcimb.2021.793419. PubMed DOI PMC
Rauseo A.M., Coler-Reilly A., Larson L., Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect. Dis. 2020;7:ofaa016. doi: 10.1093/ofid/ofaa016. PubMed DOI PMC
Garland M., Hryckowian A.J., Tholen M., Oresic Bender K., Van Treuren W.W., Loscher S., Sonnenburg J.L., Bogyo M. The Clinical Drug Ebselen Attenuates Inflammation and Promotes Microbiome Recovery in Mice after Antibiotic Treatment for CDI. Cell Rep. Med. 2020;1:100005. doi: 10.1016/j.xcrm.2020.100005. PubMed DOI PMC
Sarma B.K., Mugesh G. Antioxidant Activity of the Anti-Inflammatory Compound Ebselen: A Reversible Cyclization Pathway via Selenenic and Seleninic Acid Intermediates. Chem. Eur. J. 2008;14:10603–10614. doi: 10.1002/chem.200801258. PubMed DOI
Maślanka M., Mucha A. Antibacterial Activity of Ebselen. Int. J. Mol. Sci. 2023;24:1610. doi: 10.3390/ijms24021610. PubMed DOI PMC
Leung A.K.C., Lam J.M., Leong K.F., Hon K.L., Barankin B., Leung A.A.M., Wong A.H.C. Onychomycosis: An Updated Review. Recent. Pat. Inflamm. Allergy Drug Discov. 2020;14:32–45. doi: 10.2174/1872213X13666191026090713. PubMed DOI PMC
Gupta A.K., Stec N., Summerbell R.C., Shear N.H., Piguet V., Tosti A., Piraccini B.M. Onychomycosis: A Review. J. Eur. Acad. Dermatol. Venereol. 2020;34:1972–1990. doi: 10.1111/jdv.16394. PubMed DOI
Ahmed I.S., Elnahas O.S., Assar N.H., Gad A.M., El Hosary R. Nanocrystals of Fusidic Acid for Dual Enhancement of Dermal Delivery and Antibacterial Activity: In Vitro, Ex Vivo and In Vivo Evaluation. Pharmaceutics. 2020;12:199. doi: 10.3390/pharmaceutics12030199. PubMed DOI PMC
Pfaller M.A., Castanheira M., Sader H.S., Jones R.N. Evaluation of the Activity of Fusidic Acid Tested against Contemporary Gram-Positive Clinical Isolates from the USA and Canada. Int. J. Antimicrob. Agents. 2010;35:282–287. doi: 10.1016/j.ijantimicag.2009.10.023. PubMed DOI
Curbete M.M., Salgado H.R.N. A Critical Review of the Properties of Fusidic Acid and Analytical Methods for Its Determination. Crit. Rev. Anal. Chem. 2016;46:352–360. doi: 10.1080/10408347.2015.1084225. PubMed DOI
Algarin Y.A., Jambusaria-Pahlajani A., Ruiz E., Patel V.A. Advances in Topical Treatments of Cutaneous Malignancies. Am. J. Clin. Dermatol. 2023;24:69–80. doi: 10.1007/s40257-022-00731-x. PubMed DOI
Hidalgo L., Saldías-Fuentes C., Carrasco K., Halpern A.C., Mao J.J., Navarrete-Dechent C. Complementary and Alternative Therapies in Skin Cancer a Literature Review of Biologically Active Compounds. Dermatol. Ther. 2022;35:e15842. doi: 10.1111/dth.15842. PubMed DOI PMC
Conforti C., Corneli P., Harwood C., Zalaudek I. Evolving Role of Systemic Therapies in Non-Melanoma Skin Cancer. Clin. Oncol. 2019;31:759–768. doi: 10.1016/j.clon.2019.08.011. PubMed DOI
Salari N., Faraji F., Jafarpour S., Faraji F., Rasoulpoor S., Dokaneheifard S., Mohammadi M. Anti-Cancer Activity of Chrysin in Cancer Therapy: A Systematic Review. Indian J. Surg. Oncol. 2022;13:681–690. doi: 10.1007/s13193-022-01550-6. PubMed DOI PMC
Kasala E.R., Bodduluru L.N., Madana R.M., Athira K.V., Gogoi R., Barua C.C. Chemopreventive and Therapeutic Potential of Chrysin in Cancer: Mechanistic Perspectives. Toxicol. Lett. 2015;233:214–225. doi: 10.1016/j.toxlet.2015.01.008. PubMed DOI
