Advanced technologies towards improved HPV diagnostics

. 2024 Feb ; 96 (2) : e29409.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38293790

Grantová podpora
Ministerstvo Zdravotnictví Ceské Republiky
Ministerstvo Školství, Mládeže a Telovýchovy
Agentura Pro Zdravotnický Výzkum Ceské Republiky

Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.

Zobrazit více v PubMed

Chesson HW, Dunne EF, Hariri S, Markowitz LE. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex Transm Dis. 2014;41(11):660-664.

Egawa N, Doorbar J. The low-risk papillomaviruses. Virus Res. 2017;231:119-127.

Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. The Lancet. 2007;370(9590):890-907.

Dunne EF, Park IU. HPV and HPV-associated diseases. Infect Dis Clin North Am. 2013;27(4):765-778.

Lechner M, Liu J, Masterson L, Fenton TR. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol. 2022;19(5):306-327.

Steenbergen RDM, Snijders PJF, Heideman DAM, Meijer CJLM. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer. 2014;14(6):395-405.

de Boer MA, Jordanova ES, Kenter GG, et al. High human papillomavirus oncogene mRNA expression and not viral DNA load is associated with poor prognosis in cervical cancer patients. Clin Cancer Res. 2007;13(1):132-138.

Cervical Cancer Statistics, 2023. https://www.cdc.gov/cancer/cervical/statistics/

Suh DH, Lee K-H, Kim K, Kang S, Kim J-W. Major clinical research advances in gynecologic cancer in 2014. J Gynecol Oncol. 2015;26(2):156-167.

Liang LA, Einzmann T, Franzen A, et al. Cervical cancer screening: comparison of conventional pap smear test, liquid-based cytology, and human papillomavirus testing as stand-alone or cotesting strategies. Cancer Epidemiol Biomarkers Prevent. 2021;30(3):474-484.

Abassi L HPV Vaccine's impressive success story. American Council on Science and Health. 2016. https://www.acsh.org/news/2016/02/23/hpv-vaccine-success-story

Illah O, Olaitan A. Updates on HPV vaccination. Diagnostics. 2023;13(2):243.

Kjaer SK, Nygård M, Sundström K, et al. Final analysis of a 14-year long-term follow-up study of the effectiveness and immunogenicity of the quadrivalent human papillomavirus vaccine in women from four nordic countries. EClinicalMedicine. 2020;23:100401.

Lehtinen M, Paavonen J, Wheeler CM, et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13(1):89-99.

Guevara A, Cabello R, Woelber L, et al. Antibody persistence and evidence of immune memory at 5 years following administration of the 9-valent HPV vaccine. Vaccine. 2017;35(37):5050-5057.

Giuliano AR, Palefsky JM, Goldstone S, et al. Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. N Engl J Med. 2011;364(5):401-411.

Giuliano AR, Wilkin T, Bautista OM, et al. Design of a phase III efficacy, immunogenicity, and safety study of 9-valent human papillomavirus vaccine in prevention of oral persistent infection in men. Contemp Clin Trials. 2022;115:106592.

Toh ZQ, Russell FM, Garland SM, Mulholland EK, Patton G, Licciardi PV. Human papillomavirus vaccination after COVID-19. JNCI Cancer Spectrum. 2021;5(2):pkab011.

Graham JE, Mishra A. Global challenges of implementing human papillomavirus vaccines. Int J Equity Health. 2011;10(1):27.

Spence T, Bruce J, Yip K, Liu FF. HPV associated head and neck cancer. Cancers. 2016;8(8):75.

Marur S, D'Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11(8):781-789.

Ndiaye C, Mena M, Alemany L, et al. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol. 2014;15(12):1319-1331.

Powell SF, Vu L, Spanos WC, Pyeon D. The key differences between human papillomavirus-positive and -negative head and neck cancers: biological and clinical implications. Cancers. 2021;13(20):5206.

Tsu VD, Njama-Meya D, Lim J, Murray M, de Sanjose S. Opportunities and challenges for introducing HPV testing for cervical cancer screening in sub-Saharan Africa. Prev Med. 2018;114:205-208.

Fontham ETH, Wolf AMD, Church TR, et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J Clin. 2020;70(5):321-346.

Arbyn M, Anttila A, Jordan J, et al. European guidelines for quality assurance in cervical cancer screening. second edition-summary document. Ann Oncol. 2010;21(3):448-458.

von Karsa L, Arbyn M, De Vuyst H, et al. European guidelines for quality assurance in cervical cancer screening. Summary of the supplements on HPV screening and vaccination. Papillomavirus Res. 2015;1:22-31.

Bonde JH, Sandri MT, Gary DS, Andrews JC. Clinical utility of human papillomavirus genotyping in cervical cancer screening: a systematic review. J Low Genit Tract Dis. 2020;24(1):1-13.

Stoler MH, Wright TC, Parvu V, et al. HPV testing with 16, 18, and 45 genotyping stratifies cancer risk for women with normal cytology. Am J Clin Path. 2019;151(4):433-442.

