Longitudinal analysis of T2 relaxation time variations following radiotherapy for prostate cancer

. 2024 Jan 30 ; 10 (2) : e24557. [epub] 20240115

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38298676
Odkazy

PubMed 38298676
PubMed Central PMC10828070
DOI 10.1016/j.heliyon.2024.e24557
PII: S2405-8440(24)00588-7
Knihovny.cz E-zdroje

Aim of this paper is to evaluate short and long-term changes in T2 relaxation times after radiotherapy in patients with low and intermediate risk localized prostate cancer. A total of 24 patients were selected for this retrospective study. Each participant underwent 1.5T magnetic resonance imaging on seven separate occasions: initially after the implantation of gold fiducials, the required step for Cyberknife therapy guidance, followed by MRI scans two weeks post-therapy and monthly thereafter. As part of each MRI scan, the prostate region was manually delineated, and the T2 relaxation times were calculated for quantitative analysis. The T2 relaxation times between individual follow-ups were analyzed using Repeated Measures Analysis of Variance that revealed a significant difference across all measurements (F (6, 120) = 0.611, p << 0.001). A Bonferroni post hoc test revealed significant differences in median T2 values between the baseline and subsequent measurements, particularly between pre-therapy (M0) and two weeks post-therapy (M1), as well as during the monthly interval checks (M2 - M6). Some cases showed a delayed decrease in relaxation times, indicating the prolonged effects of therapy. The changes in T2 values during the course of radiotherapy can help in monitoring radiotherapy response in unconfirmed patients, quantifying the scarring process, and recognizing the therapy failure.

Zobrazit více v PubMed

Miyahira A.K., Sharp A., Ellis L., Jones J., Kaochar S., Larman H.B., Quigley D.A., Ye H., Simons J.W., Pienta K.J., Soule H.R. Prostate cancer research: the next generation; report from the 2019 Coffey-Holden prostate cancer academy meeting. Prostate. 2020;80(2):113–132. doi: 10.1002/pros.23934. PubMed DOI PMC

Ritch C., Cookson M. Recent trends in the management of advanced prostate cancer. F1000Res. 2018;7:1513. doi: 10.12688/f1000research.15382.1. PubMed DOI PMC

Khan Z., Yahya N., Alsaih K., Al-Hiyali M.I., Meriaudeau F. Recent automatic segmentation algorithms of MRI prostate regions: a review. IEEE Access. 2021;9:97878–97905. doi: 10.1109/ACCESS.2021.3090825. DOI

Litjens G., Debats O., Barentsz J., Karssemeijer N., Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging. 2014;33(5):1083–1092. doi: 10.1109/TMI.2014.2303821. PubMed DOI

Klotz L., Chin J., Black P.C., Finelli A., Anidjar M., Bladou F., Mercado A., Levental M., Ghai S., Chang S.D., Milot L., Patel C., Kassam Z., Moore C., Kasivisvanathan V., Loblaw A., Kebabdjian M., Earle C.C., Pond G.R., Haider M.A. Comparison of multiparametric magnetic resonance imaging–targeted biopsy with systematic transrectal ultrasonography biopsy for biopsy-naive men at risk for prostate cancer: a phase 3 randomized clinical trial. JAMA Oncol. 2021;7(4):534. doi: 10.1001/jamaoncol.2020.7589. PubMed DOI PMC

Kasivisvanathan V., Rannikko A.S., Borghi M., Panebianco V., Mynderse L.A., Vaarala M.H., Briganti A., Budäus L., Hellawell G., Hindley R.G., Roobol M.J., Eggener S., Ghei M., Villers A., Bladou F., Villeirs G.M., Virdi J., Boxler S., Robert G., Singh P.B., Venderink W., Hadaschik B.A., Ruffion A., Hu J.C., Margolis D., Crouzet S., Klotz L., Taneja S.S., Pinto P., Gill I., Allen C., Giganti F., Freeman A., Morris S., Punwani S., Williams N.R., Brew-Graves C., Deeks J., Takwoingi Y., Emberton M., Moore C.M. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 2018;378(19):1767–1777. doi: 10.1056/NEJMoa1801993. PubMed DOI PMC