Talebi M., Talebi M., Farkhondeh T., Simal-Gandara J., Kopustinskiene D.M., Bernatoniene J., Samarghandian S. Emerging Cellular and Molecular Mechanisms Underlying Anticancer Indications of Chrysin. Cancer Cell Int. 2021;21:214. doi: 10.1186/s12935-021-01906-y. PubMed DOI PMC
Chang S.-H., Wu C.-Y., Chuang K.-C., Huang S.-W., Li Z.-Y., Wang S.-T., Lai Z.-L., Chang C.-C., Chen Y.-J., Wong T.-W., et al. Imiquimod Accelerated Antitumor Response by Targeting Lysosome Adaptation in Skin Cancer Cells. J. Investig. Dermatol. 2021;141:2219–2228. doi: 10.1016/j.jid.2021.01.034. PubMed DOI
Bubna A. Imiquimod—Its Role in the Treatment of Cutaneous Malignancies. Indian J. Pharmacol. 2015;47:354. doi: 10.4103/0253-7613.161249. PubMed DOI PMC
Lelli D., Pedone C., Sahebkar A. Curcumin and Treatment of Melanoma: The Potential Role of MicroRNAs. Biomed. Pharmacother. 2017;88:832–834. doi: 10.1016/j.biopha.2017.01.078. PubMed DOI
Phillips J.M., Clark C., Herman-Ferdinandez L., Moore-Medlin T., Rong X., Gill J.R., Clifford J.L., Abreo F., Nathan C.O. Curcumin Inhibits Skin Squamous Cell Carcinoma Tumor Growth In Vivo. Otolaryngol. Head Neck Surg. 2011;145:58–63. doi: 10.1177/0194599811400711. PubMed DOI
van der Fits L., Mourits S., Voerman J.S.A., Kant M., Boon L., Laman J.D., Cornelissen F., Mus A.-M., Florencia E., Prens E.P., et al. Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis. J. Immunol. 2009;182:5836–5845. doi: 10.4049/jimmunol.0802999. PubMed DOI
Carlos E.C.D.S., Cristovão G.A., Silva A.A., de Santos Ribeiro B.C., Romana-Souza B. Imiquimod-induced Ex Vivo Model of Psoriatic Human Skin via Interleukin-17A Signalling of T Cells and Langerhans Cells. Exp. Dermatol. 2022;31:1791–1799. doi: 10.1111/exd.14659. PubMed DOI
Griffiths C.E.M., Armstrong A.W., Gudjonsson J.E., Barker J.N.W.N. Psoriasis. Lancet. 2021;397:1301–1315. doi: 10.1016/S0140-6736(20)32549-6. PubMed DOI
Raharja A., Mahil S.K., Barker J.N. Psoriasis: A Brief Overview. Clin. Med. 2021;21:170–173. doi: 10.7861/clinmed.2021-0257. PubMed DOI PMC
Armstrong A.W., Read C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis. JAMA. 2020;323:1945. doi: 10.1001/jama.2020.4006. PubMed DOI
Herrmann M.L., Schleyerbach R., Kirschbaum B.J. Leflunomide: An Immunomodulatory Drug for the Treatment of Rheumatoid Arthritis and Other Autoimmune Diseases. Immunopharmacology. 2000;47:273–289. doi: 10.1016/S0162-3109(00)00191-0. PubMed DOI
Alamri R.D., Elmeligy M.A., Albalawi G.A., Alquayr S.M., Alsubhi S.S., El-Ghaiesh S.H. Leflunomide an Immunomodulator with Antineoplastic and Antiviral Potentials but Drug-Induced Liver Injury: A Comprehensive Review. Int. Immunopharmacol. 2021;93:107398. doi: 10.1016/j.intimp.2021.107398. PubMed DOI PMC
Boehncke W.-H. Immunomodulatory Drugs for Psoriasis. BMJ. 2003;327:634–635. doi: 10.1136/bmj.327.7416.634. PubMed DOI PMC
Nagai N., Ogata F., Otake H., Kawasaki N. Oral Administration System Based on Meloxicam Nanocrystals: Decreased Dose Due to High Bioavailability Attenuates Risk of Gastrointestinal Side Effects. Pharmaceutics. 2020;12:313. doi: 10.3390/pharmaceutics12040313. PubMed DOI PMC
Rostom A., Goldkind L., Laine L. Nonsteroidal Anti-Inflammatory Drugs and Hepatic Toxicity: A Systematic Review of Randomized Controlled Trials in Arthritis Patients. Clin. Gastroenterol. Hepatol. 2005;3:489–498. doi: 10.1016/S1542-3565(04)00777-3. PubMed DOI
