Differential gene expression and microRNA profile in corpora allata-corpora cardiaca of Aedes aegypti mosquitoes with weak juvenile hormone signalling
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R21 AI167849
NIAID NIH HHS - United States
PubMed
38273232
PubMed Central
PMC10811912
DOI
10.1186/s12864-024-10007-9
PII: 10.1186/s12864-024-10007-9
Knihovny.cz E-zdroje
- Klíčová slova
- Aedes aegypti, Corpora allata, Epoxidase, Juvenile hormone, Mosquito, RNA-Seq, Transcriptome, microRNA,
- MeSH
- Aedes * genetika metabolismus MeSH
- corpora allata metabolismus MeSH
- exprese genu MeSH
- juvenilní hormony metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- juvenilní hormony MeSH
- mikro RNA * MeSH
The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.
Department of Parasitology University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre CAS České Budějovice Czech Republic
Zobrazit více v PubMed
Rivera-Pérez C, Clifton ME, Noriega FG. M J: Juvenile Hormone Regulation and Action. In: Advances in Invertebrate (Neuro) Endocrinology Edited by Saleuddin S, Lange AB, Orchard I, vol. 2, 1 edn. New York: Apple Academic Press Inc.; 2020: 76.
Kaufmann C, Merzendorfer H, Gäde G. The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. Aegypti. Insect Biochem Mol Biol. 2009;39:770–81. doi: 10.1016/j.ibmb.2009.09.002. PubMed DOI
Clifton ME, Noriega FG. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J Insect Physiol. 2011;57:1274–81. doi: 10.1016/j.jinsphys.2011.06.002. PubMed DOI PMC
Nouzova M, Edwards MJ, Michalkova V, Ramirez CE, Ruiz M, Areiza M, DeGennaro M, Fernandez-Lima F, Feyereisen R, Jindra M, et al. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci USA. 2021;118:e2109381118. doi: 10.1073/pnas.2109381118. PubMed DOI PMC
Hussain M, Etebari K, Asgari S. Chapter Seven - Functions of Small RNAs in Mosquitoes. In: Advances in Insect Physiology Edited by Raikhel AS, vol. 51: Academic Press; 2016: 189–222.
Gonzalez S, Pisano DG, Serrano M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle. 2008;7:2601–8. doi: 10.4161/cc.7.16.6541. PubMed DOI
Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. The J Immunol. 2010;184:6053–9. doi: 10.4049/jimmunol.0902308. PubMed DOI
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mrna-specific upregulation. Int J Genomics. 2014;2014:970607. doi: 10.1155/2014/970607. PubMed DOI PMC
Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4. doi: 10.1126/science.1149460. PubMed DOI
Nouzova M, Etebari K, Noriega FG, Asgari S. A comparative analysis of corpora allata-corpora cardiaca microRNA repertoires revealed significant changes during mosquito metamorphosis. Insect Biochem Mol Biol. 2018;96:10–8. doi: 10.1016/j.ibmb.2018.03.007. PubMed DOI
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35. doi: 10.1093/nar/gkn176. PubMed DOI PMC
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14. doi: 10.1093/nar/gky1085. PubMed DOI PMC
Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–17. doi: 10.1016/j.cell.2006.07.031. PubMed DOI
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1. doi: 10.1186/gb-2003-5-1-r1. PubMed DOI PMC
Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(suppl2):W451–4. doi: 10.1093/nar/gkl243. PubMed DOI PMC
Etebari K, Asgari S. Revised annotation of Plutella xylostella microRNAs and their genome-wide target identification. Insect Mol Biol. 2016;25(6):788–99. doi: 10.1111/imb.12263. PubMed DOI
Belles X. MicroRNAs and the evolution of insect metamorphosis. Annu Rev Entomol. 2017;62:111–25. doi: 10.1146/annurev-ento-031616-034925. PubMed DOI
Bian H-X, Chen D-B, Li Y-P, Tan E-G, Su X, Huang J-C, Su J-F, Liu Y-Q. Transcriptomic analysis of Bombyx mori corpora allata with comparison to prothoracic glands in the final instar larvae. Gene. 2022;813:146095. doi: 10.1016/j.gene.2021.146095. PubMed DOI
Zhang J, Wen D, Li EY, Palli SR, Li S, Wang J, Liu S. MicroRNA miR-8 promotes cell growth of corpus allatum and juvenile hormone biosynthesis independent of insulin/IGF signaling in Drosophila melanogaster. Insect Biochem Mol Biol. 2021;136:103611. doi: 10.1016/j.ibmb.2021.103611. PubMed DOI
Rivera-Pérez C, Clifton ME, Noriega FG, Jindra M. Juvenile Hormone Regulation and Action. In: Advances in Invertebrate (Neuro) Endocrinology Edited by Saleuddin S, Lange AB, Orchard I, vol. 2, 1 edn. New York: Apple Academic Press Inc.; 2020: 76.
