• This record comes from PubMed

Continent-wide parallel urban evolution of increased heat tolerance in a common moth

. 2024 Jan ; 17 (1) : e13636. [epub] 20231226

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Urbanization and its urban-heat-island effect (UHI) have expanding footprints worldwide. The UHI means that urban habitats experience a higher mean and more frequent extreme high temperatures than rural habitats, impacting the ontogeny and resilience of urban biodiversity. However, many organisms occupy different microhabitats during different life stages and thus may experience the UHI differently across their development. While evolutionary changes in heat tolerance in line with the UHI have been demonstrated, it is unknown whether such evolutionary responses can vary across development. Here, using common-garden-reared Chiasmia clathrata moths from urban and rural populations from three European countries, we tested for urban evolution of heat shock tolerance in two life stages: larvae and adults. Our results indicate widespread urban evolution of increased heat tolerance in the adult stage only, suggesting that the UHI may be a stronger selective agent in adults. We also found that the difference in heat tolerance between urban and rural populations was similar to the difference between Mid- and North-European regions, suggesting similarity between adaptation to the UHI and natural, latitudinal temperature variation. Our observations incentivize further research to quantify the impact of these UHI adaptations on fitness during urbanization and climate change, and to check whether life-stage-specific adaptations in heat tolerance are typical of other ectothermic species that manage to survive in urbanized settings.

See more in PubMed

Angilletta, M. J., Jr. , Wilson, R. S. , Niehaus, A. C. , Sears, M. W. , Navas, C. A. , & Ribeiro, P. L. (2007). Urban physiology: City ants possess high heat tolerance. PLoS One, 2, e258. 10.1371/journal.pone.0000258 PubMed DOI PMC

Arias, M. B. , Poupin, M. J. , & Lardies, M. A. (2011). Plasticity of life‐cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability. Journal of Thermal Biology, 36, 355–362. 10.1016/j.jtherbio.2011.06.011 DOI

Barton, K. (2020). MuMIn: Multi‐Model Inference . R package version 1.43.17.

Bernath‐Plaisted, J. S. , Ribic, C. A. , Hills, W. B. , Townsend, P. A. , & Zuckerberg, B. (2023). Microclimate complexity in temperate grasslands: Implications for conservation and management under climate change. Environmental Research Letters, 18, 064023. 10.1088/1748-9326/acd4d3 DOI

Berrigan, D. (2000). Correlations between measures of thermal stress resistance within and between species. Oikos, 89, 301–304. 10.1034/j.1600-0706.2000.890211.x DOI

Bowler, K. , & Terblanche, J. S. (2008). Insect thermal tolerance: What is the role of ontogeny, ageing and senescence? Biological Reviews, 83, 339–355. 10.1111/j.1469-185X.2008.00046.x PubMed DOI

Braem, S. , Crucifix, M. , Nieberding, C. , & Van Dyck, H. (2023). Microclimatic buffering in forest, agricultural, and urban landscapes through the lens of a grass‐feeding insect. Ecosphere, 14, e4611. 10.1002/ecs2.4611 DOI

Brans, K. I. , Jansen, M. , Vanoverbeke, J. , Tüzün, N. , Stoks, R. , & De Meester, L. (2017). The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Global Change Biology, 23, 5218–5227. 10.1111/gcb.13784 PubMed DOI

Buckley, L. B. , & Huey, R. B. (2016). How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integrative and Comparative Biology, 56, 98–109. 10.1093/icb/icw004 PubMed DOI

Burnham, K. P. , & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information‐theoretic approach (2nd ed.). Springer‐Verlag.

Campbell‐Staton, S. C. , Winchell, K. M. , Rochette, N. C. , Fredette, J. , Maayan, I. , Schweizer, R. M. , & Catchen, J. (2020). Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nature Ecology & Evolution, 4, 652–658. 10.1038/s41559-020-1131-8 PubMed DOI

Carroll, J. M. , Davis, C. A. , Fuhlendorf, S. D. , & Elmore, R. D. (2016). Landscape pattern is critical for the moderation of thermal extremes. Ecosphere, 7, e01403. 10.1002/ecs2.1403 DOI

Casey, T. M. (1976). Activity patterns, body temperature and thermal ecology in two desert caterpillars (lepidoptera: Sphingidae). Ecology, 57, 485–497. 10.2307/1936433 DOI

Chapman, S. , Watson, J. E. M. , Salazar, A. , Thatcher, M. , & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: A systematic review. Landscape Ecology, 32, 1921–1935. 10.1007/s10980-017-0561-4 DOI