Duque-Santana V., Diaz-Gavela A., Recio M., Guerrero L.L., Peña M., Sanchez S., López-Campos F., Thuissard I.J., Andreu C., Sanz-Rosa D., Achard V., Gómez-Iturriaga A., Molina Y., Del Cerro Peñalver E., Couñago F. Jorge clinical study: 10-year outcomes of risk-adapted radiotherapy defined by multiparametric MRI for prostate cancer. World J. Urol. Nov. 2023 doi: 10.1007/s00345-023-04682-8. PubMed DOI

Lemaître G., Martí R., Freixenet J., Vilanova J.C., Walker P.M., Meriaudeau F. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 2015;60:8–31. doi: 10.1016/j.compbiomed.2015.02.009. PubMed DOI

Turkbey B., Rosenkrantz A.B., Haider M.A., Padhani A.R., Villeirs G., Macura K.J., Tempany C.M., Choyke P.L., Cornud F., Margolis D.J., Thoeny H.C., Verma S., Barentsz J., Weinreb J.C. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 2019;76(3):340–351. doi: 10.1016/j.eururo.2019.02.033. PubMed DOI

Schieda N., Lim C.S., Zabihollahy F., Abreu-Gomez J., Krishna S., Woo S., Melkus G., Ukwatta E., Turkbey B. Quantitative prostate MRI. J. Magn. Reson. Imaging. 2021;53(6):1632–1645. doi: 10.1002/jmri.27191. PubMed DOI

Mai J., Abubrig M., Lehmann T., Hilbert T., Weiland E., Grimm M.O., Teichgräber U., Franiel T. T2 mapping in prostate cancer. Invest. Radiol. 2019;54(3):146–152. doi: 10.1097/RLI.0000000000000520. PubMed DOI

Panda A., Gulani V. In: Reading MRI of the Prostate. Panda A., Gulani V., Ponsky L., editors. Springer International Publishing; Cham: 2020. Quantitative imaging of prostate: scope and future directions; pp. 97–108. DOI

Subashi E., LoCastro E., Apte A., Zelefsky M., Tyagi N. Quantitative relaxometry for target localization and response assessment in ultra-hypofractionated MR-guided radiotherapy to the prostate and DIL. Int. J. Radiat. Oncol. Biol. Phys. 2022;114(3):S33. doi: 10.1016/j.ijrobp.2022.07.390. DOI

Deoni S.C. Quantitative relaxometry of the brain. Top. Magn. Reson. Imaging. 2010;21(2):101–113. doi: 10.1097/RMR.0b013e31821e56d8. PubMed DOI PMC

Lemberskiy G., Fieremans E., Veraart J., Deng F.-M., Rosenkrantz A.B., Novikov D.S. Characterization of prostate microstructure using water diffusion and NMR relaxation. Front. Phys. 2018;6:91. doi: 10.3389/fphy.2018.00091. PubMed DOI PMC

Carneiro A.A.O., Vilela G.R., Araujo D.B.D., Baffa O. MRI relaxometry: methods and applications. Braz. J. Phys. Mar. 2006;36(1a) doi: 10.1590/S0103-97332006000100005. DOI

Karkar D., Chaudhari P. Cyberknife treatment for different types of tumor. J. Pharm. Res. 2023;8(2):248–252.

Cheng Y., Lin Y., Long Y., Du L., Chen R., Hu T., Guo Q., Liao G., Huang J. Is the CyberKnife © radiosurgery system effective and safe for patients? An umbrella review of the evidence. Future Oncol. 2022;18(14):1777–1791. doi: 10.2217/fon-2021-0844. PubMed DOI

Cushman T.R., Verma V., Khairnar R., Levy J., Simone C.B., Mishra M.V. Stereotactic body radiation therapy for prostate cancer: systematic review and meta-analysis of prospective trials. Oncotarget. 2019;10(54):5660–5668. doi: 10.18632/oncotarget.27177. PubMed DOI PMC

Nakamura R., Hirata T., Suzuki O., Otani K., Kai N., Hatano K., Fujita K., Uemura M., Imamura R., Tanaka K., Yoshioka Y., Nonomura N., Ogawa K. Stereotactic body radiotherapy using CyberKnife® for localized low- and intermediate-risk prostate cancer: initial report on a phase I/II trial. Anticancer Res. 2020;40(4):2053–2057. doi: 10.21873/anticanres.14162. PubMed DOI

