MethScore as a new comprehensive DNA methylation-based value refining the prognosis in acute myeloid leukemia

. 2024 Jan 22 ; 16 (1) : 17. [epub] 20240122

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38254139
Odkazy

PubMed 38254139
PubMed Central PMC10802002
DOI 10.1186/s13148-024-01625-x
PII: 10.1186/s13148-024-01625-x
Knihovny.cz E-zdroje

BACKGROUND: Changes in DNA methylation are common events in the pathogenesis of acute myeloid leukemia (AML) and have been repeatedly reported as associated with prognosis. However, studies integrating these numerous and potentially prognostically relevant DNA methylation changes are lacking. Therefore, we aimed for an overall evaluation of these epigenetic aberrations to provide a comprehensive NGS-based approach of DNA methylation assessment for AML prognostication. RESULTS: We designed a sequencing panel targeting 239 regions (approx. 573 kb of total size) described in the literature as having a prognostic impact or being associated with AML pathogenesis. Diagnostic whole-blood DNA samples of adult AML patients divided into a training (n = 128) and a testing cohort (n = 50) were examined. The libraries were prepared using SeqCap Epi Enrichments System (Roche) and sequenced on MiSeq instrument (Illumina). Altogether, 1935 CpGs affecting the survival (p < 0.05) were revealed in the training cohort. A summarizing value MethScore was then calculated from these significant CpGs. Patients with lower MethScore had markedly longer overall survival (OS) and event-free survival (EFS) than those with higher MethScore (p < 0.001). The predictive ability of MethScore was verified on the independent testing cohort for OS (p = 0.01). Moreover, the proof-of-principle validation was performed using the TCGA dataset. CONCLUSIONS: We showed that comprehensive NGS-based approach of DNA methylation assessment revealed a robust epigenetic signature relevant to AML outcome. We called this signature MethScore and showed it might serve as a strong prognostic marker able to refine survival probability of AML patients.

Zobrazit více v PubMed

Kayser S, Levis MJ. Clinical implications of molecular markers in acute myeloid leukemia. Eur J Haematol. 2019;102(1):20–35. doi: 10.1111/ejh.13172. PubMed DOI PMC

Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93(10):1267–1291. doi: 10.1002/ajh.25214. PubMed DOI

Jiang H, Ou Z, He Y, Yu M, Wu S, Li G, et al. DNA methylation markers in the diagnosis and prognosis of common leukemias. Signal Transduct Target Ther. 2020;5(1):3. doi: 10.1038/s41392-019-0090-5. PubMed DOI PMC

Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA. 2017;114(28):7414–7419. doi: 10.1073/pnas.1703577114. PubMed DOI PMC

Yang X, Wong MPM, Ng RK. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci. 2019 doi: 10.3390/ijms20184576. PubMed DOI PMC

Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792–799. doi: 10.1038/nm.4125. PubMed DOI PMC

Sestakova S, Cerovska E, Salek C, Kundrat D, Jeziskova I, Folta A, et al. A validation study of potential prognostic DNA methylation biomarkers in patients with acute myeloid leukemia using a custom DNA methylation sequencing panel. Clin Epigen. 2022;14(1):1. doi: 10.1186/s13148-022-01242-6. PubMed DOI PMC

Cancer Genome Atlas Research Network. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–2074. doi: 10.1056/NEJMoa1301689. PubMed DOI PMC

Jost E, Lin Q, Weidner CI, Wilop S, Hoffmann M, Walenda T, et al. Epimutations mimic genomic mutations of DNMT3A in acute myeloid leukemia. Leukemia. 2014;28(6):1227–1234. doi: 10.1038/leu.2013.362. PubMed DOI PMC

Hajkova H, Markova J, Haskovec C, Sarova I, Fuchs O, Kostecka A, et al. Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res. 2012;36(9):1128–1133. doi: 10.1016/j.leukres.2012.05.012. PubMed DOI

Deneberg S, Guardiola P, Lennartsson A, Qu Y, Gaidzik V, Blanchet O, et al. Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood. 2011;118(20):5573–5582. doi: 10.1182/blood-2011-01-332353. PubMed DOI

Jung N, Dai B, Gentles AJ, Majeti R, Feinberg AP. An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun. 2015;6:8489. doi: 10.1038/ncomms9489. PubMed DOI PMC

Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O'Laughlin M, et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia. 2015;29(6):1279–1289. doi: 10.1038/leu.2015.6. PubMed DOI PMC

Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L, et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia. 2002;16(2):186–195. doi: 10.1038/sj.leu.2402354. PubMed DOI

Nagy A, Osz A, Budczies J, Krizsan S, Szombath G, Demeter J, et al. Elevated HOX gene expression in acute myeloid leukemia is associated with NPM1 mutations and poor survival. J Adv Res. 2019;20:105–116. doi: 10.1016/j.jare.2019.05.006. PubMed DOI PMC

Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56(2):84–89. doi: 10.1053/j.seminhematol.2018.08.001. PubMed DOI PMC

Kroeger H, Jelinek J, Kornblau SM, Bueso-Ramos CE, Issa J. Increased DNA methylation is associated with good prognosis in AML. Blood. 2007;110(11):595. doi: 10.1182/blood.V110.11.595.595. DOI

Andrews S. FastQC: a quality control tool for high throughput sequence data [Online]. 2015; Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 20 June 2020.

Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10. doi: 10.14806/ej.17.1.200. DOI

Otto C, Stadler PF, Hoffmann S. Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics. 2012;28(13):1698–1704. doi: 10.1093/bioinformatics/bts254. PubMed DOI

Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol. 2014;32(6):548–556. doi: 10.1200/JCO.2013.50.6337. PubMed DOI PMC

McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501. doi: 10.1038/nbt.1630. PubMed DOI PMC

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC

Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009 doi: 10.1186/1471-2105-10-48. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...