Pressure overload is associated with right ventricular dyssynchrony in heart failure with reduced ejection fraction
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-02-00130
Ministerstvo Zdravotnictví Ceské Republiky
NU21-02-00402
Ministerstvo Zdravotnictví Ceské Republiky
NU22-02-00161
Ministerstvo Zdravotnictví Ceské Republiky
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
PubMed
38263857
PubMed Central
PMC10966231
DOI
10.1002/ehf2.14682
Knihovny.cz E-zdroje
- Klíčová slova
- Heart failure with reduced ejection fraction, Pulmonary hypertension, Right ventricular dyssynchrony, Right ventricular failure, SPECT,
- MeSH
- dysfunkce levé srdeční komory * MeSH
- echokardiografie metody MeSH
- funkce levé komory srdeční MeSH
- lidé MeSH
- srdeční komory diagnostické zobrazování MeSH
- srdeční selhání * MeSH
- tepový objem MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: The determinants and relevance of right ventricular (RV) mechanical dyssynchrony in heart failure with reduced ejection fraction (HFrEF) are poorly understood. We hypothesized that increased afterload may adversely affect the synchrony of RV contraction. METHODS AND RESULTS: A total of 148 patients with HFrEF and 36 controls underwent echocardiography, right heart catheterization, and gated single-photon emission computed tomography to measure RV chamber volumes and mechanical dyssynchrony (phase standard deviation of systolic displacement timing). Exams were repeated after preload (N = 135) and afterload (N = 15) modulation. Patients with HFrEF showed higher RV dyssynchrony compared with controls (40.6 ± 17.5° vs. 27.8 ± 9.1°, P < 0.001). The magnitude of RV dyssynchrony in HFrEF correlated with larger RV and left ventricular (LV) volumes, lower RV ejection fraction (RVEF) and LV ejection fraction, reduced intrinsic contractility, increased heart rate, higher pulmonary artery (PA) load, and impaired RV-PA coupling (all P ≤ 0.01). Low RVEF was the strongest predictor of RV dyssynchrony. Left bundle branch block (BBB) was associated with greater RV dyssynchrony than right BBB, regardless of QRS duration. RV afterload reduction by sildenafil improved RV dyssynchrony (P = 0.004), whereas preload change with passive leg raise had modest effect. Patients in the highest tertiles of RV dyssynchrony had an increased risk of adverse clinical events compared with those in the lower tertile [T2/T3 vs. T1: hazard ratio 1.98 (95% confidence interval 1.20-3.24), P = 0.007]. CONCLUSIONS: RV dyssynchrony is associated with RV remodelling, dysfunction, adverse haemodynamics, and greater risk for adverse clinical events. RV dyssynchrony is mitigated by acute RV afterload reduction and could be a potential therapeutic target to improve RV performance in HFrEF.
Cardiovascular Division Mayo Clinic Rochester MN USA
Institute for Clinical and Experimental Medicine Prague Czech Republic
Université de Lorraine INSERM Centre d'Investigations Cliniques Plurithématique Nancy France
Zobrazit více v PubMed
Bleeker GB, Bax JJ, Steendijk P, Schalij MJ, van der Wall EE. Left ventricular dyssynchrony in patients with heart failure: Pathophysiology, diagnosis and treatment. Nat Clin Pract Cardiovasc Med 2006;3:213‐219. doi:10.1038/ncpcardio0505 PubMed DOI
Badagliacca R, Reali M, Poscia R, Pezzuto B, Papa S, Mezzapesa M, et al. Right intraventricular dyssynchrony in idiopathic, heritable, and anorexigen‐induced pulmonary arterial hypertension: Clinical impact and reversibility. JACC Cardiovasc Imaging 2015;8:642‐652. doi:10.1016/j.jcmg.2015.02.009 PubMed DOI
Tops LF, Prakasa K, Tandri H, Dalal D, Jain R, Dimaano VL, et al. Prevalence and pathophysiologic attributes of ventricular dyssynchrony in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 2009;54:445‐451. doi:10.1016/j.jacc.2009.04.038 PubMed DOI PMC
Storsten P, Aalen JM, Boe E, Remme EW, Gjesdal O, Larsen CK, et al. Mechanical effects on right ventricular function from left bundle branch block and cardiac resynchronization therapy. JACC Cardiovasc Imaging 2020;13:1475‐1484. doi:10.1016/j.jcmg.2019.11.016 PubMed DOI
