Modification of AgNP-Decorated PET: A Promising Strategy for Preparation of AgNP-Filled Nuclear Pores in Polymer Membranes
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
22-17346S
Czech Science Foundation
PubMed
38255786
PubMed Central
PMC10815600
DOI
10.3390/ijms25020712
PII: ijms25020712
Knihovny.cz E-resources
- Keywords
- immobilisation, ion-track membrane, laser, physical modification, polymer, silver nanoparticle,
- MeSH
- Nuclear Pore MeSH
- Metal Nanoparticles * MeSH
- Polymers MeSH
- Positron-Emission Tomography MeSH
- Silver MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Polymers MeSH
- Silver MeSH
Polymer-based membranes represent an irreplaceable group of materials that can be applied in a wide range of key industrial areas, from packaging to high-end technologies. Increased selectivity to transport properties or the possibility of controlling membrane permeability by external stimuli represents a key issue in current material research. In this work, we present an unconventional approach with the introduction of silver nanoparticles (AgNPs) into membrane pores, by immobilising them onto the surface of polyethyleneterephthalate (PET) foil with subsequent physical modification by means of laser and plasma radiation prior to membrane preparation. Our results showed that the surface characteristics of AgNP-decorated PET (surface morphology, AgNP content, and depth profile) affected the distribution and concentration of AgNPs in subsequent ion-track membranes. We believe that the presented approach affecting the redistribution of AgNPs in the polymer volume may open up new possibilities for the preparation of metal nanoparticle-filled polymeric membranes. The presence of AgNPs on the pore walls can facilitate the grafting of stimuli-responsive molecules onto these active sites and may contribute to the development of intelligent membranes with controllable transport properties.
See more in PubMed
Sonawane S., Thakur P., Sonawane S.H., Bhanvase B.A. Chapter 17—Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment. In: Bhanvase B., Sonawane S., Pawade V., Pandit A., editors. Handbook of Nanomaterials for Wastewater Treatment. Elsevier; Amsterdam, The Netherlands: 2021. pp. 537–553.
Dongre R.S., Sadasivuni K.K., Deshmukh K., Mehta A., Basu S., Meshram J.S., Al-Maadeed M.A., Karim A. Natural polymer based composite membranes for water purification: A review. Polym.-Plast. Technol. Mater. 2019;58:1295–1310. doi: 10.1080/25740881.2018.1563116. DOI
Ponnamma D., Sadasivuni K.K., Grohens Y., Guo Q., Thomas S. Carbon nanotube based elastomer composites—An approach towards multifunctional materials. J. Mater. Chem. C. 2014;2:8446–8485. doi: 10.1039/C4TC01037J. DOI
Ferreira A.R.V., Alves V.D., Coelhoso I.M. Polysaccharide-Based Membranes in Food Packaging Applications. Membranes. 2016;6:22. doi: 10.3390/membranes6020022. PubMed DOI PMC
Alqaheem Y., Alomair A., Vinoba M., Perez A. Polymeric Gas-Separation Membranes for Petroleum Refining. Int. J. Polym. Sci. 2017;2017:4250927. doi: 10.1155/2017/4250927. DOI
Kim S., Chu K.H., Al-Hamadani Y.A.J., Park C.M., Jang M., Kim D.-H., Yu M., Heo J., Yoon Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018;335:896–914. doi: 10.1016/j.cej.2017.11.044. DOI
Yang Z., Zhou Y., Feng Z., Rui X., Zhang T., Zhang Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers. 2019;11:1252. doi: 10.3390/polym11081252. PubMed DOI PMC
Irfan M., Idris A., Nasiri R., Almaki J.H. Fabrication and evaluation of polymeric membranes for blood dialysis treatments using functionalized MWCNT based nanocomposite and sulphonated-PES. RSC Adv. 2016;6:101513–101525. doi: 10.1039/C6RA13293F. DOI
Kim D.J., Jo M.J., Nam S.Y. A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 2015;21:36–52. doi: 10.1016/j.jiec.2014.04.030. DOI
