Lewis Acidic Aluminosilicates: Synthesis, 27Al MQ/MAS NMR, and DFT-Calculated 27Al NMR Parameters
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38271593
PubMed Central
PMC10848260
DOI
10.1021/acs.inorgchem.3c04035
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Porous aluminosilicates are functional materials of paramount importance as Lewis acid catalysts in the synthetic industry, yet the participating aluminum species remain poorly studied. Herein, a series of model aluminosilicate networks containing [L-AlO3] (L = THF, Et3N, pyridine, triethylphosphine oxide (TEPO)) and [AlO4]- centers were prepared through nonhydrolytic sol-gel condensation reactions of the spherosilicate building block (Me3Sn)8Si8O20 with L-AlX3 (X = Cl, Me, Et) and [Me4N] [AlCl4] compounds in THF or toluene. The substoichiometric dosage of the Al precursors ensured complete condensation and uniform incorporation, with the bulky spherosilicate forcing a separation between neighboring aluminum centers. The materials were characterized by 1H, 13C, 27Al, 29Si, and 31P MAS NMR and FTIR spectroscopies, ICP-OES, gravimetry, and N2 adsorption porosimetry. The resulting aluminum centers were resolved by 27Al TQ/MAS NMR techniques and assigned based on their spectroscopic parameters obtained by peak fitting (δiso, CQ, η) and their correspondence to the values calculated on model structures by DFT methods. A clear correlation between the decrease in the symmetry of the Al centers and the increase of the observed CQ was established with values spanning from 4.4 MHz for distorted [AlO4]- to 15.1 MHz for [THF-AlO3]. Products containing exclusively [TEPO-AlO3] or [AlO4]- centers could be obtained (single-site materials). For L = THF, Et3N, and pyridine, the [AlO4]- centers were formed together with the expected [L-AlO3] species, and a viable mechanism for the unexpected emergence of [AlO4]- was proposed.
Department of Chemistry and Biochemistry Mendel University in Brno Brno CZ 61300 Czech Republic
Department of Chemistry University of Tennessee Knoxville Tennessee 37996 1600 United States
See more in PubMed
Zeolites and Catalysis: synthesis, reactions and applications; Čejka J.; Corma A.; Zones S., Eds.; Wiley, 2010. 10.1002/9783527630295. DOI
Haag W. O.; Lago R. M.; Weisz P. B. The Active Site of Acidic Aluminosilicate Catalysts. Nature 1984, 309 (5969), 589–591. 10.1038/309589a0. DOI
Ravi M.; Sushkevich V. L.; van Bokhoven J. A. Towards a Better Understanding of Lewis Acidic Aluminium in Zeolites. Nat. Mater. 2020, 19 (10), 1047–1056. 10.1038/s41563-020-0751-3. PubMed DOI
Li G.; Pidko E. A. The Nature and Catalytic Function of Cation Sites in Zeolites: A Computational Perspective. ChemCatChem. 2019, 11 (1), 134–156. 10.1002/cctc.201801493. DOI
Xu J.; Wang Q.; Deng F. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy. Acc. Chem. Res. 2019, 52 (8), 2179–2189. 10.1021/acs.accounts.9b00125. PubMed DOI