Fauchier L, Marie O, Casset‐Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: A prognostic study with Fourier phase analysis of radionuclide angioscintigraphy. J Am Coll Cardiol 2002;40:2022‐2030. doi:10.1016/S0735-1097(02)02569-X PubMed DOI
Boogers MJ, Chen J, Veltman CE, van Bommel RJ, Mooyaart EA, Al Younis I, et al. Left ventricular diastolic dyssynchrony assessed with phase analysis of gated myocardial perfusion SPECT: A comparison with tissue Doppler imaging. Eur J Nucl Med Mol Imaging 2011;38:2031‐2039. doi:10.1007/s00259-011-1870-5 PubMed DOI PMC
Rich JD, Ward RP. Right‐ventricular function by nuclear cardiology. Curr Opin Cardiol 2010;25:445‐450. doi:10.1097/HCO.0b013e32833cb252 PubMed DOI
Fudim M, Fathallah M, Shaw LK, Liu PR, James O, Samad Z, et al. The prognostic value of diastolic and systolic mechanical left ventricular dyssynchrony among patients with coronary heart disease. JACC Cardiovasc Imaging 2019;12:1215‐1226. doi:10.1016/j.jcmg.2018.05.018 PubMed DOI
Singh H, Singhal A, Sharma P, Patel CD, Seth S, Malhotra A. Quantitative assessment of cardiac mechanical synchrony using equilibrium radionuclide angiography. J Nucl Cardiol 2013;20:415‐425. doi:10.1007/s12350-013-9705-3 PubMed DOI
Vallejo E, Jimenez L, Rodriguez G, Roffe F, Bialostozky D. Evaluation of ventricular synchrony with equilibrium radionuclide angiography: Assessment of variability and accuracy. Arch Med Res 2010;41:83‐91. doi:10.1016/j.arcmed.2010.02.003 PubMed DOI
Rosenkranz S, Preston IR. Right heart catheterisation: Best practice and pitfalls in pulmonary hypertension. Eur Respir Rev 2015;24:642‐652. doi:10.1183/16000617.0062-2015 PubMed DOI PMC
Lavdaniti M. Invasive and non‐invasive methods for cardiac output measurement. Int J Caring Sci 2008;1:6.
Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 2008;35:851‐885. doi:10.1007/s00259-007-0694-9 PubMed DOI
Velleca A, Shullo MA, Dhital K, Azeka E, Colvin M, DePasquale E, et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J Heart Lung Transplant 2023;42:e1‐e141. doi:10.1016/j.healun.2022.10.015 PubMed DOI
Wright SP, Groves L, Vishram‐Nielsen JKK, Karvasarski E, Valle FH, Alba AC, et al. Elevated pulmonary arterial elastance and right ventricular uncoupling are associated with greater mortality in advanced heart failure. J Heart Lung Transplant 2020;39:657‐665. doi:10.1016/j.healun.2020.02.013 PubMed DOI
Tello K, Richter MJ, Axmann J, Buhmann M, Seeger W, Naeije R, et al. More on single‐beat estimation of right ventriculoarterial coupling in pulmonary arterial hypertension. Am J Respir Crit Care Med 2018;198:816‐818. doi:10.1164/rccm.201802-0283LE PubMed DOI
Sanz J, Garcia‐Alvarez A, Fernandez‐Friera L, Nair A, Mirelis JG, Sawit ST, et al. Right ventriculo‐arterial coupling in pulmonary hypertension: A magnetic resonance study. Heart 2012;98:238‐243. doi:10.1136/heartjnl-2011-300462 PubMed DOI
Vonk Noordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: An update. Eur Respir J 2019. Jan;53:1801900. doi:10.1183/13993003.01900-2018 PubMed DOI PMC
Tello K, Dalmer A, Axmann J, Vanderpool R, Ghofrani HA, Naeije R, et al. Reserve of right ventricular‐arterial coupling in the setting of chronic overload. Circ Heart Fail 2019;12:e005512. doi:10.1161/CIRCHEARTFAILURE.118.005512 PubMed DOI
Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019;53:1801913. doi:10.1183/13993003.01913-2018 PubMed DOI PMC
Fudim M, Dalgaard F, Fathallah M, Iskandrian AE, Borges‐Neto S. Mechanical dyssynchrony: How do we measure it, what it means, and what we can do about it. J Nucl Cardiol 2021;28:2174‐2184. doi:10.1007/s12350-019-01758-0 PubMed DOI
Friehling M, Chen J, Saba S, Bazaz R, Schwartzman D, Adelstein EC, et al. A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single‐injection gated SPECT protocol. Circ Cardiovasc Imaging 2011;4:532‐539. doi:10.1161/CIRCIMAGING.111.965459 PubMed DOI PMC
Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG‐gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687‐695. doi:10.1016/j.nuclcard.2005.06.088 PubMed DOI