Bruno MT, Ferrara M, Fava V, Rapisarda A, Coco A. HPV genotype determination and E6/E7 mRNA detection for management of HPV positive women. Virol J. 2018;15(1):52.

Benevolo M, Vocaturo A, Caraceni D, et al. Sensitivity, specificity, and clinical value of human papillomavirus (HPV) E6/E7 mRNA assay as a triage test for cervical cytology and HPV DNA test. J Clin Microbiol. 2011;49(7):2643-2650.

Dabeski D, Duvlis S, Basheska N, et al. Comparison between HPV DNA testing and HPV E6/E7 MRNA testing in women with squamous cell abnormalities of the uterine cervix. Prilozi. 2019;40(1):51-58.

Poljak M, Oštrbenk Valenčak A, Gimpelj Domjanič G, Xu L, Arbyn M. Commercially available molecular tests for human papillomaviruses: a global overview. Clin Microbiol Infect. 2020;26(9):1144-1150.

Poljak M, Kocjan BJ, Oštrbenk A, Seme K. Commercially available molecular tests for human papillomaviruses (HPV): 2015 update. J Clin Virol. 2016;76:S3-S13.

Salazar KL, Duhon DJ, Olsen R, Thrall M. A review of the FDA-approved molecular testing platforms for human papillomavirus. J Am Soc Cytopathol. 2019;8(5):284-292.

Integrating HPV testing in cervical cancer screening program: a manual for program managers. In: Pan American Health Organization; 2016.

Arbyn M, Simon M, Peeters E, et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin Microbiol Infect. 2021;27(8):1083-1095.

WHO Guidelines Approved by the Guidelines Review Committee. In: WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention. World Health Organization; 2021.

Arbyn M, Depuydt C, Benoy I, et al. VALGENT: a protocol for clinical validation of human papillomavirus assays. J Clin Virol. 2016;76:S14-S21.

Terry G, Ho L, Londesborough P, Cuzick J, Mielzynska-Lohnas I, Lorincz A. Detection of high-risk HPV types by the hybrid capture 2 test. J Med Virol. 2001;65(1):155-162.

Kurian EM, Caporelli M-L, Baker S, Woda B, Cosar EF, Hutchinson L. Cervista HR and HPV 16/18 assays vs hybrid capture 2 assay. Am J Clin Path. 2011;136(5):808-816.

Einstein MH, Martens MG, Garcia FAR, et al. Clinical validation of the Cervista HPV HR and 16/18 genotyping tests for use in women with ASC-US cytology. Gynecol Oncol. 2010;118(2):116-122.

Pyne MT, Law C, Hillyard DR, Schlaberg R. Testing and genotyping of high-risk human papillomavirus by the cobas HPV test and the hybrid capture 2 high-risk HPV DNA test using cervical and vaginal samples. J Clin Microbiol. 2014;52(5):1720-1723.

Poljak M, Ostrbenk A. The Abbott RealTime High Risk HPV test is a clinically validated human papillomavirus assay for triage in the referral population and use in primary cervical cancer screening in women 30 years and older: a review of validation studies. Acta Dermatovenerol Alp Panon Adriat. 2013;22(2):43-47.

Latsuzbaia A, Vanden Broeck D, Van Keer S, et al. Validation of BD onclarity HPV assay on vaginal self-samples versus cervical samples using the VALHUDES protocol. Cancer Epidemiol Biomarkers Prevent. 2022;31(12):2177-2184.

Martinelli M, Giubbi C, Sechi I, et al. Evaluation of BD Onclarity™ HPV assay on self-collected vaginal and first-void urine samples as compared to clinician-collected cervical samples: a pilot study. Diagnostics. 2022;12(12):3075.

Latsuzbaia A, Vanden Broeck D, Van Keer S, et al. Comparison of the clinical accuracy of Xpert HPV Assay on vaginal self-samples and cervical clinician-taken samples within the VALHUDES framework. J Mol Diagn. 2023;25(9):702-708.

Guo M, Khanna A, Feng J, et al. Analytical performance of cervista HPV 16/18 in SurePath pap specimens. Diagn Cytopathol. 2015;43(4):301-306.

Bartholomew DA, Luff RD, Quigley NB, Curtis M, Olson MC. Analytical performance of Cervista® HPV 16/18 genotyping test for cervical cytology samples. J Clin Virol. 2011;51(1):38-43.

Kwon M-J, Roh KH, Park H, Woo H-Y. Comparison of the Anyplex II HPV28 assay with the hybrid capture 2 assay for the detection of HPV infection. J Clin Virol. 2014;59(4):246-249.

Lillsunde Larsson G, Carlsson J, Karlsson MG, Helenius G. Evaluation of HPV genotyping assays for archival clinical samples. J Mol Diagn. 2015;17(3):293-301.

Xu L, Padalko E, Oštrbenk A, Poljak M, Arbyn M. Clinical evaluation of INNO-LiPA HPV genotyping EXTRA II assay using the VALGENT framework. Int J Mol Sci. 2018;19(9):2704.

