Longitudinal analysis of T2 relaxation time variations following radiotherapy for prostate cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38298676
PubMed Central
PMC10828070
DOI
10.1016/j.heliyon.2024.e24557
PII: S2405-8440(24)00588-7
Knihovny.cz E-zdroje
- Klíčová slova
- Prostate cancer, Quantitative MRI, Radiation therapy, T2 relaxation times, Treatment response,
- Publikační typ
- časopisecké články MeSH
Aim of this paper is to evaluate short and long-term changes in T2 relaxation times after radiotherapy in patients with low and intermediate risk localized prostate cancer. A total of 24 patients were selected for this retrospective study. Each participant underwent 1.5T magnetic resonance imaging on seven separate occasions: initially after the implantation of gold fiducials, the required step for Cyberknife therapy guidance, followed by MRI scans two weeks post-therapy and monthly thereafter. As part of each MRI scan, the prostate region was manually delineated, and the T2 relaxation times were calculated for quantitative analysis. The T2 relaxation times between individual follow-ups were analyzed using Repeated Measures Analysis of Variance that revealed a significant difference across all measurements (F (6, 120) = 0.611, p << 0.001). A Bonferroni post hoc test revealed significant differences in median T2 values between the baseline and subsequent measurements, particularly between pre-therapy (M0) and two weeks post-therapy (M1), as well as during the monthly interval checks (M2 - M6). Some cases showed a delayed decrease in relaxation times, indicating the prolonged effects of therapy. The changes in T2 values during the course of radiotherapy can help in monitoring radiotherapy response in unconfirmed patients, quantifying the scarring process, and recognizing the therapy failure.
Department of Imaging Methods Faculty of Medicine University of Ostrava Ostrava Czech Republic
Department of Oncology University Hospital Ostrava 70852 Ostrava Czech Republic
Department of Radiology University Hospital Ostrava Czech Republic
Faculty of Medicine University of Ostrava 70300 Ostrava Czech Republic
Zobrazit více v PubMed
Miyahira A.K., Sharp A., Ellis L., Jones J., Kaochar S., Larman H.B., Quigley D.A., Ye H., Simons J.W., Pienta K.J., Soule H.R. Prostate cancer research: the next generation; report from the 2019 Coffey-Holden prostate cancer academy meeting. Prostate. 2020;80(2):113–132. doi: 10.1002/pros.23934. PubMed DOI PMC
Ritch C., Cookson M. Recent trends in the management of advanced prostate cancer. F1000Res. 2018;7:1513. doi: 10.12688/f1000research.15382.1. PubMed DOI PMC
Khan Z., Yahya N., Alsaih K., Al-Hiyali M.I., Meriaudeau F. Recent automatic segmentation algorithms of MRI prostate regions: a review. IEEE Access. 2021;9:97878–97905. doi: 10.1109/ACCESS.2021.3090825. DOI
Litjens G., Debats O., Barentsz J., Karssemeijer N., Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging. 2014;33(5):1083–1092. doi: 10.1109/TMI.2014.2303821. PubMed DOI
Klotz L., Chin J., Black P.C., Finelli A., Anidjar M., Bladou F., Mercado A., Levental M., Ghai S., Chang S.D., Milot L., Patel C., Kassam Z., Moore C., Kasivisvanathan V., Loblaw A., Kebabdjian M., Earle C.C., Pond G.R., Haider M.A. Comparison of multiparametric magnetic resonance imaging–targeted biopsy with systematic transrectal ultrasonography biopsy for biopsy-naive men at risk for prostate cancer: a phase 3 randomized clinical trial. JAMA Oncol. 2021;7(4):534. doi: 10.1001/jamaoncol.2020.7589. PubMed DOI PMC
