Differential gene expression and microRNA profile in corpora allata-corpora cardiaca of Aedes aegypti mosquitoes with weak juvenile hormone signalling

. 2024 Jan 25 ; 25 (1) : 113. [epub] 20240125

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38273232

Grantová podpora
R21 AI167849 NIAID NIH HHS - United States

Odkazy

PubMed 38273232
PubMed Central PMC10811912
DOI 10.1186/s12864-024-10007-9
PII: 10.1186/s12864-024-10007-9
Knihovny.cz E-zdroje

The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.

Zobrazit více v PubMed

Rivera-Pérez C, Clifton ME, Noriega FG. M J: Juvenile Hormone Regulation and Action. In: Advances in Invertebrate (Neuro) Endocrinology Edited by Saleuddin S, Lange AB, Orchard I, vol. 2, 1 edn. New York: Apple Academic Press Inc.; 2020: 76.

Kaufmann C, Merzendorfer H, Gäde G. The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. Aegypti. Insect Biochem Mol Biol. 2009;39:770–81. doi: 10.1016/j.ibmb.2009.09.002. PubMed DOI

Clifton ME, Noriega FG. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J Insect Physiol. 2011;57:1274–81. doi: 10.1016/j.jinsphys.2011.06.002. PubMed DOI PMC

Nouzova M, Edwards MJ, Michalkova V, Ramirez CE, Ruiz M, Areiza M, DeGennaro M, Fernandez-Lima F, Feyereisen R, Jindra M, et al. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci USA. 2021;118:e2109381118. doi: 10.1073/pnas.2109381118. PubMed DOI PMC

Hussain M, Etebari K, Asgari S. Chapter Seven - Functions of Small RNAs in Mosquitoes. In: Advances in Insect Physiology Edited by Raikhel AS, vol. 51: Academic Press; 2016: 189–222.

Gonzalez S, Pisano DG, Serrano M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle. 2008;7:2601–8. doi: 10.4161/cc.7.16.6541. PubMed DOI

Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. The J Immunol. 2010;184:6053–9. doi: 10.4049/jimmunol.0902308. PubMed DOI

Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mrna-specific upregulation. Int J Genomics. 2014;2014:970607. doi: 10.1155/2014/970607. PubMed DOI PMC

Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4. doi: 10.1126/science.1149460. PubMed DOI

Nouzova M, Etebari K, Noriega FG, Asgari S. A comparative analysis of corpora allata-corpora cardiaca microRNA repertoires revealed significant changes during mosquito metamorphosis. Insect Biochem Mol Biol. 2018;96:10–8. doi: 10.1016/j.ibmb.2018.03.007. PubMed DOI

Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35. doi: 10.1093/nar/gkn176. PubMed DOI PMC

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14. doi: 10.1093/nar/gky1085. PubMed DOI PMC

Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–17. doi: 10.1016/j.cell.2006.07.031. PubMed DOI

Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1. doi: 10.1186/gb-2003-5-1-r1. PubMed DOI PMC

Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(suppl2):W451–4. doi: 10.1093/nar/gkl243. PubMed DOI PMC

Etebari K, Asgari S. Revised annotation of Plutella xylostella microRNAs and their genome-wide target identification. Insect Mol Biol. 2016;25(6):788–99. doi: 10.1111/imb.12263. PubMed DOI

Belles X. MicroRNAs and the evolution of insect metamorphosis. Annu Rev Entomol. 2017;62:111–25. doi: 10.1146/annurev-ento-031616-034925. PubMed DOI

Bian H-X, Chen D-B, Li Y-P, Tan E-G, Su X, Huang J-C, Su J-F, Liu Y-Q. Transcriptomic analysis of Bombyx mori corpora allata with comparison to prothoracic glands in the final instar larvae. Gene. 2022;813:146095. doi: 10.1016/j.gene.2021.146095. PubMed DOI

Zhang J, Wen D, Li EY, Palli SR, Li S, Wang J, Liu S. MicroRNA miR-8 promotes cell growth of corpus allatum and juvenile hormone biosynthesis independent of insulin/IGF signaling in Drosophila melanogaster. Insect Biochem Mol Biol. 2021;136:103611. doi: 10.1016/j.ibmb.2021.103611. PubMed DOI

Rivera-Pérez C, Clifton ME, Noriega FG, Jindra M. Juvenile Hormone Regulation and Action. In: Advances in Invertebrate (Neuro) Endocrinology Edited by Saleuddin S, Lange AB, Orchard I, vol. 2, 1 edn. New York: Apple Academic Press Inc.; 2020: 76.