Borzillo V., Scipilliti E., Pezzulla D., Serra M., Ametrano G., Quarto G., Perdonà S., Rossetti S., Pignata S., Crispo A., Di Gennaro P., D'Alesio V., Arrichiello C., Buonanno F., Mercogliano S., Russo A., Tufano A., Di Franco R., Muto P. Stereotactic body radiotherapy with CyberKnife® system for low- and intermediate-risk prostate cancer: clinical outcomes and toxicities of CyPro trial. Front. Oncol. 2023;13 doi: 10.3389/fonc.2023.1270498. PubMed DOI PMC

Vuolukka K., Auvinen P., Tiainen E., Palmgren J.-E., Heikkilä J., Seppälä J., Aaltomaa S., Kataja V. Stereotactic body radiotherapy for localized prostate cancer – 5-year efficacy results. Radiat. Oncol. 2020;15(1):173. doi: 10.1186/s13014-020-01608-1. PubMed DOI PMC

Schneider S., Jølck R.I., Troost E.G.C., Hoffmann A.L. Quantification of MRI visibility and artifacts at 3T of liquid fiducial marker in a pancreas tissue-mimicking phantom. Med. Phys. 2018;45(1):37–47. doi: 10.1002/mp.12670. PubMed DOI

Knybel L., Cvek J., Blazek T., Binarova A., Parackova T., Resova K. Prostate deformation during hypofractionated radiotherapy: an analysis of implanted fiducial marker displacement. Radiat. Oncol. 2021;16(1):235. doi: 10.1186/s13014-021-01958-4. PubMed DOI PMC

Yushkevich P.A., Gao Y., Gerig G. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE; Orlando, FL, USA: 2016. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images; pp. 3342–3345. PubMed DOI PMC

Milford D., Rosbach N., Bendszus M., Heiland S. Mono-exponential fitting in T2-relaxometry: relevance of offset and first echo. PLoS ONE. 2015;10(12) doi: 10.1371/journal.pone.0145255. PubMed DOI PMC

Chatterjee A., Devaraj A., Mathew M., Szasz T., Antic T., Karczmar G.S., Oto A. Performance of T2 maps in the detection of prostate cancer. Acad. Radiol. 2019;26(1):15–21. doi: 10.1016/j.acra.2018.04.005. PubMed DOI PMC

Osborne J. Notes on the use of data transformations. Pract. Assess. Res. Eval. 2019;8(6) doi: 10.7275/4VNG-5608. DOI

Stabile A., Giganti F., Rosenkrantz A.B., Taneja S.S., Villeirs G., Gill I.S., Allen C., Emberton M., Moore C.M., Kasivisvanathan V. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat. Rev. Urol. 2020;17(1):41–61. doi: 10.1038/s41585-019-0212-4. PubMed DOI

Rosenkrantz A.B., Taneja S.S. Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. Am. J. Roentgenol. 2014;202(1):109–120. doi: 10.2214/AJR.13.10699. PubMed DOI

Weinreb J.C., Barentsz J.O., Choyke P.L., Cornud F., Haider M.A., Macura K.J., Margolis D., Schnall M.D., Shtern F., Tempany C.M., Thoeny H.C., Verma S. PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur. Urol. 2016;69(1):16–40. doi: 10.1016/j.eururo.2015.08.052. PubMed DOI PMC

Foltz W.D., Wu A., Chung P., Catton C., Bayley A., Milosevic M., Bristow R., Warde P., Simeonov A., Jaffray D.A., Haider M.A., Ménard C. Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer. J. Magn. Reson. Imaging. 2013;37(4):909–916. doi: 10.1002/jmri.23885. PubMed DOI

Short E., Warren A.Y., Varma M. Gleason grading of prostate cancer: a pragmatic approach. Diagn. Histopathol. 2019;25(10):371–378. doi: 10.1016/j.mpdhp.2019.07.001. DOI

Ali A., Du Feu A., Oliveira P., Choudhury A., Bristow R.G., Baena E. Prostate zones and cancer: lost in transition? Nat. Rev. Urol. 2022;19(2):101–115. doi: 10.1038/s41585-021-00524-7. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...