Xin S.; Wang Q.; Xu J.; Chu Y.; Wang P.; Feng N.; Qi G.; Trébosc J.; Lafon O.; Fan W.; Deng F. The Acidic Nature of “NMR-Invisible” Tri-Coordinated Framework Aluminum Species in Zeolites. Chem. Sci. 2019, 10 (43), 10159–10169. 10.1039/C9SC02634G. PubMed DOI PMC
Kobera L.; Czernek J.; Abbrent S.; Mackova H.; Pavlovec L.; Rohlicek J.; Brus J. The Nature of Chemical Bonding in Lewis Adducts as Reflected by 27Al NMR quadrupolar Coupling Constant: Combined Solid-State NMR and Quantum Chemical Approach. Inorg. Chem. 2018, 57 (12), 7428–7437. 10.1021/acs.inorgchem.8b01009. PubMed DOI
Yakimov A. V.; Ravi M.; Verel R.; Sushkevich V. L.; van Bokhoven J. A.; Copéret C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J. Am. Chem. Soc. 2022, 144 (23), 10377–10385. 10.1021/jacs.2c02212. PubMed DOI
Chen K.; Gan Z.; Horstmeier S.; White J. L. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. J. Am. Chem. Soc. 2021, 143 (17), 6669–6680. 10.1021/jacs.1c02361. PubMed DOI PMC
Brus J.; Kobera L.; Schoefberger W.; Urbanová M.; Klein P.; Sazama P.; Tabor E.; Sklenak S.; Fishchuk A. V.; Dědeček J. Structure of Framework Aluminum Lewis Sites and Perturbed Aluminum Atoms in Zeolites as Determined by 27Al{1H} REDOR (3Q) MAS NMR Spectroscopy and DFT/Molecular Mechanics. Angew. Chemie Int. Ed. 2015, 54, 541–545. 10.1002/anie.201409635. PubMed DOI
Lam E.; Comas-Vives A.; Copéret C. Role of Coordination Number, Geometry, and Local Disorder on 27Al NMR Chemical Shifts and quadrupolar Coupling Constants: Case Study with aluminosilicates. J. Phys. Chem. C 2017, 121 (36), 19946–19957. 10.1021/acs.jpcc.7b07872. DOI
Ghosh N. N.; Clark J. C.; Eldridge G. T.; Barnes C. E. Building Block Syntheses of Site-Isolated Vanadyl Groups in Silicate Oxides. Chem. Commun. 2004, (7), 856.10.1039/b316184f. PubMed DOI
Clark J. C.; Saengkerdsub S.; Eldridge G. T.; Campana C.; Barnes C. E. Synthesis and Structure of Functional Spherosilicate Building Block Molecules for Materials Synthesis. J. Organomet. Chem. 2006, 691 (15), 3213–3222. 10.1016/j.jorganchem.2006.03.028. DOI
Clark J. C.; Barnes C. E. Reaction of the Si8O20(SnMe3)8 Building Block with Silyl Chlorides: A New Synthetic Methodology for Preparing Nanostructured Building Block Solids. Chem. Mater. 2007, 19 (13), 3212–3218. 10.1021/cm070038b. DOI
Lee M.-Y.; Jiao J.; Mayes R.; Hagaman E.; Barnes C. E. The Targeted Synthesis of Single Site Vanadyl Species on the Surface and in the Framework of Silicate Building Block Materials. Catal. Today 2011, 160 (1), 153–164. 10.1016/j.cattod.2010.06.029. DOI
Styskalik A.; Abbott J. G.; Orick M. C.; Debecker D. P.; Barnes C. E. Synthesis, Characterization and Catalytic Activity of Single Site. Lewis Acidic aluminosilicates. Catal. Today 2019, 334, 131–139. 10.1016/j.cattod.2018.11.079. DOI
Saengkerdsub S.Group 4 Metallocene and Half-Sandwich Derivatives of Spherosilicate: Preparation From Si8O20(SnMe3)8 and Their Olefin Polymerization Activity; University of Tennessee, 2002. https://trace.tennessee.edu/utk_graddiss/2195.
