• This record comes from PubMed

Lewis Acidic Aluminosilicates: Synthesis, 27Al MQ/MAS NMR, and DFT-Calculated 27Al NMR Parameters

. 2024 Feb 05 ; 63 (5) : 2679-2694. [epub] 20240125

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Porous aluminosilicates are functional materials of paramount importance as Lewis acid catalysts in the synthetic industry, yet the participating aluminum species remain poorly studied. Herein, a series of model aluminosilicate networks containing [L-AlO3] (L = THF, Et3N, pyridine, triethylphosphine oxide (TEPO)) and [AlO4]- centers were prepared through nonhydrolytic sol-gel condensation reactions of the spherosilicate building block (Me3Sn)8Si8O20 with L-AlX3 (X = Cl, Me, Et) and [Me4N] [AlCl4] compounds in THF or toluene. The substoichiometric dosage of the Al precursors ensured complete condensation and uniform incorporation, with the bulky spherosilicate forcing a separation between neighboring aluminum centers. The materials were characterized by 1H, 13C, 27Al, 29Si, and 31P MAS NMR and FTIR spectroscopies, ICP-OES, gravimetry, and N2 adsorption porosimetry. The resulting aluminum centers were resolved by 27Al TQ/MAS NMR techniques and assigned based on their spectroscopic parameters obtained by peak fitting (δiso, CQ, η) and their correspondence to the values calculated on model structures by DFT methods. A clear correlation between the decrease in the symmetry of the Al centers and the increase of the observed CQ was established with values spanning from 4.4 MHz for distorted [AlO4]- to 15.1 MHz for [THF-AlO3]. Products containing exclusively [TEPO-AlO3] or [AlO4]- centers could be obtained (single-site materials). For L = THF, Et3N, and pyridine, the [AlO4]- centers were formed together with the expected [L-AlO3] species, and a viable mechanism for the unexpected emergence of [AlO4]- was proposed.

See more in PubMed

Zeolites and Catalysis: synthesis, reactions and applications; Čejka J.; Corma A.; Zones S., Eds.; Wiley, 2010. 10.1002/9783527630295. DOI

Haag W. O.; Lago R. M.; Weisz P. B. The Active Site of Acidic Aluminosilicate Catalysts. Nature 1984, 309 (5969), 589–591. 10.1038/309589a0. DOI

Ravi M.; Sushkevich V. L.; van Bokhoven J. A. Towards a Better Understanding of Lewis Acidic Aluminium in Zeolites. Nat. Mater. 2020, 19 (10), 1047–1056. 10.1038/s41563-020-0751-3. PubMed DOI

Li G.; Pidko E. A. The Nature and Catalytic Function of Cation Sites in Zeolites: A Computational Perspective. ChemCatChem. 2019, 11 (1), 134–156. 10.1002/cctc.201801493. DOI

Xu J.; Wang Q.; Deng F. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy. Acc. Chem. Res. 2019, 52 (8), 2179–2189. 10.1021/acs.accounts.9b00125. PubMed DOI

Xin S.; Wang Q.; Xu J.; Chu Y.; Wang P.; Feng N.; Qi G.; Trébosc J.; Lafon O.; Fan W.; Deng F. The Acidic Nature of “NMR-Invisible” Tri-Coordinated Framework Aluminum Species in Zeolites. Chem. Sci. 2019, 10 (43), 10159–10169. 10.1039/C9SC02634G. PubMed DOI PMC

Kobera L.; Czernek J.; Abbrent S.; Mackova H.; Pavlovec L.; Rohlicek J.; Brus J. The Nature of Chemical Bonding in Lewis Adducts as Reflected by 27Al NMR quadrupolar Coupling Constant: Combined Solid-State NMR and Quantum Chemical Approach. Inorg. Chem. 2018, 57 (12), 7428–7437. 10.1021/acs.inorgchem.8b01009. PubMed DOI

Yakimov A. V.; Ravi M.; Verel R.; Sushkevich V. L.; van Bokhoven J. A.; Copéret C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J. Am. Chem. Soc. 2022, 144 (23), 10377–10385. 10.1021/jacs.2c02212. PubMed DOI