Nguyen HT, Frasch M. MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Cur Opin Genet Dev. 2006;16:533–9. doi: 10.1016/j.gde.2006.08.010. PubMed DOI

Gutiérrez-Pérez P, Santillán EM, Lendl T, Wang J, Schrempf A, Steinacker TL, Asparuhova M, Brandstetter M, Haselbach D, Cochella L. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. Sci Adv. 2021;7:eabh1434. doi: 10.1126/sciadv.abh1434. PubMed DOI PMC

Rao Z, He W, Liu L, Zheng S, Huang L, Feng Q. Identification, expression and target gene analyses of micrornas in Spodoptera litura. PLoS ONE. 2012;7:e37730. doi: 10.1371/journal.pone.0037730. PubMed DOI PMC

Morin MD, Frigault JJ, Lyons PJ, Crapoulet N, Boquel S, Storey KB, Morin PJ. Amplification and quantification of cold-associated microRNAs in the Colorado potato beetle (Leptinotarsa decemlineata) agricultural pest. Insect Mol Biol. 2017;26:574–83. doi: 10.1111/imb.12320. PubMed DOI

Zhao Z-m, Yin H-t, Shen M-m, Zhang S-l, Chen Z-k, Li T, Zhang Z-d. Zhao W-g, Guo X-j, Wu P: transcriptome of miRNA during inhibition of Bombyx mori nuclear polyhedrosis virus by geldanamycin in BmN cells. Arch Insect Biochem Physiol. 2022;110:e21880. doi: 10.1002/arch.21880. PubMed DOI

Puthiyakunnon S, Yao Y, Li Y, Gu J, Peng H, Chen X. Functional characterization of three microRNAs of the Asian Tiger mosquito, Aedes albopictus. Parasites & Vectors. 2013;6(1):230. doi: 10.1186/1756-3305-6-230. PubMed DOI PMC

Batz ZA, Goff AC, Armbruster PA. MicroRNAs are differentially abundant during Aedes albopictus diapause maintenance but not diapause induction. Insect Mol Biol. 2017;26(6):721–33. doi: 10.1111/imb.12332. PubMed DOI PMC

Ma HY, Li YY, Li L, Tan Y, Pang BP. Regulation of juvenile hormone on summer diapause of Geleruca Daurica and its pathway analysis. Insects 2021, 12(3). PubMed PMC

Zhou WZ, Wu YF, Yin ZY, Guo JJ, Li HY. Juvenile hormone is an important factor in regulating Aspongopus chinensis dallas diapause. Front Physiol. 2022;13:873580. doi: 10.3389/fphys.2022.873580. PubMed DOI PMC

Batz ZA, Brent CS, Marias MR, Sugijanto J, Armbruster PA. Juvenile hormone iii but not 20-hydroxyecdysone regulates the embryonic diapause of Aedes albopictus. Front Physiol. 2019;10:1352. doi: 10.3389/fphys.2019.01352. PubMed DOI PMC

Varghese J, Cohen SM. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 2007;21:2277–82. doi: 10.1101/gad.439807. PubMed DOI PMC

Duan T-F, Gao S-J, Wang H-C, Li L, Li Y-Y, Tan Y, Pang B-P. MicroRNA let-7-5p targets the juvenile hormone primary response gene Krüppel homolog 1 and regulates reproductive diapause in Galeruca Daurica. Insect Biochem Mol Biol. 2022;142:103727. doi: 10.1016/j.ibmb.2022.103727. PubMed DOI

Kitatani Y, Tezuka A, Hasegawa E, Yanagi S, Togashi K, Tsuji M, Kondo S, Parrish JZ, Emoto K. Drosophila miR-87 promotes dendrite regeneration by targeting the transcriptional repressor Tramtrack69. PLoS Genet. 2020;16:e1008942. doi: 10.1371/journal.pgen.1008942. PubMed DOI PMC

Ge W, Chen YW, Weng R, Lim SF, Buescher M, Zhang R, Cohen SM. Overlapping functions of microRNAs in control of apoptosis during Drosophila embryogenesis. Cell Death Differ. 2012;19:839–46. doi: 10.1038/cdd.2011.161. PubMed DOI PMC