Jain B., Jain N., Jain S., Teja P.K., Chauthe S.K., Jain A. Exploring Brucine Alkaloid: A Comprehensive Review on Pharmacology, Therapeutic Applications, Toxicity, Extraction and Purification Techniques. Phytomed. Plus. 2023;3:100490. doi: 10.1016/j.phyplu.2023.100490. DOI
Song X., Wang Y., Chen H., Jin Y., Wang Z., Lu Y., Wang Y. Dosage-Efficacy Relationship and Pharmacodynamics Validation of Brucine Dissolving Microneedles against Rheumatoid Arthritis. J. Drug Deliv. Sci. Technol. 2021;63:102537. doi: 10.1016/j.jddst.2021.102537. DOI
Lu L., Huang R., Wu Y., Jin J.-M., Chen H.-Z., Zhang L.-J., Luan X. Brucine: A Review of Phytochemistry, Pharmacology, and Toxicology. Front. Pharmacol. 2020;11:377. doi: 10.3389/fphar.2020.00377. PubMed DOI PMC
Yin W., Wang T.-S., Yin F.-Z., Cai B.-C. Analgesic and Anti-Inflammatory Properties of Brucine and Brucine N-Oxide Extracted from Seeds of Strychnos Nux-Vomica. J. Ethnopharmacol. 2003;88:205–214. doi: 10.1016/S0378-8741(03)00224-1. PubMed DOI
Tang M., Zhu W., Yang Z., He C. Brucine Inhibits TNF-α-induced HFLS-RA Cell Proliferation by Activating the JNK Signaling Pathway. Exp. Ther. Med. 2019;18:735–740. doi: 10.3892/etm.2019.7582. PubMed DOI PMC
Elafros M.A., Andersen H., Bennett D.L., Savelieff M.G., Viswanathan V., Callaghan B.C., Feldman E.L. Towards Prevention of Diabetic Peripheral Neuropathy: Clinical Presentation, Pathogenesis, and New Treatments. Lancet Neurol. 2022;21:922–936. doi: 10.1016/S1474-4422(22)00188-0. PubMed DOI PMC
Jensen T.S., Karlsson P., Gylfadottir S.S., Andersen S.T., Bennett D.L., Tankisi H., Finnerup N.B., Terkelsen A.J., Khan K., Themistocleous A.C., et al. Painful and Non-Painful Diabetic Neuropathy, Diagnostic Challenges and Implications for Future Management. Brain. 2021;144:1632–1645. doi: 10.1093/brain/awab079. PubMed DOI PMC
Cernea S., Raz I. Management of Diabetic Neuropathy. Metabolism. 2021;123:154867. doi: 10.1016/j.metabol.2021.154867. PubMed DOI
Sharma S.K., Vij A.S., Sharma M. Mechanisms and Clinical Uses of Capsaicin. Eur. J. Pharmacol. 2013;720:55–62. doi: 10.1016/j.ejphar.2013.10.053. PubMed DOI
Lu M., Chen C., Lan Y., Xiao J., Li R., Huang J., Huang Q., Cao Y., Ho C.-T. Capsaicin—The Major Bioactive Ingredient of Chili Peppers: Bio-Efficacy and Delivery Systems. Food Funct. 2020;11:2848–2860. doi: 10.1039/D0FO00351D. PubMed DOI
Fernandes E.S., Cerqueira A.R.A., Soares A.G., Costa S.K.P. Drug Discovery from Mother Nature. Springer; Berlin/Heidelberg, Germany: 2016. Capsaicin and Its Role in Chronic Diseases; pp. 91–125. PubMed
Basith S., Cui M., Hong S., Choi S. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases. Molecules. 2016;21:966. doi: 10.3390/molecules21080966. PubMed DOI PMC
Abdel-Salam O.M.E., Mózsik G. Capsaicin, The Vanilloid Receptor TRPV1 Agonist in Neuroprotection: Mechanisms Involved and Significance. Neurochem. Res. 2023;48:3296–3315. doi: 10.1007/s11064-023-03983-z. PubMed DOI PMC
Fattori V., Hohmann M., Rossaneis A., Pinho-Ribeiro F., Verri W. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules. 2016;21:844. doi: 10.3390/molecules21070844. PubMed DOI PMC
Frydas S., Varvara G., Murmura G., Saggini A., Caraffa A., Antinolfi P., Tetè S., Tripodi D., Conti F., Cianchetti E., et al. Impact of Capsaicin on Mast Cell Inflammation. Int. J. Immunopathol. Pharmacol. 2013;26:597–600. doi: 10.1177/039463201302600303. PubMed DOI