Chen K.; Gan Z.; Horstmeier S.; White J. L. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. J. Am. Chem. Soc. 2021, 143 (17), 6669–6680. 10.1021/jacs.1c02361. PubMed DOI PMC

Brus J.; Kobera L.; Schoefberger W.; Urbanová M.; Klein P.; Sazama P.; Tabor E.; Sklenak S.; Fishchuk A. V.; Dědeček J. Structure of Framework Aluminum Lewis Sites and Perturbed Aluminum Atoms in Zeolites as Determined by 27Al{1H} REDOR (3Q) MAS NMR Spectroscopy and DFT/Molecular Mechanics. Angew. Chemie Int. Ed. 2015, 54, 541–545. 10.1002/anie.201409635. PubMed DOI

Lam E.; Comas-Vives A.; Copéret C. Role of Coordination Number, Geometry, and Local Disorder on 27Al NMR Chemical Shifts and quadrupolar Coupling Constants: Case Study with aluminosilicates. J. Phys. Chem. C 2017, 121 (36), 19946–19957. 10.1021/acs.jpcc.7b07872. DOI

Ghosh N. N.; Clark J. C.; Eldridge G. T.; Barnes C. E. Building Block Syntheses of Site-Isolated Vanadyl Groups in Silicate Oxides. Chem. Commun. 2004, (7), 856.10.1039/b316184f. PubMed DOI

Clark J. C.; Saengkerdsub S.; Eldridge G. T.; Campana C.; Barnes C. E. Synthesis and Structure of Functional Spherosilicate Building Block Molecules for Materials Synthesis. J. Organomet. Chem. 2006, 691 (15), 3213–3222. 10.1016/j.jorganchem.2006.03.028. DOI

Clark J. C.; Barnes C. E. Reaction of the Si8O20(SnMe3)8 Building Block with Silyl Chlorides: A New Synthetic Methodology for Preparing Nanostructured Building Block Solids. Chem. Mater. 2007, 19 (13), 3212–3218. 10.1021/cm070038b. DOI

Lee M.-Y.; Jiao J.; Mayes R.; Hagaman E.; Barnes C. E. The Targeted Synthesis of Single Site Vanadyl Species on the Surface and in the Framework of Silicate Building Block Materials. Catal. Today 2011, 160 (1), 153–164. 10.1016/j.cattod.2010.06.029. DOI

Styskalik A.; Abbott J. G.; Orick M. C.; Debecker D. P.; Barnes C. E. Synthesis, Characterization and Catalytic Activity of Single Site. Lewis Acidic aluminosilicates. Catal. Today 2019, 334, 131–139. 10.1016/j.cattod.2018.11.079. DOI

Saengkerdsub S.Group 4 Metallocene and Half-Sandwich Derivatives of Spherosilicate: Preparation From Si8O20(SnMe3)8 and Their Olefin Polymerization Activity; University of Tennessee, 2002. https://trace.tennessee.edu/utk_graddiss/2195.

Engelhardt L. M.; Junk P. C.; Raston C. L.; Skelton B. W.; White A. H. Unidentate Nitrogen Base Adducts of Aluminium Trichloride. J. Chem. Soc. Dalton Trans. 1996, (15), 3297.10.1039/dt9960003297. DOI

Cowley A. H.; Cushner M. C.; Davis R. E.; Riley P. E. Crystal and Molecular Structure of the 1:2 Aluminum Trichloride-Tetrahydrofuran Complex AlCl3.2THF. Inorg. Chem. 1981, 20 (4), 1179–1181. 10.1021/ic50218a044. DOI

Dixon W.; Schaefer J.; Sefcik M.; Stejskal E.; McKay R. Total Suppression of Sidebands in CPMAS C-13 NMR. J. Magn. Reson. 1982, 49 (2), 341–345. 10.1016/0022-2364(82)90199-8. DOI

Hayashi S.; Hayamizu K. Chemical Shift Standards in High-Resolution Solid-State NMR (1) 13C, 29Si, and 1H Nuclei. Bull. Chem. Soc. Jpn. 1991, 64 (2), 685–687. 10.1246/bcsj.64.685. DOI