Zhao B, Lucas KJ, Saha TT, Ha J, Ling L, Kokoza VA, Roy S, Raikhel AS. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2 + adenosine triphosphatase (SERCA) to control key functions in the mosquito gut. PLoS Genet. 2017;13:e1006943. doi: 10.1371/journal.pgen.1006943. PubMed DOI PMC

Meiselman M, Lee SS, Tran R-T, Dai H, Ding Y, Rivera-Perez C, Wijesekera TP, Dauwalder B, Noriega FG, Adams ME. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc Natl Acad Sci USA. 2017;114:E3849–58. doi: 10.1073/pnas.1620760114. PubMed DOI PMC

Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev. 2012;26:1427–32. doi: 10.1101/gad.192872.112. PubMed DOI PMC

Lucas KJ, Roy S, Ha J, Gervaise AL, Kokoza VA, Raikhel AS. MicroRNA-8 targets the wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci USA. 2015;112:1440–5. doi: 10.1073/pnas.1424408112. PubMed DOI PMC

Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell. 2009;139:1096–108. doi: 10.1016/j.cell.2009.11.020. PubMed DOI

Chiang A-S, Schal C. Cyclic volumetric changes in corpus allatum cells in relation to juvenile hormone biosynthesis during ovarian cycles in cockroaches. Arch Insect Biochem Physiol. 1994;27:53–64. doi: 10.1002/arch.940270107. DOI

CHIANG A-S, HOLBROOK GL, SCHAL C. Development-activity relationships in nymphal corpora allata of the cockroach, Diploptera punctata. Physiol Entomol. 1996;21:268–74. doi: 10.1111/j.1365-3032.1996.tb00864.x. DOI

Ye X, Xu L, Li X, He K, Hua H, Cao Z, Xu J, Ye W, Zhang J, Yuan Z, et al. miR-34 modulates wing polyphenism in planthopper. PLoS Genet. 2019;15:e1008235. doi: 10.1371/journal.pgen.1008235. PubMed DOI PMC

Liu Y-K, Luo Y-J, Deng Y-M, Li Y, Pang X-Q, Xu C-D, Wang S-G, Tang B. Insulin receptors regulate the fecundity of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) J Asia-Pacific Entomol. 2020;23:1151–9. doi: 10.1016/j.aspen.2020.09.011. DOI

Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–10. doi: 10.1126/science.1057987. PubMed DOI

Pérez-Hedo M, Rivera-Perez C, Noriega FG. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. Insect Biochem Mol Biol. 2013;43(6):495–500. doi: 10.1016/j.ibmb.2013.03.008. PubMed DOI PMC

Perez-Hedo M, Rivera-Perez C, Noriega FG. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes. PLoS ONE. 2014;9:e86183. doi: 10.1371/journal.pone.0086183. PubMed DOI PMC

Truman JW. The evolution of insect metamorphosis. Curr Biol. 2019;29:R1252–68. doi: 10.1016/j.cub.2019.10.009. PubMed DOI

Liu S, Li K, Gao Y, Liu X, Chen W, Ge W, Feng Q, Palli SR, Li S. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci USA. 2018;115:139–44. doi: 10.1073/pnas.1716897115. PubMed DOI PMC

Noriega FG, Ribeiro JM, Koener JF, Valenzuela JG, Hernandez-Martinez S, Pham VM, Feyereisen R. Comparative genomics of insect juvenile hormone biosynthesis. Insect Biochem Mol Biol. 2006;36:366–74. doi: 10.1016/j.ibmb.2006.01.013. PubMed DOI PMC

Lin S, Werle J, Korb J. Transcriptomic analyses of the termite, Cryptotermes Secundus, reveal a gene network underlying a long lifespan and high fecundity. Commu Biol. 2021;4:384. doi: 10.1038/s42003-021-01892-x. PubMed DOI PMC

Ma H-Y, Li Y-Y, Li L, Tan Y, Pang B-P. Juvenile hormone regulates the reproductive diapause through Methoprene-tolerant gene in Galeruca Daurica. Insect Mol Biol. 2021;30:446–58. doi: 10.1111/imb.12710. PubMed DOI

Guo W, Song J, Yang P, Chen X, Chen D, Ren D, Kang L, Wang X. Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts. PLoS Genet. 2020;16(4):e1008762. doi: 10.1371/journal.pgen.1008762. PubMed DOI PMC