Kim C.-S., Kawada T., Kim B.-S., Han I.-S., Choe S.-Y., Kurata T., Yu R. Capsaicin Exhibits Anti-Inflammatory Property by Inhibiting IkB-a Degradation in LPS-Stimulated Peritoneal Macrophages. Cell Signal. 2003;15:299–306. doi: 10.1016/S0898-6568(02)00086-4. PubMed DOI
Srinivasan K. Biological Activities of Red Pepper (Capsicum Annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016;56:1488–1500. doi: 10.1080/10408398.2013.772090. PubMed DOI
Rollyson W.D., Stover C.A., Brown K.C., Perry H.E., Stevenson C.D., McNees C.A., Ball J.G., Valentovic M.A., Dasgupta P. Bioavailability of Capsaicin and Its Implications for Drug Delivery. J. Control. Release. 2014;196:96–105. doi: 10.1016/j.jconrel.2014.09.027. PubMed DOI PMC
Babbar S., Marier J.-F., Mouksassi M.-S., Beliveau M., Vanhove G.F., Chanda S., Bley K. Pharmacokinetic Analysis of Capsaicin after Topical Administration of a High-Concentration Capsaicin Patch to Patients with Peripheral Neuropathic Pain. Ther. Drug Monit. 2009;31:502–510. doi: 10.1097/FTD.0b013e3181a8b200. PubMed DOI
Oliveira M.B., do Prado A.H., Bernegossi J., Sato C.S., Lourenço Brunetti I., Scarpa M.V., Leonardi G.R., Friberg S.E., Chorilli M. Topical Application of Retinyl Palmitate-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging. Biomed. Res. Int. 2014;2014:632570. doi: 10.1155/2014/632570. PubMed DOI PMC
Salem H.F., Kharshoum R.M., Awad S.M., Ahmed Mostafa M., Abou-Taleb H.A. Tailoring of Retinyl Palmitate-Based Ethosomal Hydrogel as a Novel Nanoplatform for Acne Vulgaris Management: Fabrication, Optimization, and Clinical Evaluation Employing a Split-Face Comparative Study. Int. J. Nanomed. 2021;16:4251–4276. doi: 10.2147/IJN.S301597. PubMed DOI PMC
Milosheska D., Roškar R. Use of Retinoids in Topical Antiaging Treatments: A Focused Review of Clinical Evidence for Conventional and Nanoformulations. Adv. Ther. 2022;39:5351–5375. doi: 10.1007/s12325-022-02319-7. PubMed DOI PMC
Nandy A., Lee E., Mandal A., Saremi R., Sharma S. Microencapsulation of Retinyl Palmitate by Melt Dispersion for Cosmetic Application. J. Microencapsul. 2020;37:205–219. doi: 10.1080/02652048.2020.1720029. PubMed DOI
Gholizadeh M., Basafa Roodi P., Abaj F., Shab-Bidar S., Saedisomeolia A., Asbaghi O., Lak M. Influence of Vitamin A Supplementation on Inflammatory Biomarkers in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Sci. Rep. 2022;12:21384. doi: 10.1038/s41598-022-23919-x. PubMed DOI PMC
Farooq U., Mahmood T., Shahzad Y., Yousaf A.M., Akhtar N. Comparative Efficacy of Two Anti-aging Products Containing Retinyl Palmitate in Healthy Human Volunteers. J. Cosmet. Dermatol. 2018;17:454–460. doi: 10.1111/jocd.12500. PubMed DOI
Fu P.P., Cheng S.-H., Coop L., Xia Q., Culp S.J., Tolleson W.H., Wamer W.G., Howard P.C. Photoreaction, Phototoxicity, and Photocarcinogenicity of Retinoids. J. Environ. Sci. Health Part. C. 2003;21:165–197. doi: 10.1081/GNC-120026235. PubMed DOI
Maugard T., Rejasse B., Legoy M.D. Synthesis of Water-Soluble Retinol Derivatives by Enzymatic Method. Biotechnol. Prog. 2002;18:424–428. doi: 10.1021/bp025508f. PubMed DOI
Suh D.-C., Kim Y., Kim H., Ro J., Cho S.-W., Yun G., Choi S.-U., Lee J. Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin. Biomol. Ther. 2014;22:73–77. doi: 10.4062/biomolther.2013.094. PubMed DOI PMC