Diamond, S. E. , Chick, L. D. , Perez, A. , Strickler, S. A. , & Martin, R. A. (2018). Evolution of thermal tolerance and its fitness consequences: Parallel and non‐parallel responses to urban heat islands across three cities. Proceedings of the Royal Society B: Biological Sciences, 285, 20180036. 10.1098/rspb.2018.0036 PubMed DOI PMC

Diamond, S. E. , & Martin, R. A. (2021). Physiological adaptation to cities as a proxy to forecast global‐scale responses to climate change. Journal of Experimental Biology, 224, jeb229336. 10.1242/jeb.229336 PubMed DOI

Diamond, S. E. , Prileson, E. , & Martin, R. A. (2022). Adaptation to urban environments. Current Opinion in Insect Science, 51, 100893. 10.1016/j.cois.2022.100893 PubMed DOI

Forstmeier, W. , & Schielzeth, H. (2011). Cryptic multiple hypothesis testing in linear models: Overestimated effect sizes and the winner's curse. Behavioral Ecology and Sociobiology, 65, 47–55. 10.1007/s00265-010-1038-5 PubMed DOI PMC

Founda, D. , & Santamouris, M. (2017). Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7, 1–11. 10.1038/s41598-017-11407-6 PubMed DOI PMC

Gao, J. , & O'Neill, B. C. (2020). Mapping global urban land for the 21st century with data‐driven simulations and shared socioeconomic pathways. Nature Communications, 11, 2302. 10.1038/s41467-020-15788-7 PubMed DOI PMC

Gardiner, T. , & Hassall, M. (2009). Does microclimate affect grasshopper populations after cutting of hay in improved grassland? Journal of Insect Conservation, 13, 97–102. 10.1007/s10841-007-9129-y DOI

Hällfors, M. H. , Pöyry, J. , Heliölä, J. , Kohonen, I. , Kuussaari, M. , Leinonen, R. , Schmucki, R. , Sihvonen, P. , & Saastamoinen, M. (2021). Combining range and phenology shifts offers a winning strategy for boreal lepidoptera. Ecology Letters, 24, 1619–1632. 10.1111/ele.13774 PubMed DOI

Hamblin, A. L. , Youngsteadt, E. , López‐Uribe, M. M. , & Frank, S. D. (2017). Physiological thermal limits predict differential responses of bees to urban heat‐island effects. Biology Letters, 13, 20170125. 10.1098/rsbl.2017.0125 PubMed DOI PMC

He, B. J. , Wang, J. , Liu, H. , & Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193, 110584. 10.1016/j.envres.2020.110584 PubMed DOI

Hill, G. M. , Kawahara, A. Y. , Daniels, J. C. , Bateman, C. C. , & Scheffers, B. R. (2021). Climate change effects on animal ecology: Butterflies and moths as a case study. Biological Reviews, 96, 2113–2126. 10.1111/brv.12746 PubMed DOI PMC

Hoffmann, A. A. , Chown, S. L. , & Clusella‐Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: How constrained are they? Functional Ecology, 27, 934–949. 10.1111/j.1365-2435.2012.02036.x DOI

Jørgensen, L. B. , Malte, H. , & Overgaard, J. (2019). How to assess Drosophila heat tolerance: Unifying static and dynamic tolerance assays to predict heat distribution limits. Functional Ecology, 33, 629–642. 10.1111/1365-2435.13279 DOI

Kaiser, A. , Merckx, T. , & Van Dyck, H. (2016). The Urban Heat Island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecology and Evolution, 6, 4129–4140. 10.1002/ece3.2166 PubMed DOI PMC

Kearney, M. , Shine, R. , & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold‐blooded” animals against climate warming. Proceedings of the National Academy of Sciences, 106, 3835–3840. 10.1073/pnas.0808913106 PubMed DOI PMC

Kellermann, V. , van Heerwaarden, B. , & Sgrò, C. M. (2017). How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster . Proceedings of the Royal Society B: Biological Sciences, 284, 20170447. 10.1098/rspb.2017.0447 PubMed DOI PMC

Kingsolver, J. G. , Arthur Woods, H. , Buckley, L. B. , Potter, K. A. , MacLean, H. J. , & Higgins, J. K. (2011). Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology, 51, 719–732. 10.1093/icb/icr015 PubMed DOI

Knop, E. (2016). Biotic homogenization of three insect groups due to urbanization. Global Change Biology, 22, 228–236. 10.1111/gcb.13091 PubMed DOI

Kuussaari, M. , Saarinen, M. , Korpela, E. L. , Pöyry, J. , & Hyvönen, T. (2014). Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecology and Evolution, 4, 3800–3811. 10.1002/ece3.1187 PubMed DOI PMC