Engelhardt L. M.; Junk P. C.; Raston C. L.; Skelton B. W.; White A. H. Unidentate Nitrogen Base Adducts of Aluminium Trichloride. J. Chem. Soc. Dalton Trans. 1996, (15), 3297.10.1039/dt9960003297. DOI
Cowley A. H.; Cushner M. C.; Davis R. E.; Riley P. E. Crystal and Molecular Structure of the 1:2 Aluminum Trichloride-Tetrahydrofuran Complex AlCl3.2THF. Inorg. Chem. 1981, 20 (4), 1179–1181. 10.1021/ic50218a044. DOI
Dixon W.; Schaefer J.; Sefcik M.; Stejskal E.; McKay R. Total Suppression of Sidebands in CPMAS C-13 NMR. J. Magn. Reson. 1982, 49 (2), 341–345. 10.1016/0022-2364(82)90199-8. DOI
Hayashi S.; Hayamizu K. Chemical Shift Standards in High-Resolution Solid-State NMR (1) 13C, 29Si, and 1H Nuclei. Bull. Chem. Soc. Jpn. 1991, 64 (2), 685–687. 10.1246/bcsj.64.685. DOI
Hayashi S.; Hayamizu K. Shift References in High-Resolution Solid-State NMR. Bull. Chem. Soc. Jpn. 1989, 62 (7), 2429–2430. 10.1246/bcsj.62.2429. DOI
Frydman L.; Harwood J. S. Isotropic Spectra of Half-Integer quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR. J. Am. Chem. Soc. 1995, 117 (19), 5367–5368. 10.1021/ja00124a023. DOI
Bräuniger T.; Wormald P.; Hodgkinson P.. Improved Proton Decoupling in NMR Spectroscopy of Crystalline Solids Using the Spinal-64 Sequence. In Current Developments in Solid State NMR Spectroscopy; Springer Vienna: Vienna, 2002; pp 69–74. 10.1007/978-3-7091-3715-4_4. DOI
Adamo C.; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999, 110 (13), 6158–6170. 10.1063/1.478522. DOI
Adamo C.; Scuseria G. E.; Barone V. Accurate Excitation Energies from Time-Dependent Density Functional Theory: Assessing the PBE0Model. J. Chem. Phys. 1999, 111 (7), 2889–2899. 10.1063/1.479571. DOI
Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297.10.1039/b508541a. PubMed DOI
Schäfer A.; Horn H.; Ahlrichs R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97 (4), 2571–2577. 10.1063/1.463096. DOI
Bergner A.; Dolg M.; Küchle W.; Stoll H.; Preuß H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. Mol. Phys. 1993, 80 (6), 1431–1441. 10.1080/00268979300103121. DOI
Metz B.; Stoll H.; Dolg M. Small-Core Multiconfiguration-Dirac–Hartree–Fock-Adjusted Pseudopotentials for Post-d Main Group Elements: Application to PbH and PbO. J. Chem. Phys. 2000, 113 (7), 2563–2569. 10.1063/1.1305880. DOI
Turbomole V7.5 2020, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007; Turbomole GmbH, since 2007. http://www.Turbomole.com/.
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI
van Lenthe E.; Snijders J. G.; Baerends E. J. The Zero-order Regular Approximation for Relativistic Effects: The Effect of Spin–Orbit Coupling in Closed Shell Molecules. J. Chem. Phys. 1996, 105 (15), 6505–6516. 10.1063/1.472460. DOI
Saue T. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem 2011, 12 (17), 3077–3094. 10.1002/cphc.201100682. PubMed DOI
te Velde G.; Bickelhaupt F. M.; Baerends E. J.; Fonseca Guerra C.; van Gisbergen S. J. A.; Snijders J. G.; Ziegler T. Chemistry with ADF. J. Comput. Chem. 2001, 22 (9), 931–967. 10.1002/jcc.1056. DOI
Van Lenthe E.; Baerends E. J. Optimized Slater-Type Basis Sets for the Elements 1–118. J. Comput. Chem. 2003, 24 (9), 1142–1156. 10.1002/jcc.10255. PubMed DOI
Chong D. P.; Van Lenthe E.; Van Gisbergen S.; Baerends E. J. Even-Tempered Slater-Type Orbitals Revisited: From Hydrogen to Krypton. J. Comput. Chem. 2004, 25 (8), 1030–1036. 10.1002/jcc.20030. PubMed DOI
Czernek J.; Brus J. On the Predictions of the 11B Solid State NMR Parameters. Chem. Phys. Lett. 2016, 655–656, 66–70. 10.1016/j.cplett.2016.05.027. DOI
