The Effect of Sex on the Chemical and Mineral Composition of the Meat, Bone and Liver of Giraffe (Giraffa giraffa angolensis)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
84633
National Research Foundation
MZE-RO0723; METROFOOD-CZ (MEYS No: LM2023064)
Ministry of Agriculture of the Czech Republic
IGA-20233112
FTZ Internal Grant Agency
PubMed
38338529
PubMed Central
PMC10855660
DOI
10.3390/foods13030394
PII: foods13030394
Knihovny.cz E-resources
- Keywords
- ash, bone, game meat, giraffe, lipid content, liver, mineral, moisture, muscle, protein,
- Publication type
- Journal Article MeSH
Consumers tend to buy meat based on visual physical characteristics, which are affected by the chemical composition of the meat, and there is very little known about the chemical composition of the meat of giraffe. This study therefore aims to broaden the knowledge base on the chemical composition of giraffe meat, rib bone and liver. Eight different muscles from 15 giraffes were analyzed to determine the chemical composition, yielding an average moisture of 77.2 ± 0.09 g/100 g meat, an average protein of 20.8 ± 0.09 g/100 g meat, an average intramuscular fat (IMF) of 1.4 ± 0.03 g/100 g meat and an average ash of 1.1 ± 0.01 g/100 g meat. There was a significant interaction between sex and muscle for the moisture, protein and ash contents, while only muscle had an effect on the fat content. The mineral content of the bone, liver and Longissimus thoracis et lumborum muscle was also analyzed, and bone was found to be a rich source of calcium (highest concentration), whilst the liver had the highest concentration of iron. The chemical composition of the giraffe meat was such that it could be classified as lean meat.
See more in PubMed
Tscharntke T., Clough Y., Wanger T.C., Jackson L., Motzke I., Perfecto I., Vandermeer J., Whitbread A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012;151:53–59. doi: 10.1016/j.biocon.2012.01.068. DOI
Conceicao P., Fuentes-Nieva R., Horn-Phathanothai L., Ngororano A. Food security and human development in Africa: Strategic considerations and directions for further research. Afr. Dev. Rev. 2011;23:237–246. doi: 10.1111/j.1467-8268.2011.00283.x. DOI
Listrat A., Lebret B., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016;2016:3182746. doi: 10.1155/2016/3182746. PubMed DOI PMC
Ortega-Barrales P., Fernández-de Córdova M.L. Meat. In: de la Guardia M., Garrigues S., editors. Handbook of Mineral Elements in Food. John Wiley & Sons; Chichester, UK: 2015. pp. 599–619.
DiNicolantonio J.J., O’Keefe J.H. Monosaturated fat vs. saturated fat: Effects on cardio-metabolic health and obesity. Mo. Med. 2022;119:69–73. PubMed PMC
Ang C.Y.W., Young L.L., Wilson R. Interrelationships of Protein, Fat and Moisture Content of broiler Meat. J. Food Sci. 1984;49:359–362. doi: 10.1111/j.1365-2621.1984.tb12421.x. DOI
Zarkadas C.G., Marshall W.D., Khalili A.D., Nguyen Q., Zarkadas G.C., Karatzas C.N., Khanizadeh S. Mineral composition of selected bovine, porcine and avian muscles, and meat products. J. Food Sci. 1987;52:520–525. doi: 10.1111/j.1365-2621.1987.tb06665.x. DOI
Lin K.C., Cross H.R., Johnson H.K., Breidenstein B.C., Randecker V., Field R.A. Mineral composition of lamb carcasses from the United States and New Zealand. Meat Sci. 1989;24:47–59. doi: 10.1016/0309-1740(89)90006-5. PubMed DOI
Higgs J.D. The changing nature of red meat: 20 years of improving nutritional quality. Trends Food Sci. Technol. 2000;11:85–95. doi: 10.1016/S0924-2244(00)00055-8. DOI
Van Schalkwyk O.L., Skinner J.D., Mitchell G. A comparison of the bone density and morphology of giraffe (Giraffa camelopardalis) and buffalo (Syncerus caffer) skeletons. J. Zool. 2004;264:307–315. doi: 10.1017/S0952836904005795. DOI
Silberbauer B.L., Strydom P., Hoffman L.C. An exploratory study into the influence of sex on body measurements, carcass weights and meat yields of giraffe (Giraffa camelopardalis angolensis) Foods. 2021;10:2245. doi: 10.3390/foods10102245. PubMed DOI PMC
Hoffman L.C., Silberbauer B.L., Needham T., Bureš D., Kotrba R., Strydom P. Physical meat quality characteristics of Angolan giraffe (Giraffa giraffa angolensis) as affected by sex and muscle. Meat Sci. 2022;192:108911. doi: 10.1016/j.meatsci.2022.108911. PubMed DOI
AOAC International . Official Method of Analysis. 17th ed. Association of Official Analytical Chemists Inc.; Arlington, VA, USA: 2002. Loss on drying (moisture) at 95–100 °C for feeds. AOAC Official Method 934.0.