Lahr, E. C. , Dunn, R. R. , & Frank, S. D. (2018). Getting ahead of the curve: Cities as surrogates for global change. Proceedings of the Royal Society B: Biological Sciences, 285, 20180643. 10.1098/rspb.2018.0643 PubMed DOI PMC

Lambert, M. R. , Brans, K. I. , Des Roches, S. , Donihue, C. M. , & Diamond, S. E. (2021). Adaptive evolution in cities: Progress and misconceptions. Trends in Ecology & Evolution, 36, 239–257. 10.1016/j.tree.2020.11.002 PubMed DOI

Lambert, M. R. , & Donihue, C. M. (2020). Urban biodiversity management using evolutionary tools. Nature Ecology & Evolution, 4, 903–910. 10.1038/s41559-020-1193-7 PubMed DOI

Leraut, P. (2009). Moths of Europe, volume 2: Geometrid moths. N.A.P. Editions.

Loeschke, V. , & Krebs, R. A. (1996). Selection for heat‐shock resistance in larval and in adult Drosophila buzzatii: Comparing direct and indirect responses. Evolution, 50, 2354–2359. 10.1111/j.1558-5646.1996.tb03623.x PubMed DOI

Ma, C. S. , Ma, G. , & Pincebourde, S. (2021). Survive a warming climate: Insect responses to extreme high temperatures. Annual Review of Entomology, 66, 163–184. 10.1146/annurev-ento-041520-074454 PubMed DOI

Malinowski, R. , Lewiński, S. , Rybicki, M. , Gromny, E. , Jenerowicz, M. , Krupiński, M. , Nowakowski, A. , Wojtkowski, C. , Krupiński, M. , Krätzschmar, E. , & Schauer, P. (2020). Automated production of a land cover/use map of Europe based on Sentinel‐2 imagery. Remote Sensing, 12, 3523. 10.3390/rs12213523 DOI

Manoli, G. , Fatichi, S. , Schläpfer, M. , Yu, K. , Crowther, T. W. , Meili, N. , Burlando, P. , Katul, G. G. , & Bou‐Zeid, E. (2019). Magnitude of urban heat islands largely explained by climate and population. Nature, 573, 55–60. 10.1038/s41586-019-1512-9 PubMed DOI

Martin, R. A. , Chick, L. D. , Yilmaz, A. R. , & Diamond, S. E. (2019). Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban–rural temperature cline. Evolutionary Applications, 12, 1678–1687. 10.1111/eva.12826 PubMed DOI PMC

Medina‐Báez, O. A. , Lenard, A. , Muzychuk, R. A. , da Silva, C. R. , & Diamond, S. E. (2023). Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. Conservation Physiology, 11, coad058. 10.1093/conphys/coad058 PubMed DOI PMC

Merckx, T. , Nielsen, M. E. , Heliölä, J. , Kuussaari, M. , Pettersson, L. B. , Pöyry, J. , Tiainen, J. , Gotthard, K. , & Kivelä, S. M. (2021). Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in lepidoptera. Proceedings of the National Academy of Sciences, 118, e2106006118. 10.1073/pnas.2106006118 PubMed DOI PMC

Merckx, T. , Nielsen, M. E. , Kankaanpää, T. , Kadlec, T. , Yazdanian, M. , & Kivelä, S. M. (2023). Dim light pollution prevents diapause induction in urban and rural moths. Journal of Applied Ecology, 60, 1022–1031. 10.1111/1365-2664.14373 DOI

Merckx, T. , Nielsen, M. E. , Kankaanpää, T. , Kadlec, T. , Yazdanian, M. , & Kivelä, S. M. (2024). Data supporting the findings of this study are openly available . 10.5061/dryad.6q573n638 DOI

Merckx, T. , Souffreau, C. , Kaiser, A. , Baardsen, L. F. , Backeljau, T. , Bonte, D. , Brans, K. I. , Cours, M. , Dahirel, M. , Debortoli, N. , de Wolf, K. , Engelen, J. M. T. , Fontaneto, D. , Gianuca, A. T. , Govaert, L. , Hendrickx, F. , Higuti, J. , Lens, L. , Martens, K. , … van Dyck, H. (2018). Body‐size shifts in aquatic and terrestrial urban communities. Nature, 558, 113–116. 10.1038/s41586-018-0140-0 PubMed DOI

Merckx, T. , & Van Dyck, H. (2019). Urbanization‐driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Global Ecology and Biogeography, 28, 1440–1455. 10.1111/geb.12969 DOI

