MethScore as a new comprehensive DNA methylation-based value refining the prognosis in acute myeloid leukemia
Language English Country Germany Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38254139
PubMed Central
PMC10802002
DOI
10.1186/s13148-024-01625-x
PII: 10.1186/s13148-024-01625-x
Knihovny.cz E-resources
- Keywords
- Acute myeloid leukemia, DNA methylation, NGS, Prognosis,
- MeSH
- Leukemia, Myeloid, Acute * diagnosis genetics MeSH
- Progression-Free Survival MeSH
- Adult MeSH
- Epigenomics MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Prognosis MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Changes in DNA methylation are common events in the pathogenesis of acute myeloid leukemia (AML) and have been repeatedly reported as associated with prognosis. However, studies integrating these numerous and potentially prognostically relevant DNA methylation changes are lacking. Therefore, we aimed for an overall evaluation of these epigenetic aberrations to provide a comprehensive NGS-based approach of DNA methylation assessment for AML prognostication. RESULTS: We designed a sequencing panel targeting 239 regions (approx. 573 kb of total size) described in the literature as having a prognostic impact or being associated with AML pathogenesis. Diagnostic whole-blood DNA samples of adult AML patients divided into a training (n = 128) and a testing cohort (n = 50) were examined. The libraries were prepared using SeqCap Epi Enrichments System (Roche) and sequenced on MiSeq instrument (Illumina). Altogether, 1935 CpGs affecting the survival (p < 0.05) were revealed in the training cohort. A summarizing value MethScore was then calculated from these significant CpGs. Patients with lower MethScore had markedly longer overall survival (OS) and event-free survival (EFS) than those with higher MethScore (p < 0.001). The predictive ability of MethScore was verified on the independent testing cohort for OS (p = 0.01). Moreover, the proof-of-principle validation was performed using the TCGA dataset. CONCLUSIONS: We showed that comprehensive NGS-based approach of DNA methylation assessment revealed a robust epigenetic signature relevant to AML outcome. We called this signature MethScore and showed it might serve as a strong prognostic marker able to refine survival probability of AML patients.
Faculty of Science Charles University Prague Czech Republic
Institute of Hematology and Blood Transfusion U Nemocnice 1 128 00 Prague Czech Republic
See more in PubMed
Kayser S, Levis MJ. Clinical implications of molecular markers in acute myeloid leukemia. Eur J Haematol. 2019;102(1):20–35. doi: 10.1111/ejh.13172. PubMed DOI PMC
Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93(10):1267–1291. doi: 10.1002/ajh.25214. PubMed DOI
Jiang H, Ou Z, He Y, Yu M, Wu S, Li G, et al. DNA methylation markers in the diagnosis and prognosis of common leukemias. Signal Transduct Target Ther. 2020;5(1):3. doi: 10.1038/s41392-019-0090-5. PubMed DOI PMC
Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA. 2017;114(28):7414–7419. doi: 10.1073/pnas.1703577114. PubMed DOI PMC
Yang X, Wong MPM, Ng RK. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci. 2019 doi: 10.3390/ijms20184576. PubMed DOI PMC
Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792–799. doi: 10.1038/nm.4125. PubMed DOI PMC
Sestakova S, Cerovska E, Salek C, Kundrat D, Jeziskova I, Folta A, et al. A validation study of potential prognostic DNA methylation biomarkers in patients with acute myeloid leukemia using a custom DNA methylation sequencing panel. Clin Epigen. 2022;14(1):1. doi: 10.1186/s13148-022-01242-6. PubMed DOI PMC
Cancer Genome Atlas Research Network. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–2074. doi: 10.1056/NEJMoa1301689. PubMed DOI PMC
Jost E, Lin Q, Weidner CI, Wilop S, Hoffmann M, Walenda T, et al. Epimutations mimic genomic mutations of DNMT3A in acute myeloid leukemia. Leukemia. 2014;28(6):1227–1234. doi: 10.1038/leu.2013.362. PubMed DOI PMC
Hajkova H, Markova J, Haskovec C, Sarova I, Fuchs O, Kostecka A, et al. Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res. 2012;36(9):1128–1133. doi: 10.1016/j.leukres.2012.05.012. PubMed DOI
Deneberg S, Guardiola P, Lennartsson A, Qu Y, Gaidzik V, Blanchet O, et al. Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood. 2011;118(20):5573–5582. doi: 10.1182/blood-2011-01-332353. PubMed DOI
Jung N, Dai B, Gentles AJ, Majeti R, Feinberg AP. An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun. 2015;6:8489. doi: 10.1038/ncomms9489. PubMed DOI PMC
Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O'Laughlin M, et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia. 2015;29(6):1279–1289. doi: 10.1038/leu.2015.6. PubMed DOI PMC
Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L, et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia. 2002;16(2):186–195. doi: 10.1038/sj.leu.2402354. PubMed DOI
Nagy A, Osz A, Budczies J, Krizsan S, Szombath G, Demeter J, et al. Elevated HOX gene expression in acute myeloid leukemia is associated with NPM1 mutations and poor survival. J Adv Res. 2019;20:105–116. doi: 10.1016/j.jare.2019.05.006. PubMed DOI PMC
Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56(2):84–89. doi: 10.1053/j.seminhematol.2018.08.001. PubMed DOI PMC
Kroeger H, Jelinek J, Kornblau SM, Bueso-Ramos CE, Issa J. Increased DNA methylation is associated with good prognosis in AML. Blood. 2007;110(11):595. doi: 10.1182/blood.V110.11.595.595. DOI
Andrews S. FastQC: a quality control tool for high throughput sequence data [Online]. 2015; Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 20 June 2020.
Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10. doi: 10.14806/ej.17.1.200. DOI
Otto C, Stadler PF, Hoffmann S. Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics. 2012;28(13):1698–1704. doi: 10.1093/bioinformatics/bts254. PubMed DOI
Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol. 2014;32(6):548–556. doi: 10.1200/JCO.2013.50.6337. PubMed DOI PMC
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501. doi: 10.1038/nbt.1630. PubMed DOI PMC
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009 doi: 10.1186/1471-2105-10-48. PubMed DOI PMC