Zhu J, Miura K, Chen L, Raikhel AS. Cyclicity of mosquito vitellogenic ecdysteroid-mediated signaling is modulated by alternative dimerization of the RXR homologue Ultraspiracle Proc Natl Acad Sci USA 2003, 100:544–549. PubMed PMC

Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol. 2024. 10.1016/j.cub.2023.12.033. PubMed PMC

Liaw GJ, Lengyel JA. Control of tailless expression by bicoid, dorsal and synergistically interacting terminal system regulatory elements. Mech Dev. 1993;40:47–61. doi: 10.1016/0925-4773(93)90087-E. PubMed DOI

Das P, Bhadra MP. Histone deacetylase (Rpd3) regulates Drosophila early brain development via regulation of Tailless. Open Biol. 2020;10(9):200029. doi: 10.1098/rsob.200029. PubMed DOI PMC

De Velasco B, Shen J, Go S, Hartenstein V. Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev Biol. 2004;274:280–94. doi: 10.1016/j.ydbio.2004.07.015. PubMed DOI

Javed MA, Coutu C, Theilmann DA, Erlandson MA, Hegedus DD. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles. Insect Sci. 2019;26:424–40. doi: 10.1111/1744-7917.12547. PubMed DOI PMC

Dzitoyeva S, Dimitrijevic N, Manev H. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi) BMC Genomics. 2003;4:33. doi: 10.1186/1471-2164-4-33. PubMed DOI PMC

Schicht S, Qi W, Poveda L, Strube C. The predicted secretome and transmembranome of the poultry red mite Dermanyssus Gallinae. Parasit Vectors. 2013;6:259. doi: 10.1186/1756-3305-6-259. PubMed DOI PMC

Watts JL, Browse J. Dietary manipulation implicates lipid signaling in the regulation of germ cell maintenance in C. Elegans. Dev Biol. 2006;292:381–92. doi: 10.1016/j.ydbio.2006.01.013. PubMed DOI PMC

Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara L-a, Somboon P, Lycett G, Ranson H. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 2011;41:203–9. doi: 10.1016/j.ibmb.2010.12.005. PubMed DOI

Kouamo MFM, Ibrahim SS, Hearn J, Riveron JM, Kusimo M, Tchouakui M, Ebai T, Tchapga W, Wondji MJ, Irving H, et al. Genome-wide transcriptional analysis and functional validation linked a cluster of epsilon glutathione S-transferases with insecticide resistance in the major malaria vector Anopheles Funestus across Africa. Genes. 2021;12:561. doi: 10.3390/genes12040561. PubMed DOI PMC

Enya S, Daimon T, Igarashi F, Kataoka H, Uchibori M, Sezutsu H, Shinoda T, Niwa R. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development. Insect Biochem Mol Biol. 2015;61:1–7. doi: 10.1016/j.ibmb.2015.04.001. PubMed DOI

Curcio R, Lunetti P, Zara V, Ferramosca A, Marra F, Fiermonte G, Cappello AR, De Leonardis F, Capobianco L. Dolce V: Drosophila melanogaster mitochondrial carriers: similarities and differences with the human carriers. Int J Mol Sci. 2020;21:6052. doi: 10.3390/ijms21176052. PubMed DOI PMC

Vishnudas VK, Guillemette SS, Lekkas P, Maughan DW, Vigoreaux JO. Characterization of the intracellular distribution of adenine nucleotide translocase (ANT) in Drosophila Indirect flight muscles. CellBio. 2013;2:14. doi: 10.4236/cellbio.2013.23017. DOI

Nongthomba U, Ansari M, Thimmaiya D, Stark M, Sparrow J. Aberrant splicing of an alternative exon in the Drosophila yroponin-t gene affects flight muscle development. Genetics. 2007;177:295–306. doi: 10.1534/genetics.106.056812. PubMed DOI PMC

MARCO-FERRERES R, ARREDONDO Juan J, FRAILE B. Overexpression of troponin T in Drosophila muscles causes a decrease in the levels of thin-filament proteins. Biochem J. 2005;386:145–52. doi: 10.1042/BJ20041240. PubMed DOI PMC

Zhao L, Chen X, Feng Y, Wang G, Nawaz I, Hu L, Liu P. COX7A1 suppresses the viability of human non-small cell lung cancer cells via regulating autophagy. Cancer Med. 2019;8:7762–73. doi: 10.1002/cam4.2659. PubMed DOI PMC