Moghadam, N. N. , Ketola, T. , Pertoldi, C. , Bahrndorff, S. , & Kristensen, T. N. (2019). Heat hardening capacity in Drosophila melanogaster is life stage‐specific and juveniles show the highest plasticity. Biology Letters, 15, 20180628. 10.1098/rsbl.2018.0628 PubMed DOI PMC

Mutamiswa, R. , Chidawanyika, F. , & Nyamukondiwa, C. (2018). Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae). Insect Science, 25, 847–860. 10.1111/1744-7917.12466 PubMed DOI

Mutamiswa, R. , Machekano, H. , Chidawanyika, F. , & Nyamukondiwa, C. (2019). Life‐stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (lepidoptera: Crambidae). Journal of Thermal Biology, 79, 85–94. 10.1016/j.jtherbio.2018.12.002 PubMed DOI

Nadeau, C. P. , Urban, M. C. , & Bridle, J. R. (2017). Climates past, present, and yet‐to‐come shape climate change vulnerabilities. Trends in Ecology & Evolution, 32, 786–800. 10.1016/j.tree.2017.07.012 PubMed DOI

Nielsen, M. E. (2017). No geographic variation in thermoregulatory colour plasticity and limited variation in heat‐avoidance behaviour in Battus philenor caterpillars. Journal of Evolutionary Biology, 30, 1919–1928. 10.1111/jeb.13168 PubMed DOI

Niveditha, S. , Deepashree, S. , Ramesh, S. R. , & Shivanandappa, T. (2017). Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster . Journal of Comparative Physiology B, 187, 899–909. 10.1007/s00360-017-1061-1 PubMed DOI

Nyamukondiwa, C. , Chidawanyika, F. , Machekano, H. , Mutamiswa, R. , Sands, B. , Mgidiswa, N. , & Wall, R. (2018). Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species. PLoS One, 13, e0198610. 10.1371/journal.pone.0198610 PubMed DOI PMC

Oke, T. R. , Mills, G. , Christen, A. , & Voogt, J. A. (2017). Urban Climates. Cambridge Univ.

Piano, E. , De Wolf, K. , Bona, F. , Bonte, D. , Bowler, D. E. , Isaia, M. , Lens, L. , Merckx, T. , Mertens, D. , van Kerckvoorde, M. , De Meester, L. , & Hendrickx, F. (2017). Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Global Change Biology, 23, 2554–2564. 10.1111/gcb.13606 PubMed DOI

Pincebourde, S. , Murdock, C. C. , Vickers, M. , & Sears, M. W. (2016). Fine‐scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integrative and Comparative Biology, 56, 45–61. 10.1093/icb/icw016 PubMed DOI

Pinheiro, J. , Bates, D. , DebRoy, S. , Sarkar, D. , & R Core Team . (2021). nlme: Linear and nonlinear mixed effects models . R package version 3.1‐153. https://CRAN.R‐project.org/package=nlme

R Core Team . (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing; https://www.R‐project.org/

Randle, Z. , Evans‐Hill, L. J. , Parsons, M. S. , Tyner, A. , Bourn, N. A. D. , Davis, A. M. , Dennis, E. B. , O'Donnell, M. , Prescott, T. , Tordoff, G. M. , & Fox, R. (2019). Atlas of Britain & Ireland's larger moths. Pisces Publications.

Richards, S. A. , Whittingham, M. J. , & Stephens, P. A. (2011). Model selection and model averaging in behavioural ecology: The utility of the IT‐AIC framework. Behavioral Ecology and Sociobiology, 65, 77–89. 10.1007/s00265-010-1035-8 DOI

Sgrò, C. M. , Overgaard, J. , Kristensen, T. N. , Mitchell, K. A. , Cockerell, F. E. , & Hoffmann, A. A. (2010). A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. Journal of Evolutionary Biology, 23, 2484–2493. 10.1111/j.1420-9101.2010.02110.x PubMed DOI

Sherman, P. W. , & Watt, W. B. (1973). The thermal ecology of some Colias butterfly larvae. Journal of Comparative Physiology, 83, 25–40. 10.1007/BF00694570 DOI

Sinervo, B. , Méndez‐de‐la‐Cruz, F. , Miles, D. B. , Heulin, B. , Bastiaans, E. , Villagrán‐Santa Cruz, M. , Lara‐Resendiz, R. , Martínez‐Méndez, N. , Calderón‐Espinosa, M. L. , Meza‐Lázaro, R. N. , Gadsden, H. , Avila, L. J. , Morando, M. , de la Riva, I. J. , Sepulveda, P. V. , Rocha, C. F. D. , Ibargüengoytía, N. , Puntriano, C. A. , Massot, M. , … Sites, J. W., Jr. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894–899. 10.1126/science.1184695 PubMed DOI