Kasivisvanathan V., Rannikko A.S., Borghi M., Panebianco V., Mynderse L.A., Vaarala M.H., Briganti A., Budäus L., Hellawell G., Hindley R.G., Roobol M.J., Eggener S., Ghei M., Villers A., Bladou F., Villeirs G.M., Virdi J., Boxler S., Robert G., Singh P.B., Venderink W., Hadaschik B.A., Ruffion A., Hu J.C., Margolis D., Crouzet S., Klotz L., Taneja S.S., Pinto P., Gill I., Allen C., Giganti F., Freeman A., Morris S., Punwani S., Williams N.R., Brew-Graves C., Deeks J., Takwoingi Y., Emberton M., Moore C.M. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 2018;378(19):1767–1777. doi: 10.1056/NEJMoa1801993. PubMed DOI PMC
Duque-Santana V., Diaz-Gavela A., Recio M., Guerrero L.L., Peña M., Sanchez S., López-Campos F., Thuissard I.J., Andreu C., Sanz-Rosa D., Achard V., Gómez-Iturriaga A., Molina Y., Del Cerro Peñalver E., Couñago F. Jorge clinical study: 10-year outcomes of risk-adapted radiotherapy defined by multiparametric MRI for prostate cancer. World J. Urol. Nov. 2023 doi: 10.1007/s00345-023-04682-8. PubMed DOI
Lemaître G., Martí R., Freixenet J., Vilanova J.C., Walker P.M., Meriaudeau F. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 2015;60:8–31. doi: 10.1016/j.compbiomed.2015.02.009. PubMed DOI
Turkbey B., Rosenkrantz A.B., Haider M.A., Padhani A.R., Villeirs G., Macura K.J., Tempany C.M., Choyke P.L., Cornud F., Margolis D.J., Thoeny H.C., Verma S., Barentsz J., Weinreb J.C. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 2019;76(3):340–351. doi: 10.1016/j.eururo.2019.02.033. PubMed DOI
Schieda N., Lim C.S., Zabihollahy F., Abreu-Gomez J., Krishna S., Woo S., Melkus G., Ukwatta E., Turkbey B. Quantitative prostate MRI. J. Magn. Reson. Imaging. 2021;53(6):1632–1645. doi: 10.1002/jmri.27191. PubMed DOI
Mai J., Abubrig M., Lehmann T., Hilbert T., Weiland E., Grimm M.O., Teichgräber U., Franiel T. T2 mapping in prostate cancer. Invest. Radiol. 2019;54(3):146–152. doi: 10.1097/RLI.0000000000000520. PubMed DOI
Panda A., Gulani V. In: Reading MRI of the Prostate. Panda A., Gulani V., Ponsky L., editors. Springer International Publishing; Cham: 2020. Quantitative imaging of prostate: scope and future directions; pp. 97–108. DOI
Subashi E., LoCastro E., Apte A., Zelefsky M., Tyagi N. Quantitative relaxometry for target localization and response assessment in ultra-hypofractionated MR-guided radiotherapy to the prostate and DIL. Int. J. Radiat. Oncol. Biol. Phys. 2022;114(3):S33. doi: 10.1016/j.ijrobp.2022.07.390. DOI
Deoni S.C. Quantitative relaxometry of the brain. Top. Magn. Reson. Imaging. 2010;21(2):101–113. doi: 10.1097/RMR.0b013e31821e56d8. PubMed DOI PMC
Lemberskiy G., Fieremans E., Veraart J., Deng F.-M., Rosenkrantz A.B., Novikov D.S. Characterization of prostate microstructure using water diffusion and NMR relaxation. Front. Phys. 2018;6:91. doi: 10.3389/fphy.2018.00091. PubMed DOI PMC
Carneiro A.A.O., Vilela G.R., Araujo D.B.D., Baffa O. MRI relaxometry: methods and applications. Braz. J. Phys. Mar. 2006;36(1a) doi: 10.1590/S0103-97332006000100005. DOI
Karkar D., Chaudhari P. Cyberknife treatment for different types of tumor. J. Pharm. Res. 2023;8(2):248–252.