Hayashi S.; Hayamizu K. Shift References in High-Resolution Solid-State NMR. Bull. Chem. Soc. Jpn. 1989, 62 (7), 2429–2430. 10.1246/bcsj.62.2429. DOI

Frydman L.; Harwood J. S. Isotropic Spectra of Half-Integer quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR. J. Am. Chem. Soc. 1995, 117 (19), 5367–5368. 10.1021/ja00124a023. DOI

Bräuniger T.; Wormald P.; Hodgkinson P.. Improved Proton Decoupling in NMR Spectroscopy of Crystalline Solids Using the Spinal-64 Sequence. In Current Developments in Solid State NMR Spectroscopy; Springer Vienna: Vienna, 2002; pp 69–74. 10.1007/978-3-7091-3715-4_4. DOI

Adamo C.; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999, 110 (13), 6158–6170. 10.1063/1.478522. DOI

Adamo C.; Scuseria G. E.; Barone V. Accurate Excitation Energies from Time-Dependent Density Functional Theory: Assessing the PBE0Model. J. Chem. Phys. 1999, 111 (7), 2889–2899. 10.1063/1.479571. DOI

Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297.10.1039/b508541a. PubMed DOI

Schäfer A.; Horn H.; Ahlrichs R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97 (4), 2571–2577. 10.1063/1.463096. DOI

Bergner A.; Dolg M.; Küchle W.; Stoll H.; Preuß H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. Mol. Phys. 1993, 80 (6), 1431–1441. 10.1080/00268979300103121. DOI

Metz B.; Stoll H.; Dolg M. Small-Core Multiconfiguration-Dirac–Hartree–Fock-Adjusted Pseudopotentials for Post-d Main Group Elements: Application to PbH and PbO. J. Chem. Phys. 2000, 113 (7), 2563–2569. 10.1063/1.1305880. DOI

Turbomole V7.5 2020, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007; Turbomole GmbH, since 2007. http://www.Turbomole.com/.

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI

van Lenthe E.; Snijders J. G.; Baerends E. J. The Zero-order Regular Approximation for Relativistic Effects: The Effect of Spin–Orbit Coupling in Closed Shell Molecules. J. Chem. Phys. 1996, 105 (15), 6505–6516. 10.1063/1.472460. DOI

Saue T. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem 2011, 12 (17), 3077–3094. 10.1002/cphc.201100682. PubMed DOI

te Velde G.; Bickelhaupt F. M.; Baerends E. J.; Fonseca Guerra C.; van Gisbergen S. J. A.; Snijders J. G.; Ziegler T. Chemistry with ADF. J. Comput. Chem. 2001, 22 (9), 931–967. 10.1002/jcc.1056. DOI

Van Lenthe E.; Baerends E. J. Optimized Slater-Type Basis Sets for the Elements 1–118. J. Comput. Chem. 2003, 24 (9), 1142–1156. 10.1002/jcc.10255. PubMed DOI

Chong D. P.; Van Lenthe E.; Van Gisbergen S.; Baerends E. J. Even-Tempered Slater-Type Orbitals Revisited: From Hydrogen to Krypton. J. Comput. Chem. 2004, 25 (8), 1030–1036. 10.1002/jcc.20030. PubMed DOI

Czernek J.; Brus J. On the Predictions of the 11B Solid State NMR Parameters. Chem. Phys. Lett. 2016, 655–656, 66–70. 10.1016/j.cplett.2016.05.027. DOI

Blackwell C. S. Investigation of Zeolite Frameworks by Vibrational Properties. 1. The Double-Four-Ring in Group 3 Zeolites. J. Phys. Chem. 1979, 83 (25), 3251–3257. 10.1021/j100488a014. DOI

Marcolli C.; Lainé P.; Bühler R.; Calzaferri G.; Tomkinson J. Vibrations of H8Si8O12, D8Si8O12, and H10Si10O15 As Determined by INS, IR, and Raman Experiments. J. Phys. Chem. B 1997, 101 (7), 1171–1179. 10.1021/jp962742d. DOI