Blackwell C. S. Investigation of Zeolite Frameworks by Vibrational Properties. 1. The Double-Four-Ring in Group 3 Zeolites. J. Phys. Chem. 1979, 83 (25), 3251–3257. 10.1021/j100488a014. DOI
Marcolli C.; Lainé P.; Bühler R.; Calzaferri G.; Tomkinson J. Vibrations of H8Si8O12, D8Si8O12, and H10Si10O15 As Determined by INS, IR, and Raman Experiments. J. Phys. Chem. B 1997, 101 (7), 1171–1179. 10.1021/jp962742d. DOI
Clark H. C.; O’Brien R. J. Trimethyltin Perchlorate, Trimethyltin Nitrate, and Their Infrared Spectra. Inorg. Chem. 1963, 2 (4), 740–744. 10.1021/ic50008a018. DOI
Baker C.; Gole J. L.; Brauer J.; Graham S.; Hu J.; Kenvin J.; D’Amico A. D.; White M. G. Activity of Titania and Zeolite Samples Dosed with Triethylamine. Microporous Mesoporous Mater. 2016, 220, 44–57. 10.1016/j.micromeso.2015.08.022. DOI
Berg R. W. The Vibrational Spectrum of the Normal and Perdeuterated Tetramethylammonium Ion. Spectrochim. Acta Part A Mol. Spectrosc. 1978, 34 (6), 655–659. 10.1016/0584-8539(78)80067-1. DOI
Lefrancois M. The Nature of the Acidic Sites on Mordenite Characterization of Adsorbed Pyridine and Water by Infrared Study. J. Catal. 1971, 20 (3), 350–358. 10.1016/0021-9517(71)90097-2. DOI
Pieta I. S.; Ishaq M.; Wells R. P. K.; Anderson J. A. Quantitative Determination of Acid Sites on Silica–Alumina. Appl. Catal. A Gen. 2010, 390 (1–2), 127–134. 10.1016/j.apcata.2010.10.001. DOI
Hayashi S.; Suzuki K.; Shin S.; Hayamizu K.; Yamamoto O. High-Resolution Solid-State 13C NMR Spectra of Tetramethylammonium Ions Trapped in Zeolites. Chem. Phys. Lett. 1985, 113 (4), 368–371. 10.1016/0009-2614(85)80383-3. DOI
Dixon W. T. Spinning-Sideband-Free and Spinning-Sideband-Only NMR Spectra in Spinning Samples. J. Chem. Phys. 1982, 77 (4), 1800–1809. 10.1063/1.444076. DOI
Antzutkin O. N.; Song Z.; Feng X.; Levitt M. H. Suppression of Sidebands in Magic-Angle-Spinning Nuclear Magnetic Resonance: General Principles and Analytical Solutions. J. Chem. Phys. 1994, 100 (1), 130–140. 10.1063/1.466983. DOI
Sau A. C.; Carpino L. A.; Holmes R. R. Synthesis and 1H NMR Studies of Some Pentacoordinate Tin(IV) Complexes Derived from Triphenyltin Halides. J. Organomet. Chem. 1980, 197 (2), 181–197. 10.1016/S0022-328X(00)93565-4. DOI
Irwin A. D.; Holmgren J. S.; Jonas J. 27Al and 29Si NMR Study of Sol-Gel Derived aluminosilicates and Sodium aluminosilicates. J. Mater. Sci. 1988, 23 (8), 2908–2912. 10.1007/BF00547467. DOI
Osegovic J. P.; Drago R. S. Measurement of the Global Acidity of Solid Acids by 31P MAS NMR of Chemisorbed triethylphosphine Oxide. J. Phys. Chem. B 2000, 104 (1), 147–154. 10.1021/jp992907t. DOI
Haouas M.; Taulelle F.; Martineau C. Recent Advances in Application of 27Al NMR Spectroscopy to Materials Science A. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 94–95, 11–36. 10.1016/j.pnmrs.2016.01.003. PubMed DOI
Masika E.; Mokaya R. Mesoporous aluminosilicates from a Zeolite BEA Recipe. Chem. Mater. 2011, 23 (9), 2491–2498. 10.1021/cm200706n. DOI
Leonova L.; Moravec Z.; Sazama P.; Pastvova J.; Kobera L.; Brus J.; Styskalik A. Hydrophobicity Boosts Catalytic Activity: The Tailoring of aluminosilicates with Trimethylsilyl Groups. ChemCatChem 2023, 15 (13), e20230044910.1002/cctc.202300449. DOI
Dimitrov V.; Komatsu T. Correlation among Electronegativity, Cation Polarizability, Optical Basicity and Single Bond Strength of Simple Oxides. J. Solid State Chem. 2012, 196, 574–578. 10.1016/j.jssc.2012.07.030. DOI