Van Kriekinge SD, Nishina H, Ohba M, Berman DS, Germano G. Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: Application to the characterization of ventricular contraction in patients with left bundle branch block. J Nucl Med 2008;49:1790‐1797. doi:10.2967/jnumed.108.055160 PubMed DOI
Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. Repeatability and reproducibility of phase analysis of gated single‐photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374‐381. doi:10.1097/MNM.0b013e3282f81380 PubMed DOI PMC
Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, et al. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol 2013;62:1660‐1670. PubMed
Monzo L, Kotrc M, Benes J, Sedlacek K, Jurcova I, Franekova J, et al. Clinical and humoral determinants of congestion in heart failure: Potential role of adiponectin. Kidney Blood Press Res 2019;44:1271‐1284. doi:10.1159/000502975 PubMed DOI
Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 1997;95:2660‐2667. doi:10.1161/01.CIR.95.12.2660 PubMed DOI
Murata M, Tsugu T, Kawakami T, Kataoka M, Minakata Y, Endo J, et al. Right ventricular dyssynchrony predicts clinical outcomes in patients with pulmonary hypertension. Int J Cardiol 2017;1:912‐918. doi:10.1016/j.ijcard.2016.11.244 PubMed DOI
Calcutteea A, Chung R, Lindqvist P, Hodson M, Henein MY. Differential right ventricular regional function and the effect of pulmonary hypertension: Three‐dimensional echo study. Heart 2011;97:1004‐1011. doi:10.1136/hrt.2010.208900 PubMed DOI
Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Gotte MJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: Left‐to‐right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 2008;51:750‐757. doi:10.1016/j.jacc.2007.10.041 PubMed DOI
Buckberg G, Hoffman JI. Right ventricular architecture responsible for mechanical performance: Unifying role of ventricular septum. J Thorac Cardiovasc Surg 2014;148:3166‐3171. doi:10.1016/j.jtcvs.2014.05.044 PubMed DOI
Ewalts M, Dawkins T, Boulet LM, Thijssen D, Stembridge M. The influence of increased venous return on right ventricular dyssynchrony during acute and sustained hypoxaemia. Exp Physiol 2021;106:925‐937. doi:10.1113/EP088657 PubMed DOI
Mashali MA, Saad NS, Peczkowski KK, Fanning T, Hare AN, Whitson BA, et al. Mechanical dyssynchrony of isolated left and right ventricular human myocardium in end‐stage heart failure. Circ Heart Fail 2023;e009871. doi:10.1161/CIRCHEARTFAILURE.122.009871 PubMed DOI PMC
Byrne MJ, Helm RH, Daya S, Osman NF, Halperin HR, Berger RD, et al. Diminished left ventricular dyssynchrony and impact of resynchronization in failing hearts with right versus left bundle branch block. J Am Coll Cardiol 2007;50:1484‐1490. doi:10.1016/j.jacc.2007.07.011 PubMed DOI
Pezzuto B, Forton K, Badagliacca R, Motoji Y, Faoro V, Naeije R. Right ventricular dyssynchrony during hypoxic breathing but not during exercise in healthy subjects: A speckle tracking echocardiography study. Exp Physiol 2018;103:1338‐1346. doi:10.1113/EP087027 PubMed DOI
Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 2017;69:236‐243. doi:10.1016/j.jacc.2016.10.047 PubMed DOI
Monzo L, Reichenbach A, Al‐Hiti H, Borlaug BA, Havlenova T, Solar N, et al. Acute unloading effects of sildenafil enhance right ventricular‐pulmonary artery coupling in heart failure. J Card Fail 2021;27:224‐232. doi:10.1016/j.cardfail.2020.11.007 PubMed DOI
Monzo L, Reichenbach A, Al‐Hiti H, Jurcova I, Huskova Z, Kautzner J, et al. Pulmonary vasculature responsiveness to phosphodiesterase‐5A inhibition in heart failure with reduced ejection fraction: Possible role of plasma potassium. Front Cardiovasc Med 2022;9:883911. doi:10.3389/fcvm.2022.883911 PubMed DOI PMC
Palau‐Caballero G, Walmsley J, Van Empel V, Lumens J, Delhaas T. Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: Mechanistic analysis using a computer model. Am J Physiol Heart Circ Physiol 2017;312:H691‐H700. doi:10.1152/ajpheart.00596.2016 PubMed DOI