Clark H. C.; O’Brien R. J. Trimethyltin Perchlorate, Trimethyltin Nitrate, and Their Infrared Spectra. Inorg. Chem. 1963, 2 (4), 740–744. 10.1021/ic50008a018. DOI

Baker C.; Gole J. L.; Brauer J.; Graham S.; Hu J.; Kenvin J.; D’Amico A. D.; White M. G. Activity of Titania and Zeolite Samples Dosed with Triethylamine. Microporous Mesoporous Mater. 2016, 220, 44–57. 10.1016/j.micromeso.2015.08.022. DOI

Berg R. W. The Vibrational Spectrum of the Normal and Perdeuterated Tetramethylammonium Ion. Spectrochim. Acta Part A Mol. Spectrosc. 1978, 34 (6), 655–659. 10.1016/0584-8539(78)80067-1. DOI

Lefrancois M. The Nature of the Acidic Sites on Mordenite Characterization of Adsorbed Pyridine and Water by Infrared Study. J. Catal. 1971, 20 (3), 350–358. 10.1016/0021-9517(71)90097-2. DOI

Pieta I. S.; Ishaq M.; Wells R. P. K.; Anderson J. A. Quantitative Determination of Acid Sites on Silica–Alumina. Appl. Catal. A Gen. 2010, 390 (1–2), 127–134. 10.1016/j.apcata.2010.10.001. DOI

Hayashi S.; Suzuki K.; Shin S.; Hayamizu K.; Yamamoto O. High-Resolution Solid-State 13C NMR Spectra of Tetramethylammonium Ions Trapped in Zeolites. Chem. Phys. Lett. 1985, 113 (4), 368–371. 10.1016/0009-2614(85)80383-3. DOI

Dixon W. T. Spinning-Sideband-Free and Spinning-Sideband-Only NMR Spectra in Spinning Samples. J. Chem. Phys. 1982, 77 (4), 1800–1809. 10.1063/1.444076. DOI

Antzutkin O. N.; Song Z.; Feng X.; Levitt M. H. Suppression of Sidebands in Magic-Angle-Spinning Nuclear Magnetic Resonance: General Principles and Analytical Solutions. J. Chem. Phys. 1994, 100 (1), 130–140. 10.1063/1.466983. DOI

Sau A. C.; Carpino L. A.; Holmes R. R. Synthesis and 1H NMR Studies of Some Pentacoordinate Tin(IV) Complexes Derived from Triphenyltin Halides. J. Organomet. Chem. 1980, 197 (2), 181–197. 10.1016/S0022-328X(00)93565-4. DOI

Irwin A. D.; Holmgren J. S.; Jonas J. 27Al and 29Si NMR Study of Sol-Gel Derived aluminosilicates and Sodium aluminosilicates. J. Mater. Sci. 1988, 23 (8), 2908–2912. 10.1007/BF00547467. DOI

Osegovic J. P.; Drago R. S. Measurement of the Global Acidity of Solid Acids by 31P MAS NMR of Chemisorbed triethylphosphine Oxide. J. Phys. Chem. B 2000, 104 (1), 147–154. 10.1021/jp992907t. DOI

Haouas M.; Taulelle F.; Martineau C. Recent Advances in Application of 27Al NMR Spectroscopy to Materials Science A. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 94–95, 11–36. 10.1016/j.pnmrs.2016.01.003. PubMed DOI

Masika E.; Mokaya R. Mesoporous aluminosilicates from a Zeolite BEA Recipe. Chem. Mater. 2011, 23 (9), 2491–2498. 10.1021/cm200706n. DOI

Leonova L.; Moravec Z.; Sazama P.; Pastvova J.; Kobera L.; Brus J.; Styskalik A. Hydrophobicity Boosts Catalytic Activity: The Tailoring of aluminosilicates with Trimethylsilyl Groups. ChemCatChem 2023, 15 (13), e20230044910.1002/cctc.202300449. DOI

Dimitrov V.; Komatsu T. Correlation among Electronegativity, Cation Polarizability, Optical Basicity and Single Bond Strength of Simple Oxides. J. Solid State Chem. 2012, 196, 574–578. 10.1016/j.jssc.2012.07.030. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...