Didelot M-N, Boulle N, Damay A, Costes V, Segondy M. Comparison of the PapilloCheck® assay with the digene HC2 HPV DNA assay for the detection of 13 high-risk human papillomaviruses in cervical and anal scrapes. J Med Virol. 2011;83(8):1377-1382.

Schopp B, Holz B, Zago M, et al. Evaluation of the performance of the novel PapilloCheck® HPV genotyping test by comparison with two other genotyping systems and the HC2 test. J Med Virol. 2010;82:605-615.

Basu P, Banerjee D, Mittal S, et al. Sensitivity of APTIMA HPV E6/E7 mRNA test in comparison with hybrid capture 2 HPV DNA test for detection of high risk oncogenic human papillomavirus in 396 biopsy confirmed cervical cancers. J Med Virol. 2016;88(7):1271-1278.

Krings A, Dückelmann AM, Moser L, et al. Performance of OncoE6 cervical test with collection methods enabling self-sampling. BMC Womens Health. 2018;18(1):68.

Yu L, Jiang M, Qu P, et al. Clinical evaluation of human papillomavirus 16/18 oncoprotein test for cervical cancer screening and HPV positive women triage. Int J Cancer. 2018;143(4):813-822.

Santos FLSG, Invenção MCV, Araújo ED, Barros GS, Batista MVA. Comparative analysis of different PCR-based strategies for HPV detection and genotyping from cervical samples. J Med Virol. 2021;93(11):6347-6354.

Jamwal VL, Kumar N, Bhat R, et al. Optimization and validation of RT-LAMP assay for diagnosis of SARS-CoV2 including the globally dominant Delta variant. Virol J. 2021;18(1):178.

Mudhigeti N, Kalawat U, Hulikal N, Kante M. Evaluation of loop-mediated isothermal amplification assay for detection and typing of human papilloma virus 16 and 18 from endocervical samples. Indian J Med Microbiol. 2019;37(2):241-247.

Zhang L, Ju Y, Hu H, et al. Preliminary establishment and validation of a loop-mediated isothermal amplification assay for convenient screening of 13 types of high-risk human papillomaviruses in cervical secretions. J Virol Methods. 2022;303:114501.

Luo L, Nie K, Yang MJ, et al. Visual detection of high-risk human papillomavirus genotypes 16, 18, 45, 52, and 58 by loop-mediated isothermal amplification with hydroxynaphthol blue dye. J Clin Microbiol. 2011;49(10):3545-3550.

Zhong Q, Li K, Chen D, Wang H, Lin Q, Liu W. Rapid detection and subtyping of human papillomaviruses in condyloma acuminatum using loop-mediated isothermal amplification with hydroxynaphthol blue dye. Br J Biomed Sci. 2018;75(3):110-115.

Xi X, Cao W-L, Yao X, et al. Rapid diagnosis of seven high-risk human papillomavirus subtypes by a novel loop-mediated isothermal amplification method. Mol Cell Probes. 2022;61:101787.

Hamzan NI, Ab. Rahman N, Suraiya S, Mohamad I, George Kalarakkal T, Mohamad S. Real-time loop-mediated isothermal amplification assay for rapid detection of human papillomavirus 16 in oral squamous cell carcinoma. Arch Oral Biol. 2021;124:105051.

Yang J, Zhao C, Lu K. Development and application of a rapid detection system for human papillomavirus and Herpes simplex virus-2 by loop-mediated isothermal amplification assay. Microb Pathog. 2016;97:178-182.

Jearanaikoon P, Prakrankamanant P, Leelayuwat C, Wanram S, Limpaiboon T, Promptmas C. The evaluation of loop-mediated isothermal amplification-quartz crystal microbalance (LAMP-QCM) biosensor as a real-time measurement of HPV16 DNA. J Virol Methods. 2016;229:8-11.

Satoh T, Matsumoto K, Fujii T, et al. Rapid genotyping of carcinogenic human papillomavirus by loop-mediated isothermal amplification using a new automated DNA test (Clinichip HPV™). J Virol Methods. 2013;188(1-2):83-93.

Prakrankamanant P, Leelayuwat C, Promptmas C, et al. The development of DNA-based quartz crystal microbalance integrated with isothermal DNA amplification system for human papillomavirus type 58 detection. Biosens Bioelectron. 2013;40(1):252-257.

Lin J, Ma B, Fang J, et al. Colorimetric detection of 23 human papillomavirus genotypes by loop-mediated isothermal amplification. Clin Lab. 2017;63(3):495-505.

Vo DT, Story MD. Facile and direct detection of human papillomavirus (HPV) DNA in cells using loop-mediated isothermal amplification (LAMP). Mol Cell Probes. 2021;59:101760.

Kumvongpin R, Jearanaikool P, Wilailuckana C, et al. High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J Virol Methods. 2016;234:90-95.

Yin K, Pandian V, Kadimisetty K, et al. Real-time colorimetric quantitative molecular detection of infectious diseases on smartphone-based diagnostic platform. Sci Rep. 2020;10(1):9009.