Nguyen HT, Frasch M. MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Cur Opin Genet Dev. 2006;16:533–9. doi: 10.1016/j.gde.2006.08.010. PubMed DOI
Gutiérrez-Pérez P, Santillán EM, Lendl T, Wang J, Schrempf A, Steinacker TL, Asparuhova M, Brandstetter M, Haselbach D, Cochella L. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. Sci Adv. 2021;7:eabh1434. doi: 10.1126/sciadv.abh1434. PubMed DOI PMC
Rao Z, He W, Liu L, Zheng S, Huang L, Feng Q. Identification, expression and target gene analyses of micrornas in Spodoptera litura. PLoS ONE. 2012;7:e37730. doi: 10.1371/journal.pone.0037730. PubMed DOI PMC
Morin MD, Frigault JJ, Lyons PJ, Crapoulet N, Boquel S, Storey KB, Morin PJ. Amplification and quantification of cold-associated microRNAs in the Colorado potato beetle (Leptinotarsa decemlineata) agricultural pest. Insect Mol Biol. 2017;26:574–83. doi: 10.1111/imb.12320. PubMed DOI
Zhao Z-m, Yin H-t, Shen M-m, Zhang S-l, Chen Z-k, Li T, Zhang Z-d. Zhao W-g, Guo X-j, Wu P: transcriptome of miRNA during inhibition of Bombyx mori nuclear polyhedrosis virus by geldanamycin in BmN cells. Arch Insect Biochem Physiol. 2022;110:e21880. doi: 10.1002/arch.21880. PubMed DOI
Puthiyakunnon S, Yao Y, Li Y, Gu J, Peng H, Chen X. Functional characterization of three microRNAs of the Asian Tiger mosquito, Aedes albopictus. Parasites & Vectors. 2013;6(1):230. doi: 10.1186/1756-3305-6-230. PubMed DOI PMC
Batz ZA, Goff AC, Armbruster PA. MicroRNAs are differentially abundant during Aedes albopictus diapause maintenance but not diapause induction. Insect Mol Biol. 2017;26(6):721–33. doi: 10.1111/imb.12332. PubMed DOI PMC
Ma HY, Li YY, Li L, Tan Y, Pang BP. Regulation of juvenile hormone on summer diapause of Geleruca Daurica and its pathway analysis. Insects 2021, 12(3). PubMed PMC
Zhou WZ, Wu YF, Yin ZY, Guo JJ, Li HY. Juvenile hormone is an important factor in regulating Aspongopus chinensis dallas diapause. Front Physiol. 2022;13:873580. doi: 10.3389/fphys.2022.873580. PubMed DOI PMC
Batz ZA, Brent CS, Marias MR, Sugijanto J, Armbruster PA. Juvenile hormone iii but not 20-hydroxyecdysone regulates the embryonic diapause of Aedes albopictus. Front Physiol. 2019;10:1352. doi: 10.3389/fphys.2019.01352. PubMed DOI PMC
Varghese J, Cohen SM. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 2007;21:2277–82. doi: 10.1101/gad.439807. PubMed DOI PMC
Duan T-F, Gao S-J, Wang H-C, Li L, Li Y-Y, Tan Y, Pang B-P. MicroRNA let-7-5p targets the juvenile hormone primary response gene Krüppel homolog 1 and regulates reproductive diapause in Galeruca Daurica. Insect Biochem Mol Biol. 2022;142:103727. doi: 10.1016/j.ibmb.2022.103727. PubMed DOI
Kitatani Y, Tezuka A, Hasegawa E, Yanagi S, Togashi K, Tsuji M, Kondo S, Parrish JZ, Emoto K. Drosophila miR-87 promotes dendrite regeneration by targeting the transcriptional repressor Tramtrack69. PLoS Genet. 2020;16:e1008942. doi: 10.1371/journal.pgen.1008942. PubMed DOI PMC
Ge W, Chen YW, Weng R, Lim SF, Buescher M, Zhang R, Cohen SM. Overlapping functions of microRNAs in control of apoptosis during Drosophila embryogenesis. Cell Death Differ. 2012;19:839–46. doi: 10.1038/cdd.2011.161. PubMed DOI PMC
Zhao B, Lucas KJ, Saha TT, Ha J, Ling L, Kokoza VA, Roy S, Raikhel AS. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2 + adenosine triphosphatase (SERCA) to control key functions in the mosquito gut. PLoS Genet. 2017;13:e1006943. doi: 10.1371/journal.pgen.1006943. PubMed DOI PMC