Lee C.M., Trevino B., Chaiyawat M. A simple and rapid solvent extraction method for determining total lipids in fish tissue. J. Assoc. Anal. Chem. Int. 1996;79:487–492. PubMed
AOAC International . Official Method of Analysis. 17th ed. Association of Official Analytical Chemists Inc.; Arlington, VA, USA: 2002. Duma2021s combustion method. AOAC Official Method 992.15.
Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (complete samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI
Huff-Lonergan E., Lonergan S.M. Mechanisms of water-holding capacity of meat: The role of post-mortem biochemical and structural changes. Meat Sci. 2005;71:194–204. doi: 10.1016/j.meatsci.2005.04.022. PubMed DOI
Needham T., Laubser J.G., Kotrba R., Bureš D., Hoffman L.C. Sex influence on the muscle yield and physio-chemical characteristics of fresh meat harvested from common eland (Taurotragus oryx) Meat Sci. 2019;152:41–48. doi: 10.1016/j.meatsci.2019.02.008. PubMed DOI
Hoffman L.C., Van Schalkwyk S., Muller M. Quality characteristics of blue wildebeest (Connochaetes taurinus) meat. S. Afr. J. Wildl. Res. 2011;41:210–213. doi: 10.3957/056.041.0208. DOI
Needham T., Engels R., Bureš D., Kotrba R., Janse Van Rensburg B., Hoffman L.C. Carcass yields and physio-chemical meat quality of semi-extensive and intensively farmed impala (Aepyceros melampus) Foods. 2020;9:418. doi: 10.3390/foods9040418. PubMed DOI PMC
North M.K., Hoffman L.C. Changes in springbok (Antidorcas marsupialis) Longissimus thoracis et lumborum muscle during conditioning as assessed by a trained sensory panel. Meat Sci. 2015;108:1–8. doi: 10.1016/j.meatsci.2015.05.004. PubMed DOI
Hoffman L.C., Kroucamp M., Manley M. Meat quality characteristics of springbok (Antidorcas marsupialis) 2. Chemical composition as influenced by age, gender and production region. Meat Sci. 2007;76:762–767. doi: 10.1016/j.meatsci.2007.02.018. PubMed DOI
Hoffman L.C., Mostert A.C., Kidd M., Laubscher L.L. Meat quality of kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus): Carcass yield, physical quality and chemical composition of kudu and impala Longissimus dorsi muscle as affected by gender and age. Meat Sci. 2009;83:788–795. doi: 10.1016/j.meatsci.2009.08.022. PubMed DOI
Neethling J., Hoffman L.C., Britz T.J. Impact of season on the chemical composition of male and female blesbok (Damaliscus pygargus phillipsi) muscles. J. Sci. Food Agric. 2014;94:424–431. doi: 10.1002/jsfa.6281. PubMed DOI
Paleari M.A., Camisasca S., Beretta G., Renon P., Corsico P., Bertolo G., Crivelli G. Ostrich meat: Physico-chemical characteristics and comparison with turkey and bovine meat. Meat Sci. 1998;48:205–210. doi: 10.1016/S0309-1740(97)00091-0. PubMed DOI
Hoffman L.C., Smit K., Muller N. Chemical characteristics of blesbok (Damaliscus dorcas phillipsi) meat. J. Food Compos. Anal. 2008;21:315–319. doi: 10.1016/j.jfca.2007.12.003. DOI
Cawthorn D.-M., Fitzhenry L.B., Kotrba R., Bures D., Hoffman L.C. Chemical Composition of Wild Fallow Deer (Dama dama) Meat from South Africa: A Preliminary Evaluation. Foods. 2020;9:598. doi: 10.3390/foods9050598. PubMed DOI PMC
Hoffman L.C., Van Schalkwyk D.L., McMillin K.W., Kotrba R. Intramuscular fat characteristics of Namibian common eland (Taurotragus oryx) Afr. J. Wildl. Res. 2015;45:312–320. doi: 10.3957/056.045.0312. DOI
Hoffman L.C., Van Schalkwyk S., Muller N. Effect of season and gender on the physical and chemical composition of black wildebeest (Connochaetus gnou) meat. S. Afr. J. Wildl. Res. 2009;39:170–174. doi: 10.3957/056.039.0208. DOI
McDowell L.R. Minerals in Animal and Human Nutrition. Academic Press; San Diego, CA, USA: 1992.
Underwood E.J., Suttle N.F. The Mineral Nutrition of Livestock. CABI; Penicuik, UK: 1999.
Hall-Martin A.J. Ph.D. Thesis. University of Pretoria; Pretoria, South Africa: 1975. Studies on the Biology and Productivity of the Giraffe (Giraffa camelopardalis)
Langman V.A. Giraffe pica behaviour and pathology as indicators of nutritional stress. J. Wildl. Manag. 1978;42:141–147. doi: 10.2307/3800701. DOI
Nesbit-Evans E.M. The reaction of a group of Rothchild’s giraffe to a new environment. East Afr. Wildl. J. 1970;8:53–62.
Wyatt J.R. Osteophagia in Masai giraffe. East Afr. Wildl. J. 1971;9:157. doi: 10.1111/j.1365-2028.1971.tb00232.x. DOI