Wormald B, Rodriguez-Manzano J, Moser N, et al. Loop-mediated isothermal amplification assay for detecting tumor markers and human papillomavirus: accuracy and supplemental diagnostic value to endovaginal MRI in cervical cancer. Front Oncol. 2021;11:747614.

Yu Z, Lyu W, Yu M, et al. Self-partitioning SlipChip for slip-induced droplet formation and human papillomavirus viral load quantification with digital LAMP. Biosens Bioelectron. 2020;155:112107.

Bartosik M, Jirakova L. Electrochemical analysis of nucleic acids as potential cancer biomarkers. Curr Opin Electrochem. 2019;14:96-103.

Ondraskova K, Sebuyoya R, Moranova L, et al. Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem. 2023;415(6):1065-1085.

Campuzano S, Barderas R, Yáñez-Sedeño P, Pingarrón JM. Electrochemical biosensing to assist multiomics analysis in precision medicine. Curr Opin Electrochem. 2021;28:100703.

Izadi N, Sebuyoya R, Moranova L, Hrstka R, Anton M, Bartosik M. Electrochemical bioassay coupled to LAMP reaction for determination of high-risk HPV infection in crude lysates. Anal Chim Acta. 2021;1187:339145.

Bartosik M, Jirakova L, Anton M, Vojtesek B, Hrstka R. Genomagnetic LAMP-based electrochemical test for determination of high-risk HPV16 and HPV18 in clinical samples. Anal Chim Acta. 2018;1042:37-43.

Anton M, Moranova L, Hrstka R, Bartosik M. Application of an electrochemical LAMP-based assay for screening of HPV16/HPV18 infection in cervical samples. Anal Methods. 2020;12(6):822-829.

Sebuyoya R, Moranova L, Izadi N, et al. Electrochemical DNA biosensor coupled to LAMP reaction for early diagnostics of cervical precancerous lesions. Biosensors Bioelectronics: X. 2022;12:100224.

Beheshtian M, Izadi N, Kriegshauser G, et al. Prevalence of common MEFV mutations and carrier frequencies in a large cohort of Iranian populations. J Genet. 2016;95(3):667-674.

Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal. 2023;225:115206.

Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Nat Acad Sci. 1989;86(16):6230-6234.

Kawasaki E, Saiki R, Erlich H. [27] Genetic analysis using polymerase chain reaction-amplified DNA and immobilized oligonucleotide probes: reverse dot-blot typing. In: Wu R, ed. Methods in enzymology. Academic Press; 1993:369-381.

Gravitt PE, Peyton CL, Apple RJ, Wheeler CM. Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J Clin Microbiol. 1998;36(10):3020-3027.

Bauer HM, Greer CE, Manos MM. Determination of genital human papillomavirus infection using consensus PCR. In: Herrington CS, McGee JOD, eds. Diagnostic molecular pathology: a practical approach. United Kingdom. Oxford University Press; 1992:132-152.

Antiochia R. Paper-Based biosensors: frontiers in point-of-care detection of COVID-19 disease. Biosensors. 2021;11(4):110.

G. Andryukov B. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol. 2020;6(3):280-304.

Akalın P, Yazgan-Karataş A. Development of a nucleic acid-based lateral flow device as a reliable diagnostic tool for respiratory viral infections. MethodsX. 2023;11:102372.

Jauset-Rubio M, Svobodová M, Mairal T, et al. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci Rep. 2016;6(1):37732.

Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111-120.

Xu Y, Liu Y, Wu Y, Xia X, Liao Y, Li Q. Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal Chem. 2014;86(12):5611-5614.

Landaverde L, Wong W, Hernandez G, Fan A, Klapperich C. Method for the elucidation of LAMP products captured on lateral flow strips in a point of care test for HPV 16. Anal Bioanal Chem. 2020;412(24):6199-6209.

Rungkamoltip P, Temisak S, Piboonprai K, et al. Rapid and ultrasensitive detection of circulating human papillomavirus E7 cell-free DNA as a cervical cancer biomarker. Exp Biol Med. 2021;246(6):654-666.

Ma B, Fang J, Lin W, Yu X, Sun C, Zhang M. A simple and efficient method for potential point-of-care diagnosis of human papillomavirus genotypes: combination of isothermal recombinase polymerase amplification with lateral flow dipstick and reverse dot blot. Anal Bioanal Chem. 2019;411(28):7451-7460.

Kundrod KA, Barra M, Wilkinson A, et al. An integrated isothermal nucleic acid amplification test to detect HPV16 and HPV18 DNA in resource-limited settings. Sci Transl Med. 2023;15(701):eabn4768.

Pao CC, Hor JJ, Yang FP, Lin CY, Tseng CJ. Detection of human papillomavirus mRNA and cervical cancer cells in peripheral blood of cervical cancer patients with metastasis. J Clin Oncol. 1997;15(3):1008-1012.