Snigdha K, Gangwani KS, Lapalikar GV, Singh A, Kango-Singh M. Hippo signaling in cancer: lessons from Drosophila models. Front Cell Dev Biol. 2019;7:85. doi: 10.3389/fcell.2019.00085. PubMed DOI PMC

Shen X, Sun X, Sun B, Li T, Wu G, Li Y, Chen L, Liu Q, Cui M, Zhou Z. ARRDC3 suppresses colorectal cancer progression through destabilizing the oncoprotein YAP. FEBS Lett. 2018;592:599–609. doi: 10.1002/1873-3468.12986. PubMed DOI

Nabhan JF, Pan H, Lu Q. Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the β2-adrenergic receptor. EMBO Rep. 2010;11:605–11. doi: 10.1038/embor.2010.80. PubMed DOI PMC

Shi Q, Lin YQ, Saliba A, Xie J, Neely GG, Banerjee S. Tubulin polymerization promoting protein, ringmaker, and MAP1B homolog futsch coordinate microtubule organization and synaptic growth. Front Cell Neurosci. 2019;13:192. doi: 10.3389/fncel.2019.00192. PubMed DOI PMC

Marriage TN, King EG, Long AD, Macdonald SJ. Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population. Genetics. 2014;198:45–57. doi: 10.1534/genetics.114.162107. PubMed DOI PMC

Bozzolan F, Siaussat D, Maria A, Durand N, Pottier MA, Chertemps T, Maïbèche-Coisne M. Antennal uridine diphosphate (UDP)-glycosyltransferases in a pest insect: diversity and putative function in odorant and xenobiotics clearance. Insect Mol Biol. 2014;23:539–49. doi: 10.1111/imb.12100. PubMed DOI

Wang S, Yi J-K, Yang S, Liu Y, Zhang J-H, Xi J-H. Identification and characterization of microRNAs expressed in antennae of Holotrichia Parallela Motschulsky and their possible roles in olfactory regulation. Arch Insect Biochem Physiol. 2017;94:e21369. doi: 10.1002/arch.21369. PubMed DOI

Rane RV, Clarke DF, Pearce SL, Zhang G, Hoffmann AA, Oakeshott JG. Detoxification genes differ between cactus-, fruit-, and flower-feeding Drosophila. J Heredity. 2018;110:80–91. doi: 10.1093/jhered/esy058. PubMed DOI

Cui X, Wang C, Wang X, Li G, Liu Z, Wang H, Guo X, Xu B. Molecular mechanism of the UDP-Glucuronosyltransferase 2B20-like gene (AccUGT2B20-like) in pesticide resistance of Apis cerana Cerana. Front Genet. 2020;11:592595. doi: 10.3389/fgene.2020.592595. PubMed DOI PMC

Pym A, Umina PA, Reidy-Crofts J, Troczka BJ, Matthews A, Gardner J, Hunt BJ, van Rooyen AR, Edwards OR, Bass C. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae. Insect Biochem Mol Biol. 2022;143:103743. doi: 10.1016/j.ibmb.2022.103743. PubMed DOI

Shen X-N, Wang X-D, Wan F-H, Lü Z-C, Liu W-X. Gene expression analysis reveals potential regulatory factors response to temperature stress in Bemisia tabaci Mediterranean. Genes. 2023;14:1013. doi: 10.3390/genes14051013. PubMed DOI PMC

Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3:281–90. doi: 10.1186/1479-7364-3-3-281. PubMed DOI PMC

Yamanaka N, Marqués G, O’Connor Michael B. Vesicle-mediated steroid hormone secretion in Drosophila melanogaster. Cell. 2015;163(4):907–19. doi: 10.1016/j.cell.2015.10.022. PubMed DOI PMC

Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-binding cassette (ABC) transporters: roles in xenobiotic detoxification and bt insecticidal activity. Int J Mol Sci. 2019;20:2829. doi: 10.3390/ijms20112829. PubMed DOI PMC

Quiquand M, Rimesso G, Qiao N, Suo S, Zhao C, Slattery M, White KP, Han JJ, Baker NE. New regulators of Drosophila eye development identified from temporal transcriptome changes. Genetics. 2021;217:iyab007. doi: 10.1093/genetics/iyab007. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...