Aframehr W.M., Molki B., Bagheri R., Heidarian P., Davodi S.M. Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles. Chem. Eng. Res. Des. 2020;153:789–805. doi: 10.1016/j.cherd.2019.11.006. DOI
Ge L., Zhu Z., Rudolph V. Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Sep. Purif. Technol. 2011;78:76–82. doi: 10.1016/j.seppur.2011.01.024. DOI
Bryan N., Lasseuguette E., van Dalen M., Permogorov N., Amieiro A., Brandani S., Ferrari M.-C. Development of Mixed Matrix Membranes Containing Zeolites for Post-combustion Carbon Capture. Energy Procedia. 2014;63:160–166. doi: 10.1016/j.egypro.2014.11.016. DOI
Bastani D., Esmaeili N., Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. J. Ind. Eng. Chem. 2013;19:375–393. doi: 10.1016/j.jiec.2012.09.019. DOI
Cheng Y., Ying Y., Japip S., Jiang S.-D., Chung T.-S., Zhang S., Zhao D. Advanced Porous Materials in Mixed Matrix Membranes. Adv. Mater. 2018;30:1802401. doi: 10.1002/adma.201802401. PubMed DOI
Yang Y.-B., Chai W., Zhang L., Wang J., You J. A mini-review of polymeric porous membranes with vertically penetrative pores. J. Polym. Sci. 2023:1–16. doi: 10.1002/pol.20230501. DOI
Burmann P., Zornoza B., Téllez C., Coronas J. Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation. Chem. Eng. Sci. 2014;107:66–75. doi: 10.1016/j.ces.2013.12.001. DOI
Mukherjee R., Bhunia P., De S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016;292:284–297. doi: 10.1016/j.cej.2016.02.015. DOI
Lin R., Ge L., Hou L., Strounina E., Rudolph V., Zhu Z. Mixed Matrix Membranes with Strengthened MOFs/Polymer Interfacial Interaction and Improved Membrane Performance. ACS Appl. Mater. Interfaces. 2014;6:5609–5618. doi: 10.1021/am500081e. PubMed DOI
Dodero A., Alloisio M., Vicini S., Castellano M. Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles. Carbohydr. Polym. 2020;227:115371. doi: 10.1016/j.carbpol.2019.115371. PubMed DOI
Moradi G., Zinadini S., Rajabi L., Dadari S. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors. Appl. Surf. Sci. 2018;427:830–842. doi: 10.1016/j.apsusc.2017.09.039. DOI
Xiang F., Marti A.M., Hopkinson D.P. Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation. J. Membr. Sci. 2018;556:146–153. doi: 10.1016/j.memsci.2018.03.081. DOI
Lee J.-Y., Qi S., Liu X., Li Y., Huo F., Tang C.Y. Synthesis and characterization of silica gel–polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly. Sep. Purif. Technol. 2014;124:207–216. doi: 10.1016/j.seppur.2014.01.029. DOI
Darvishmanesh S., Qian X., Wickramasinghe S.R. Responsive membranes for advanced separations. Curr. Opin. Chem. Eng. 2015;8:98–104. doi: 10.1016/j.coche.2015.04.002. DOI
Muslimova I.B., Zhatkanbayeva Z.K., Omertasov D.D., Melnikova G.B., Yeszhanov A.B., Guven O., Chizhik S.A., Zdorovets M.V., Korolkov I.V. Stimuli-Responsive Track-Etched Membranes for Separation of Water-Oil Emulsions. Membranes. 2023;13:523. doi: 10.3390/membranes13050523. PubMed DOI PMC
Siegel J., Kaimlova M., Vyhnalkova B., Trelin A., Lyutakov O., Slepicka P., Svorcik V., Vesely M., Vokata B., Malinsky P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle-Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2021;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC
Slepicka P., Nedela O., Siegel J., Krajcar R., Kolska Z., Svorcik V. Ripple polystyrene nano-pattern induced by KrF laser. Express Polym. Lett. 2014;8:459–466. doi: 10.3144/expresspolymlett.2014.50. DOI
Malkin A.Y. Surface instabilities. Colloid J. 2008;70:673–689. doi: 10.1134/S1061933X0806001X. DOI
Slepicka P., Michaljanicová I., Sajdl P., Fitl P., Svorcík V. Surface ablation of PLLA induced by KrF excimer laser. Appl. Surf. Sci. 2013;283:438–444. doi: 10.1016/j.apsusc.2013.06.127. DOI
Thuc D.T., Huy T.Q., Hoang L.H., Tien B.C., Van Chung P., Thuy N.T., Le A.-T. Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Mater. Lett. 2016;181:173–177. doi: 10.1016/j.matlet.2016.06.008. DOI