Pornthanakasem W, Shotelersuk K, Termrungruanglert W, Voravud N, Niruthisard S, Mutirangura A. Human papillomavirus DNA in plasma of patients with cervical cancer. BMC Cancer. 2001;1:2.

Widschwendter A, Blassnig A, Wiedemair A, Müller-Holzner E, Müller HM, Marth C. Human papillomavirus DNA in sera of cervical cancer patients as tumor marker. Cancer Lett. 2003;202(2):231-239.

Sathish N, Abraham P, Peedicayil A, et al. HPV DNA in plasma of patients with cervical carcinoma. J Clin Virol. 2004;31(3):204-209.

Jeannot E, Becette V, Campitelli M, et al. Circulating human papillomavirus DNA detected using droplet digital PCR in the serum of patients diagnosed with early stage human papillomavirus-associated invasive carcinoma. J Pathol Clin Res. 2016;2(4):201-209.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821.

Zhao L, Qiu M, Li X, Yang J, Li J. CRISPR-Cas13a system: a novel tool for molecular diagnostics. Front Microbiol. 2022;13:1060947.

Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67-83.

Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722-736.

Zhuang X, Yang X, Cao B, et al. Review-CRISPR/Cas systems: endless possibilities for electrochemical nucleic acid sensors. J Electrochem Soc. 2022;169(3):037522.

Tangprasertchai NS, Di Felice R, Zhang X, et al. CRISPR-Cas9 mediated DNA unwinding detected using site-directed spin labeling. ACS Chem Biol. 2017;12(6):1489-1493.

Sha Y, Huang R, Huang M, et al. Cascade CRISPR/cas enables amplification-free microRNA sensing with fM-sensitivity and single-base-specificity. Chem Commun. 2021;57(2):247-250.

Guo X, Tian T, Deng X, Song Y, Zhou X, Song E. CRISPR/Cas13a assisted amplification of magnetic relaxation switching sensing for accurate detection of miRNA-21 in human serum. Anal Chim Acta. 2022;1209:339853.

Wang X, Zhou S, Chu C, Yang M, Huo D, Hou C. Dual methylation-sensitive restriction endonucleases coupling with an RPA-assisted CRISPR/Cas13a system (DESCS) for highly sensitive analysis of DNA methylation and its application for point-of-care detection. ACS Sens. 2021;6(6):2419-2428.

Liu F, Peng J, Lei Y-M, et al. Electrochemical detection of ctDNA mutation in non-small cell lung cancer based on CRISPR/Cas12a system. Sens Actuators, B. 2022;362:131807.

Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y. CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens Bioelectron. 2021;173:112821.

Shen J, Zhou X, Shan Y, et al. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nat Commun. 2020;11(1):267.

Xue T, Lu Y, Yang H, et al. Isothermal RNA amplification for the detection of viable pathogenic bacteria to estimate the salmonella virulence for causing enteritis. J Agricult Food Chem. 2022;70(5):1670-1678.

Schultzhaus Z, Wang Z, Stenger D. Systematic analysis, identification, and use of CRISPR/Cas13a-associated crRNAs for sensitive and specific detection of the lcrV gene of Yersinia pestis. Diagn Microbiol Infect Dis. 2021;99(3):115275.

Yang Y, Liu J, Zhou X. A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosens Bioelectron. 2021;190:113418.

Wu Y, Liu S-X, Wang F, Zeng M-S. Room temperature detection of plasma Epstein-Barr virus DNA with CRISPR-Cas13. Clin Chem. 2019;65(4):591-592.

Avelino KYPS, Oliveira LS, de Oliveira HP, Lucena-Silva N, Andrade CAS, Oliveira MDL. Impedimetric sensing platform for human papillomavirus and p53 tumor suppressor gene in cervical samples. J Sci Adv Mater Devices. 2022;7(1):100411.

Avelino KYPS, Oliveira LS, Lucena-Silva N, Andrade CAS, Oliveira MDL. Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of HPV families in cervical specimens. Talanta. 2021;226:122118.

Ganbaatar U, Liu C. NEXT CRISPR: an enhanced CRISPR-based nucleic acid biosensing platform using extended crRNA. Sens Actuators, B. 2022;369:132296.

Gao J, Wu L, Yang D, Gong W, Wang J. A one-pot CRISPR/Cas9-typing PCR for DNA detection and genotyping. J Mol Diagn. 2021;23(1):46-60.

Gong J, Zhang G, Wang W, et al. A simple and rapid diagnostic method for 13 types of high-risk human papillomavirus (HR-HPV) detection using CRISPR-Cas12a technology. Sci Rep. 2021;11(1):12800.

Zhou H, Xu Z, He L, et al. Coupling CRISPR/Cas12a and recombinase polymerase amplification on a stand-alone microfluidics platform for fast and parallel nucleic acid detection. Anal Chem. 2023;95(6):3379-3389.

Hu T, Ke X, Li W, et al. CRISPR/Cas12a-enabled multiplex biosensing strategy via an affordable and visual nylon membrane readout. Adv Sci. 2023;10(2):2204689.