Stevenson, R. D. (1985). Body size and limits to the daily range of body temperature in terrestrial ectotherms. The American Naturalist, 125, 102–117. 10.1086/284330 DOI

Suggitt, A. J. , Gillingham, P. K. , Hill, J. K. , Huntley, B. , Kunin, W. E. , Roy, D. B. , & Thomas, C. D. (2011). Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos, 120, 1–8. 10.1111/j.1600-0706.2010.18270.x DOI

Suggitt, A. J. , Wilson, R. J. , Isaac, N. J. , Beale, C. M. , Auffret, A. G. , August, T. , Bennie, J. J. , Crick, H. Q. P. , Duffield, S. , Fox, R. , Hopkins, J. J. , Macgregor, N. A. , Morecroft, M. D. , Walker, K. J. , & Maclean, I. M. (2018). Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 8, 713–717. 10.1038/s41558-018-0231-9 DOI

Sunday, J. , Bennett, J. M. , Calosi, P. , Clusella‐Trullas, S. , Gravel, S. , Hargreaves, A. L. , Leiva, F. P. , Verberk, C. E. P. , Ollala‐Tárraga, M. Á. , & Morales‐Castilla, I. (2019). Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B, 374, 20190036. 10.1098/rstb.2019.0036 PubMed DOI PMC

Szulkin, M. , Munshi‐South, J. , & Charmantier, A. (2020). Urban evolutionary biology. Oxford University Press.

Tarusikirwa, V. L. , Mutamiswa, R. , English, S. , Chidawanyika, F. , & Nyamukondiwa, C. (2020). Thermal plasticity in the invasive South American tomato pinworm Tuta absoluta (Meyrick) (lepidoptera: Gelechiidae). Journal of Thermal Biology, 90, 102598. 10.1016/j.jtherbio.2020.102598 PubMed DOI

Tropek, R. , Cizek, O. , Kadlec, T. , & Klecka, J. (2017). Habitat use of Hipparchia semele (lepidoptera) in its artificial stronghold: Necessity of the resource‐based habitat view in restoration of disturbed sites. Polish Journal of Ecology, 65, 385–399. 10.3161/15052249PJE2017.65.3.006 DOI

Välimäki, P. , Kivelä, S. M. , Mäenpää, M. I. , & Tammaru, T. (2013). Latitudinal clines in alternative life histories in a geometrid moth. Journal of Evolutionary Biology, 26, 118–129. 10.1111/jeb.12033 PubMed DOI

van Heerwaarden, B. , Lee, R. F. H. , Wegener, B. , Weeks, A. R. , & Sgró, C. M. (2012). Complex patterns of local adaptation in heat tolerance in Drosophila simulans from eastern Australia. Journal of Evolutionary Biology, 25, 1765–1778. 10.1111/j.1420-9101.2012.02564.x PubMed DOI

Wei, C. , Chen, W. , Lu, Y. , Blaschke, T. , Peng, J. , & Xue, D. (2022). Synergies between urban heat island and urban heat wave effects in 9 global mega‐regions from 2003 to 2020. Remote Sensing, 14, 70. 10.3390/rs14010070 DOI

Woods, H. A. (2013). Ontogenetic changes in the body temperature of an insect herbivore. Functional Ecology, 27, 1322–1331. 10.1111/1365-2435.12124 DOI

Yang, N. , Xie, W. , Jones, C. M. , Bass, C. , Jiao, X. , Yang, X. , Liu, B. , Li, R. , & Zhang, Y. (2013). Transcriptome profiling of the whitefly Bemisia tabaci reveals stage‐specific gene expression signatures for thiamethoxam resistance. Insect Molecular Biology, 22, 485–496. 10.1111/imb.12038 PubMed DOI PMC

Yilmaz, A. R. , Diamond, S. E. , & Martin, R. A. (2021). Evidence for the evolution of thermal tolerance, but not desiccation tolerance, in response to hotter, drier city conditions in a cosmopolitan, terrestrial isopod. Evolutionary Applications, 14, 12–23. 10.1111/eva.13052 PubMed DOI PMC

Zhao, L. , Oppenheimer, M. , Zhu, Q. , Baldwin, J. W. , Ebi, K. L. , Bou‐Zeid, E. , Guan, K. , & Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letters, 13, 034003. 10.1088/1748-9326/aa9f73 DOI

See more in PubMed

Dryad
10.5061/dryad.6q573n638

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...