Meiselman M, Lee SS, Tran R-T, Dai H, Ding Y, Rivera-Perez C, Wijesekera TP, Dauwalder B, Noriega FG, Adams ME. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc Natl Acad Sci USA. 2017;114:E3849–58. doi: 10.1073/pnas.1620760114. PubMed DOI PMC
Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev. 2012;26:1427–32. doi: 10.1101/gad.192872.112. PubMed DOI PMC
Lucas KJ, Roy S, Ha J, Gervaise AL, Kokoza VA, Raikhel AS. MicroRNA-8 targets the wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci USA. 2015;112:1440–5. doi: 10.1073/pnas.1424408112. PubMed DOI PMC
Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell. 2009;139:1096–108. doi: 10.1016/j.cell.2009.11.020. PubMed DOI
Chiang A-S, Schal C. Cyclic volumetric changes in corpus allatum cells in relation to juvenile hormone biosynthesis during ovarian cycles in cockroaches. Arch Insect Biochem Physiol. 1994;27:53–64. doi: 10.1002/arch.940270107. DOI
CHIANG A-S, HOLBROOK GL, SCHAL C. Development-activity relationships in nymphal corpora allata of the cockroach, Diploptera punctata. Physiol Entomol. 1996;21:268–74. doi: 10.1111/j.1365-3032.1996.tb00864.x. DOI
Ye X, Xu L, Li X, He K, Hua H, Cao Z, Xu J, Ye W, Zhang J, Yuan Z, et al. miR-34 modulates wing polyphenism in planthopper. PLoS Genet. 2019;15:e1008235. doi: 10.1371/journal.pgen.1008235. PubMed DOI PMC
Liu Y-K, Luo Y-J, Deng Y-M, Li Y, Pang X-Q, Xu C-D, Wang S-G, Tang B. Insulin receptors regulate the fecundity of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) J Asia-Pacific Entomol. 2020;23:1151–9. doi: 10.1016/j.aspen.2020.09.011. DOI
Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–10. doi: 10.1126/science.1057987. PubMed DOI
Pérez-Hedo M, Rivera-Perez C, Noriega FG. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. Insect Biochem Mol Biol. 2013;43(6):495–500. doi: 10.1016/j.ibmb.2013.03.008. PubMed DOI PMC
Perez-Hedo M, Rivera-Perez C, Noriega FG. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes. PLoS ONE. 2014;9:e86183. doi: 10.1371/journal.pone.0086183. PubMed DOI PMC
Truman JW. The evolution of insect metamorphosis. Curr Biol. 2019;29:R1252–68. doi: 10.1016/j.cub.2019.10.009. PubMed DOI
Liu S, Li K, Gao Y, Liu X, Chen W, Ge W, Feng Q, Palli SR, Li S. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci USA. 2018;115:139–44. doi: 10.1073/pnas.1716897115. PubMed DOI PMC
Noriega FG, Ribeiro JM, Koener JF, Valenzuela JG, Hernandez-Martinez S, Pham VM, Feyereisen R. Comparative genomics of insect juvenile hormone biosynthesis. Insect Biochem Mol Biol. 2006;36:366–74. doi: 10.1016/j.ibmb.2006.01.013. PubMed DOI PMC
Lin S, Werle J, Korb J. Transcriptomic analyses of the termite, Cryptotermes Secundus, reveal a gene network underlying a long lifespan and high fecundity. Commu Biol. 2021;4:384. doi: 10.1038/s42003-021-01892-x. PubMed DOI PMC
Ma H-Y, Li Y-Y, Li L, Tan Y, Pang B-P. Juvenile hormone regulates the reproductive diapause through Methoprene-tolerant gene in Galeruca Daurica. Insect Mol Biol. 2021;30:446–58. doi: 10.1111/imb.12710. PubMed DOI
Guo W, Song J, Yang P, Chen X, Chen D, Ren D, Kang L, Wang X. Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts. PLoS Genet. 2020;16(4):e1008762. doi: 10.1371/journal.pgen.1008762. PubMed DOI PMC
Zhu J, Miura K, Chen L, Raikhel AS. Cyclicity of mosquito vitellogenic ecdysteroid-mediated signaling is modulated by alternative dimerization of the RXR homologue Ultraspiracle Proc Natl Acad Sci USA 2003, 100:544–549. PubMed PMC
Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol. 2024. 10.1016/j.cub.2023.12.033. PubMed PMC
Liaw GJ, Lengyel JA. Control of tailless expression by bicoid, dorsal and synergistically interacting terminal system regulatory elements. Mech Dev. 1993;40:47–61. doi: 10.1016/0925-4773(93)90087-E. PubMed DOI
Das P, Bhadra MP. Histone deacetylase (Rpd3) regulates Drosophila early brain development via regulation of Tailless. Open Biol. 2020;10(9):200029. doi: 10.1098/rsob.200029. PubMed DOI PMC
De Velasco B, Shen J, Go S, Hartenstein V. Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev Biol. 2004;274:280–94. doi: 10.1016/j.ydbio.2004.07.015. PubMed DOI
Javed MA, Coutu C, Theilmann DA, Erlandson MA, Hegedus DD. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles. Insect Sci. 2019;26:424–40. doi: 10.1111/1744-7917.12547. PubMed DOI PMC
Dzitoyeva S, Dimitrijevic N, Manev H. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi) BMC Genomics. 2003;4:33. doi: 10.1186/1471-2164-4-33. PubMed DOI PMC
Schicht S, Qi W, Poveda L, Strube C. The predicted secretome and transmembranome of the poultry red mite Dermanyssus Gallinae. Parasit Vectors. 2013;6:259. doi: 10.1186/1756-3305-6-259. PubMed DOI PMC
Watts JL, Browse J. Dietary manipulation implicates lipid signaling in the regulation of germ cell maintenance in C. Elegans. Dev Biol. 2006;292:381–92. doi: 10.1016/j.ydbio.2006.01.013. PubMed DOI PMC
Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara L-a, Somboon P, Lycett G, Ranson H. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 2011;41:203–9. doi: 10.1016/j.ibmb.2010.12.005. PubMed DOI
Kouamo MFM, Ibrahim SS, Hearn J, Riveron JM, Kusimo M, Tchouakui M, Ebai T, Tchapga W, Wondji MJ, Irving H, et al. Genome-wide transcriptional analysis and functional validation linked a cluster of epsilon glutathione S-transferases with insecticide resistance in the major malaria vector Anopheles Funestus across Africa. Genes. 2021;12:561. doi: 10.3390/genes12040561. PubMed DOI PMC
Enya S, Daimon T, Igarashi F, Kataoka H, Uchibori M, Sezutsu H, Shinoda T, Niwa R. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development. Insect Biochem Mol Biol. 2015;61:1–7. doi: 10.1016/j.ibmb.2015.04.001. PubMed DOI
Curcio R, Lunetti P, Zara V, Ferramosca A, Marra F, Fiermonte G, Cappello AR, De Leonardis F, Capobianco L. Dolce V: Drosophila melanogaster mitochondrial carriers: similarities and differences with the human carriers. Int J Mol Sci. 2020;21:6052. doi: 10.3390/ijms21176052. PubMed DOI PMC
Vishnudas VK, Guillemette SS, Lekkas P, Maughan DW, Vigoreaux JO. Characterization of the intracellular distribution of adenine nucleotide translocase (ANT) in Drosophila Indirect flight muscles. CellBio. 2013;2:14. doi: 10.4236/cellbio.2013.23017. DOI
Nongthomba U, Ansari M, Thimmaiya D, Stark M, Sparrow J. Aberrant splicing of an alternative exon in the Drosophila yroponin-t gene affects flight muscle development. Genetics. 2007;177:295–306. doi: 10.1534/genetics.106.056812. PubMed DOI PMC
MARCO-FERRERES R, ARREDONDO Juan J, FRAILE B. Overexpression of troponin T in Drosophila muscles causes a decrease in the levels of thin-filament proteins. Biochem J. 2005;386:145–52. doi: 10.1042/BJ20041240. PubMed DOI PMC
Zhao L, Chen X, Feng Y, Wang G, Nawaz I, Hu L, Liu P. COX7A1 suppresses the viability of human non-small cell lung cancer cells via regulating autophagy. Cancer Med. 2019;8:7762–73. doi: 10.1002/cam4.2659. PubMed DOI PMC