Li Z, Ding X, Yin K, Xu Z, Cooper K, Liu C. Electric field-enhanced electrochemical CRISPR biosensor for DNA detection. Biosens Bioelectron. 2021;192:113498.

Lucena RP, Frías IA, Lucena-Silva N, Andrade CA, Oliveira MD. Impedimetric genosensor based on graphene nanoribbons for detection and identification of oncogenic types of human papillomavirus. J Chem Tech Biotechnol. 2021;96(6):1496-1503.

Mukama O, Yuan T, He Z, et al. A high fidelity CRISPR/Cas12a based lateral flow biosensor for the detection of HPV16 and HPV18. Sens Actuators, B. 2020;316:128119.

Roh YH, Lee CY, Lee S, et al. CRISPR-enhanced hydrogel microparticles for multiplexed detection of nucleic acids. Adv Sci. 2023;10:2206872.

Wang Q, Zhang B, Xu X, Long F, Wang J. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method. Sci Rep. 2018;8(1):14126.

Xu X, Luo T, Gao J, et al. CRISPR-assisted DNA detection: a novel dCas9-based DNA detection technique. CRISPR J. 2020;3(6):487-502.

Xu Z, Chen D, Li T, et al. Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat Commun. 2022;13(1):6480.

Xue Y, Luo X, Xu W, et al. PddCas: a polydisperse droplet digital CRISPR/Cas-based assay for the rapid and ultrasensitive amplification-free detection of viral DNA/RNA. Anal Chem. 2023;95(2):966-975.

Tang Y, Qi L, Liu Y, et al. CLIPON: A CRISPR-enabled strategy that turns commercial pregnancy test strips into general point-of-need test devices. Angew Chem Int Ed. 2022;61(12):e202115907.

Yin K, Ding X, Li Z, Zhao H, Cooper K, Liu C. Dynamic aqueous multiphase reaction system for one-pot CRISPR-Cas12a-based ultrasensitive and quantitative molecular diagnosis. Anal Chem. 2020;92(12):8561-8568.

Zamani M, Robson JM, Fan A, Bono, Jr. MS, Furst AL, Klapperich CM. Electrochemical strategy for low-cost viral detection. ACS Cent Sci. 2021;7(6):963-972.

Zeng R, Gong H, Li Y, et al. CRISPR-Cas12a-derived photoelectrochemical biosensor for point-of-care diagnosis of nucleic acid. Anal Chem. 2022;94(20):7442-7448.

Zhang B, Wang Q, Xu X, et al. Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique. Anal Bioanal Chem. 2018;410(12):2889-2900.

Zhang B, Xia Q, Wang Q, Xia X, Wang J. Detecting and typing target DNA with a novel CRISPR-typing PCR (ctPCR) technique. Anal Biochem. 2018;561-562:37-46.

Zhao Y, Chen D, Xu Z, et al. Integrating CRISPR-Cas12a into a microfluidic dual-droplet device enables simultaneous detection of HPV16 and HPV18. Anal Chem. 2023;95(6):3476-3485.

Zheng X, Li Y, Yuan M, Shen Y, Chen S, Duan G. Rapid detection of HPV16/18 based on a CRISPR-Cas13a/Cas12a dual-channel system. Anal Methods. 2022;14(48):5065-5075.

Zhen S, Qiang R, Lu J, Tuo X, Yang X, Li X. CRISPR/Cas9-HPV-liposome enhances antitumor immunity and treatment of HPV infection-associated cervical cancer. J Med Virol. 2023;95(1):e28144.

Morris BJ. Cervical human papillomavirus screening by PCR: advantages of targeting the E6/E7 region. Clin Chem Lab Med (CCLM). 2005;43(11):1171-1177.

Tjalma WAA, Depuydt CE. Cervical cancer screening: which HPV test should be used-L1 or E6/E7? Eur J Obstet Gynecol Reprod Biol. 2013;170(1):45-46.

Li Y, Zeng R, Wang W, et al. Size-controlled engineering photoelectrochemical biosensor for human papillomavirus-16 based on CRISPR-Cas12a-induced disassembly of Z-scheme heterojunctions. ACS Sens. 2022;7(5):1593-1601.

Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front Med. 2021;8:649896.

Dube Mandishora RS, Gjøtterud KS, Lagström S, et al. Intra-host sequence variability in human papillomavirus. Papillomavirus Res. 2018;5:180-191.

Convery N, Gadegaard N. 30 years of microfluidics. Micro Nano Engineer. 2019;2:76-91.

Pattanayak P, Singh SK, Gulati M, et al. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluid. 2021;25(12):99.

Xie Y, Xu X, Wang J, Lin J, Ren Y, Wu A. Latest advances and perspectives of liquid biopsy for cancer diagnostics driven by microfluidic on-chip assays. Lab Chip. 2023;23(13):2922-2941.

Surappa S, Multani P, Parlatan U, et al. Integrated “lab-on-a-chip” microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. Lab Chip. 2023;23(13):2942-2958.