Strati F., Neubert R.H.H., Opálka L., Kerth A., Brezesinski G. Non-Ionic Surfactants as Innovative Skin Penetration Enhancers: Insight in the Mechanism of Interaction with Simple 2D Stratum Corneum Model System. Eur. J. Pharm. Sci. 2021;157:105620. doi: 10.1016/j.ejps.2020.105620. PubMed DOI
Ren Q., Deng C., Meng U., Chen Y., Chen U., Sha X., Fang X. In Vitro, Ex Vivo, and In Vivo Evaluation of the Effect of Saturated Fat Acid Chain Length on the Transdermal Behavior of Ibuprofen-Loaded Microemulsions. J. Pharm. Sci. 2014;103:1680–1691. doi: 10.1002/jps.23958. PubMed DOI
Erdal M.S., Özhan G., Mat C., Özsoy Y., Güngör S. Colloidal Nanocarriers for the Enhanced Cutaneous Delivery of Naftifine: Characterization Studies and in Vitro and in Vivo Evaluations. Int. J. Nanomed. 2016;1027:1027–1037. doi: 10.2147/IJN.S96243. PubMed DOI PMC
Kim B.S., Won M., Yang, Lee K.M., Kim C.S. In Vitro Permeation Studies of Nanoemulsions Containing Ketoprofen as a Model Drug. Drug Deliv. 2008;15:465–469. doi: 10.1080/10717540802328599. PubMed DOI
Osborne D.W., Musakhanian J. Skin Penetration and Permeation Properties of Transcutol®—Neat or Diluted Mixtures. AAPS PharmSciTech. 2018;19:3512–3533. doi: 10.1208/s12249-018-1196-8. PubMed DOI PMC
Godwin D.A., Kim N.-H., Felton L.A. Influence of Transcutol® CG on the Skin Accumulation and Transdermal Permeation of Ultraviolet Absorbers. Eur. J. Pharm. Biopharm. 2002;53:23–27. doi: 10.1016/S0939-6411(01)00215-6. PubMed DOI
Antunes F.E., Gentile L., Oliviero Rossi C., Tavano L., Ranieri G.A. Gels of Pluronic F127 and Nonionic Surfactants from Rheological Characterization to Controlled Drug Permeation. Colloids Surf. B Biointerfaces. 2011;87:42–48. doi: 10.1016/j.colsurfb.2011.04.033. PubMed DOI
Zheng Y., Ouyang W.-Q., Wei Y.-P., Syed S., Hao C.-S., Wang B.-Z., Shang Y.-H. Effects of Carbopol 934 Proportion on Nanoemulsion Gel for Topical and Transdermal Drug Delivery: A Skin Permeation Study. Int. J. Nanomed. 2016;11:5971–5987. doi: 10.2147/IJN.S119286. PubMed DOI PMC
Babu R.J., Pandit J.K. Effect of Penetration Enhancers on the Release and Skin Permeation of Bupranolol from Reservoir-Type Transdermal Delivery Systems. Int. J. Pharm. 2005;288:325–334. doi: 10.1016/j.ijpharm.2004.10.008. PubMed DOI
De Jong W.H., Geertsma R.E., Borchard G. Regulatory Safety Evaluation of Nanomedical Products: Key Issues to Refine. Drug Deliv. Transl. Res. 2022;12:2042–2047. doi: 10.1007/s13346-022-01208-4. PubMed DOI PMC
Foulkes R., Man E., Thind J., Yeung S., Joy A., Hoskins C. The Regulation of Nanomaterials and Nanomedicines for Clinical Application: Current and Future Perspectives. Biomater. Sci. 2020;8:4653–4664. doi: 10.1039/D0BM00558D. PubMed DOI
Liu L., Bagia C., Janjic J.M. The First Scale-Up Production of Theranostic Nanoemulsions. Biores Open Access. 2015;4:218–228. doi: 10.1089/biores.2014.0030. PubMed DOI PMC
Adena S.K.R., Herneisey M., Pierce E., Hartmeier P.R., Adlakha S., Hosfeld M.A.I., Drennen J.K., Janjic J.M. Quality by Design Methodology Applied to Process Optimization and Scale up of Curcumin Nanoemulsions Produced by Catastrophic Phase Inversion. Pharmaceutics. 2021;13:880. doi: 10.3390/pharmaceutics13060880. PubMed DOI PMC
Paliwal R., Babu R.J., Palakurthi S. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. AAPS PharmSciTech. 2014;15:1527–1534. doi: 10.1208/s12249-014-0177-9. PubMed DOI PMC