Snigdha K, Gangwani KS, Lapalikar GV, Singh A, Kango-Singh M. Hippo signaling in cancer: lessons from Drosophila models. Front Cell Dev Biol. 2019;7:85. doi: 10.3389/fcell.2019.00085. PubMed DOI PMC
Shen X, Sun X, Sun B, Li T, Wu G, Li Y, Chen L, Liu Q, Cui M, Zhou Z. ARRDC3 suppresses colorectal cancer progression through destabilizing the oncoprotein YAP. FEBS Lett. 2018;592:599–609. doi: 10.1002/1873-3468.12986. PubMed DOI
Nabhan JF, Pan H, Lu Q. Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the β2-adrenergic receptor. EMBO Rep. 2010;11:605–11. doi: 10.1038/embor.2010.80. PubMed DOI PMC
Shi Q, Lin YQ, Saliba A, Xie J, Neely GG, Banerjee S. Tubulin polymerization promoting protein, ringmaker, and MAP1B homolog futsch coordinate microtubule organization and synaptic growth. Front Cell Neurosci. 2019;13:192. doi: 10.3389/fncel.2019.00192. PubMed DOI PMC
Marriage TN, King EG, Long AD, Macdonald SJ. Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population. Genetics. 2014;198:45–57. doi: 10.1534/genetics.114.162107. PubMed DOI PMC
Bozzolan F, Siaussat D, Maria A, Durand N, Pottier MA, Chertemps T, Maïbèche-Coisne M. Antennal uridine diphosphate (UDP)-glycosyltransferases in a pest insect: diversity and putative function in odorant and xenobiotics clearance. Insect Mol Biol. 2014;23:539–49. doi: 10.1111/imb.12100. PubMed DOI
Wang S, Yi J-K, Yang S, Liu Y, Zhang J-H, Xi J-H. Identification and characterization of microRNAs expressed in antennae of Holotrichia Parallela Motschulsky and their possible roles in olfactory regulation. Arch Insect Biochem Physiol. 2017;94:e21369. doi: 10.1002/arch.21369. PubMed DOI
Rane RV, Clarke DF, Pearce SL, Zhang G, Hoffmann AA, Oakeshott JG. Detoxification genes differ between cactus-, fruit-, and flower-feeding Drosophila. J Heredity. 2018;110:80–91. doi: 10.1093/jhered/esy058. PubMed DOI
Cui X, Wang C, Wang X, Li G, Liu Z, Wang H, Guo X, Xu B. Molecular mechanism of the UDP-Glucuronosyltransferase 2B20-like gene (AccUGT2B20-like) in pesticide resistance of Apis cerana Cerana. Front Genet. 2020;11:592595. doi: 10.3389/fgene.2020.592595. PubMed DOI PMC
Pym A, Umina PA, Reidy-Crofts J, Troczka BJ, Matthews A, Gardner J, Hunt BJ, van Rooyen AR, Edwards OR, Bass C. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae. Insect Biochem Mol Biol. 2022;143:103743. doi: 10.1016/j.ibmb.2022.103743. PubMed DOI
Shen X-N, Wang X-D, Wan F-H, Lü Z-C, Liu W-X. Gene expression analysis reveals potential regulatory factors response to temperature stress in Bemisia tabaci Mediterranean. Genes. 2023;14:1013. doi: 10.3390/genes14051013. PubMed DOI PMC
Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3:281–90. doi: 10.1186/1479-7364-3-3-281. PubMed DOI PMC
Yamanaka N, Marqués G, O’Connor Michael B. Vesicle-mediated steroid hormone secretion in Drosophila melanogaster. Cell. 2015;163(4):907–19. doi: 10.1016/j.cell.2015.10.022. PubMed DOI PMC
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-binding cassette (ABC) transporters: roles in xenobiotic detoxification and bt insecticidal activity. Int J Mol Sci. 2019;20:2829. doi: 10.3390/ijms20112829. PubMed DOI PMC
Quiquand M, Rimesso G, Qiao N, Suo S, Zhao C, Slattery M, White KP, Han JJ, Baker NE. New regulators of Drosophila eye development identified from temporal transcriptome changes. Genetics. 2021;217:iyab007. doi: 10.1093/genetics/iyab007. PubMed DOI PMC