Cheng Y., Lin Y., Long Y., Du L., Chen R., Hu T., Guo Q., Liao G., Huang J. Is the CyberKnife © radiosurgery system effective and safe for patients? An umbrella review of the evidence. Future Oncol. 2022;18(14):1777–1791. doi: 10.2217/fon-2021-0844. PubMed DOI
Cushman T.R., Verma V., Khairnar R., Levy J., Simone C.B., Mishra M.V. Stereotactic body radiation therapy for prostate cancer: systematic review and meta-analysis of prospective trials. Oncotarget. 2019;10(54):5660–5668. doi: 10.18632/oncotarget.27177. PubMed DOI PMC
Nakamura R., Hirata T., Suzuki O., Otani K., Kai N., Hatano K., Fujita K., Uemura M., Imamura R., Tanaka K., Yoshioka Y., Nonomura N., Ogawa K. Stereotactic body radiotherapy using CyberKnife® for localized low- and intermediate-risk prostate cancer: initial report on a phase I/II trial. Anticancer Res. 2020;40(4):2053–2057. doi: 10.21873/anticanres.14162. PubMed DOI
Borzillo V., Scipilliti E., Pezzulla D., Serra M., Ametrano G., Quarto G., Perdonà S., Rossetti S., Pignata S., Crispo A., Di Gennaro P., D'Alesio V., Arrichiello C., Buonanno F., Mercogliano S., Russo A., Tufano A., Di Franco R., Muto P. Stereotactic body radiotherapy with CyberKnife® system for low- and intermediate-risk prostate cancer: clinical outcomes and toxicities of CyPro trial. Front. Oncol. 2023;13 doi: 10.3389/fonc.2023.1270498. PubMed DOI PMC
Vuolukka K., Auvinen P., Tiainen E., Palmgren J.-E., Heikkilä J., Seppälä J., Aaltomaa S., Kataja V. Stereotactic body radiotherapy for localized prostate cancer – 5-year efficacy results. Radiat. Oncol. 2020;15(1):173. doi: 10.1186/s13014-020-01608-1. PubMed DOI PMC
Schneider S., Jølck R.I., Troost E.G.C., Hoffmann A.L. Quantification of MRI visibility and artifacts at 3T of liquid fiducial marker in a pancreas tissue-mimicking phantom. Med. Phys. 2018;45(1):37–47. doi: 10.1002/mp.12670. PubMed DOI
Knybel L., Cvek J., Blazek T., Binarova A., Parackova T., Resova K. Prostate deformation during hypofractionated radiotherapy: an analysis of implanted fiducial marker displacement. Radiat. Oncol. 2021;16(1):235. doi: 10.1186/s13014-021-01958-4. PubMed DOI PMC
Yushkevich P.A., Gao Y., Gerig G. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE; Orlando, FL, USA: 2016. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images; pp. 3342–3345. PubMed DOI PMC
Milford D., Rosbach N., Bendszus M., Heiland S. Mono-exponential fitting in T2-relaxometry: relevance of offset and first echo. PLoS ONE. 2015;10(12) doi: 10.1371/journal.pone.0145255. PubMed DOI PMC
Chatterjee A., Devaraj A., Mathew M., Szasz T., Antic T., Karczmar G.S., Oto A. Performance of T2 maps in the detection of prostate cancer. Acad. Radiol. 2019;26(1):15–21. doi: 10.1016/j.acra.2018.04.005. PubMed DOI PMC
Osborne J. Notes on the use of data transformations. Pract. Assess. Res. Eval. 2019;8(6) doi: 10.7275/4VNG-5608. DOI
Stabile A., Giganti F., Rosenkrantz A.B., Taneja S.S., Villeirs G., Gill I.S., Allen C., Emberton M., Moore C.M., Kasivisvanathan V. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat. Rev. Urol. 2020;17(1):41–61. doi: 10.1038/s41585-019-0212-4. PubMed DOI
Rosenkrantz A.B., Taneja S.S. Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. Am. J. Roentgenol. 2014;202(1):109–120. doi: 10.2214/AJR.13.10699. PubMed DOI
Weinreb J.C., Barentsz J.O., Choyke P.L., Cornud F., Haider M.A., Macura K.J., Margolis D., Schnall M.D., Shtern F., Tempany C.M., Thoeny H.C., Verma S. PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur. Urol. 2016;69(1):16–40. doi: 10.1016/j.eururo.2015.08.052. PubMed DOI PMC
Foltz W.D., Wu A., Chung P., Catton C., Bayley A., Milosevic M., Bristow R., Warde P., Simeonov A., Jaffray D.A., Haider M.A., Ménard C. Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer. J. Magn. Reson. Imaging. 2013;37(4):909–916. doi: 10.1002/jmri.23885. PubMed DOI
Short E., Warren A.Y., Varma M. Gleason grading of prostate cancer: a pragmatic approach. Diagn. Histopathol. 2019;25(10):371–378. doi: 10.1016/j.mpdhp.2019.07.001. DOI
Ali A., Du Feu A., Oliveira P., Choudhury A., Bristow R.G., Baena E. Prostate zones and cancer: lost in transition? Nat. Rev. Urol. 2022;19(2):101–115. doi: 10.1038/s41585-021-00524-7. PubMed DOI