Mou L, Hong H, Xu X, Xia Y, Jiang X. Digital hybridization human papillomavirus assay with attomolar sensitivity without amplification. ACS Nano. 2021;15(8):13077-13084.

Wang Z, Li F, Rufo J, et al. Acoustofluidic salivary exosome isolation. J Mol Diagn. 2020;22(1):50-59.

Zhao X, Li X, Yang W, Peng J, Huang J, Mi S. An integrated microfluidic detection system for the automated and rapid diagnosis of high-risk human papillomavirus. Analyst (Lond). 2021;146(16):5102-5114.

Soares AC, Soares JC, Rodrigues VC, et al. Microfluidic-based genosensor to detect human papillomavirus (HPV16) for head and neck cancer. ACS Appl Mater Interfaces. 2018;10(43):36757-36763.

Wang Y, Ge G, Mao R, et al. Genotyping of 30 kinds of cutaneous human papillomaviruses by a multiplex microfluidic loop-mediated isothermal amplification and visual detection method. Virol J. 2020;17(1):99.

Huang Y, Sun L, Liu W, et al. Multiplex single-cell droplet PCR with machine learning for detection of high-risk human papillomaviruses. Anal Chim Acta. 2023;1252:341050.

Garg N, Boyle D, Randall A, et al. Rapid immunodiagnostics of multiple viral infections in an acoustic microstreaming device with serum and saliva samples. Lab Chip. 2019;19(9):1524-1533.

Kreutz JE, Wang J, Sheen AM, et al. Self-digitization chip for quantitative detection of human papillomavirus gene using digital LAMP. Lab Chip. 2019;19(6):1035-1040.

Smith CA, Chang MM, Kundrod KA, et al. A low-cost, paper-based hybrid capture assay to detect high-risk HPV DNA for cervical cancer screening in low-resource settings. Lab Chip. 2023;23(3):451-465.

Baier T, Hansen-Hagge TE, Gransee R, et al. Hands-free sample preparation platform for nucleic acid analysis. Lab Chip. 2009;9(23):3399-3405.

Rodriguez NM, Wong WS, Liu L, Dewar R, Klapperich CM. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip. 2016;16(4):753-763.

Wang R, Wu J, He X, Zhou P, Shen Z. A sample-in-answer-out microfluidic system for the molecular diagnostics of 24 HPV genotypes using palm-sized cartridge. Micromachines. 2021;12(3):263.

Schudel BR, Tanyeri M, Mukherjee A, Schroeder CM, Kenis PJA. Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab Chip. 2011;11(11):1916-1923.

Wormald BW, Moser N, deSouza NM, et al. Lab-on-chip assay of tumour markers and human papilloma virus for cervical cancer detection at the point-of-care. Sci Rep. 2022;12(1):8750.

Zhu C, Hu A, Cui J, et al. A lab-on-a-chip device integrated DNA extraction and solid phase PCR array for the genotyping of high-risk HPV in clinical samples. Micromachines. 2019;10(8):537.

Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318-1320.

Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for neuronal cell and circuit engineering. Chem Rev. 2022;122(18):14842-14880.

Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):011301.

Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends Anal Chem. 2017;97:445-457.

Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Biosensors for the detection of bacterial and viral clinical pathogens. Sensors. 2020;20(23):6926.

Wang W, Kang S, Zhou W, Vikesland PJ. Environmental routes of virus transmission and the application of nanomaterial-based sensors for virus detection. Environ Sci: Nano. 2023;10(2):393-423.

Wei D, Bailey MJA, Andrew P, Ryhänen T. Electrochemical biosensors at the nanoscale. Lab Chip. 2009;9(15):2123-2131.

Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health, Part C. 2009;27(1):1-35.

Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644-10654.

Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008;463(1):145-149.

Gopee NV, Roberts DW, Webb P, et al. Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci. 2007;98(1):249-257.

Mortensen LJ, Oberdörster G, Pentland AP, DeLouise LA. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 2008;8(9):2779-2787.

Huang H, Bai W, Dong C, Guo R, Liu Z. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron. 2015;68:442-446.

Chekin F, Bagga K, Subramanian P, et al. Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: application to human papillomavirus (HPV). Sens Actuators, B. 2018;262:991-1000.

Rawat R, Singh S, Roy S, Kumar A, Goswami T, Mathur A. Design and development of an electroanalytical genosensor based on Cu-PTCA/rGO nanocomposites for the detection of cervical cancer. Mater Chem Phys. 2023;295:127050.

Yuan Y, Ma Y, Luo L, et al. Ratiometric determination of human papillomavirus-16 DNA by using fluorescent DNA-templated silver nanoclusters and hairpin-blocked DNAzyme-assisted cascade amplification. Microchim Acta. 2019;186(9):613.

He Y, Liu Y, Cheng L, et al. Highly reproducible and sensitive electrochemiluminescence biosensors for HPV detection based on bovine serum albumin carrier platforms and hyperbranched rolling circle amplification. ACS Appl Mater Interfaces. 2021;13(1):298-305.

Sun Y, Liu J, Peng X, Zhang G, Li Y. A novel photoelectrochemical array platform for ultrasensitive multiplex detection and subtype identification of HPV genes. Biosens Bioelectron. 2023;224:115059.

Hong G, Zou Z, Huang Z, Deng H, Chen W, Peng H. Split-type electrochemiluminescent gene assay platform based on gold nanocluster probe for human papillomavirus diagnosis. Biosens Bioelectron. 2021;178:113044.

Chaibun T, Thanasapburachot P, Chatchawal P, et al. A multianalyte electrochemical genosensor for the detection of high-risk HPV genotypes in oral and cervical cancers. Biosensors. 2022;12(5):290.

Avelino KYPS, Oliveira LS, Lucena-Silva N, de Melo CP, Andrade CAS, Oliveira MDL. Metal-polymer hybrid nanomaterial for impedimetric detection of human papillomavirus in cervical specimens. J Pharm Biomed Anal. 2020;185:113249.

Peng X, Zhang Y, Lu D, Guo Y, Guo S. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens Actuators, B. 2019;286:222-229.

Mahmoodi P, Rezayi M, Rasouli E, et al. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J Nanobiotechnology. 2020;18(1):11.

Ma X, Li Y, Liu R, Wei W, Ding C. Development of a sensitive and specific nanoparticle-assisted PCR assay for detecting HPV-16 and HPV-18 DNA. J Med Virol. 2020;92(12):3793-3798.

Agrahari S, Kumar Gautam R, Kumar Singh A, Tiwari I. Nanoscale materials-based hybrid frameworks modified electrochemical biosensors for early cancer diagnostics: an overview of current trends and challenges. Microchem J. 2022;172:106980.

Wright Jr., TC. HPV DNA testing of self-collected vaginal samples compared with cytologic screening to detect cervical cancer. JAMA. 2000;283(1):81-86.

Ogilvie GS. Diagnostic accuracy of self collected vaginal specimens for human papillomavirus compared to clinician collected human papillomavirus specimens: a meta-analysis. Sex Transm Infect. 2005;81(3):207-212.

Vorsters A, Micalessi I, Bilcke J, Ieven M, Bogers J, Damme P. Detection of human papillomavirus DNA in urine. A review of the literature. Eur J Clin Microbiol Infect Dis. 2012;31(5):627-640.

Sellors JW, Lorincz AT, Mahony JB, et al. Comparison of self-collected vaginal, vulvar and urine samples with physician-collected cervical samples for human papillomavirus testing to detect high-grade squamous intraepithelial lesions. CMAJ: Can Med Assoc J = journal de l'Association medicale canadienne. 2000;163(5): 513-518.

Li G, Lamsisi M, Chenafi S, et al. Urine-based detection of HPV for cervical cancer screening: time for standardized tests. J Med Virol. 2023;95(4):e28737.

Tanzi E, Bianchi S, Fasolo MM, et al. High performance of a new PCR-based urine assay for HPV-DNA detection and genotyping. J Med Virol. 2013;85(1):91-98.

Enerly E, Nygård C, Olofsson M. Monitoring human papillomavirus prevalence in urine samples: a review. Clin Epidemiol. 2013;5:67-79.

Nilyanimit P, Chansaenroj J, Karalak A, Laowahutanont P, Junyangdikul P, Poovorawan Y. Comparison of human papillomavirus (HPV) detection in urine and cervical swab samples using the HPV GenoArray diagnostic assay. PeerJ. 2017;5:e3910.

Cuzick J, Cadman L, Ahmad AS, et al. Performance and diagnostic accuracy of a urine-based human papillomavirus assay in a referral population. Cancer Epidemiol Biomarkers Prevent. 2017;26(7):1053-1059.

Torres-Rojas FI, Mendoza-Catalán MA, Alarcón-Romero LC, et al. HPV molecular detection from urine versus cervical samples: an alternative for HPV screening in indigenous populations. PeerJ. 2021;9:e11564.

Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015;7(293):293ra104.

Singini MG, Singh E, Bradshaw D, et al. Usefulness of high-risk HPV early oncoprotein (E6 and E7) serological markers in the detection of cervical cancer: a systematic review and meta-analysis. J Med Virol. 2023;95(1):e27900.

Kay P, Allan B, Denny L, Hoffman M, Williamson A-L. Detection of HPV 16 and HPV 18 DNA in the blood of patients with cervical cancer. J Med Virol. 2005;75:435-439.

Qureishi A, Mawby T, Fraser L, Shah KA, Møller H, Winter S. Current and future techniques for human papilloma virus (HPV) testing in oropharyngeal squamous cell carcinoma. Eur Arch Otrhinolaryngol. 2017;274(7):2675-2683.

Rapado-González Ó, Martínez-Reglero C, Salgado-Barreira Á, et al. Association of salivary human papillomavirus infection and oral and oropharyngeal cancer: a meta-analysis. J Clin Med. 2020;9(5):1305.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...