Bioactive Hydrogel Based on Collagen and Hyaluronic Acid Enriched with Freeze-Dried Sheep Placenta for Wound Healing Support
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
the SMART-MAT Functional Materials Sci-ence Club (BioMat section) at the Faculty of Materials Engineering and Physics of the Cracow University of Technology
the project APVV-17-0373
PubMed
38338964
PubMed Central
PMC10855274
DOI
10.3390/ijms25031687
PII: ijms25031687
Knihovny.cz E-resources
- Keywords
- collagen, composites, hyaluronic acid, hydrogel, placenta, wound healing,
- MeSH
- Biocompatible Materials pharmacology MeSH
- Wound Healing MeSH
- Hydrogels * pharmacology chemistry MeSH
- Collagen pharmacology chemistry MeSH
- Hyaluronic Acid * pharmacology chemistry MeSH
- Humans MeSH
- Sheep MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Hydrogels * MeSH
- Collagen MeSH
- Hyaluronic Acid * MeSH
In an increasingly aging society, there is a growing demand for the development of technology related to tissue regeneration. It involves the development of the appropriate biomaterials whose properties will allow the desired biological response to be obtained. Bioactivity is strongly affected by the proper selection of active ingredients. The aim of this study was to produce bioactive hydrogel materials based on hyaluronic acid and collagen modified by the addition of placenta. These materials were intended for use as dressings, and their physicochemical properties were investigated under simulated biological environmental conditions. The materials were incubated in vitro in different fluids simulating the environment of the human body (e.g., simulated body fluid) and then stored at a temperature close to body temperature. Using an FT-IR spectrophotometer, the functional groups present in the composites were identified. The materials with the added placenta showed an increase in the swelling factor of more than 300%. The results obtained confirmed the potential of using this material as an absorbent dressing. This was indicated by pH and conductometric measurements, sorption, degradation, and surface analysis under an optical microscope. The results of the in vitro biological evaluation confirmed the cytosafety of the tested biomaterials. The tested composites activate monocytes, which may indicate their beneficial properties in the first phases of wound healing. The material proved to be nontoxic and has potential for medical use.
See more in PubMed
Chopra H., Bibi S., Kumar S., Khan M.S., Kumar P., Singh I. Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application. Gels. 2022;8:111. doi: 10.3390/gels8020111. PubMed DOI PMC
Choi J.S., Kim J.D., Yoon H.S., Cho Y.W. Full-Thickness Skin Wound Healing Using Human Placenta-Derived Extracellular Matrix Containing Bioactive Molecules. Tissue Eng. Part A. 2013;19:329–339. doi: 10.1089/ten.tea.2011.0738. PubMed DOI PMC
Liang Y., He J., Guo B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano. 2021;15:12687–12722. doi: 10.1021/acsnano.1c04206. PubMed DOI
Reinke J., Sorg H. Wound Repair and Regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI
Słota D., Florkiewicz W., Piętak K., Szwed A., Włodarczyk M., Siwińska M., Rudnicka K., Sobczak-Kupiec A. Preparation, Characterization, and Biocompatibility Assessment of Polymer-Ceramic Composites Loaded with Salvia officinalis Extract. Materials. 2021;14:6000. doi: 10.3390/ma14206000. PubMed DOI PMC
Szewczyk M.T., Zaporowska-Stachowiak I. Zastosowanie opatrunku w żelu w leczeniu ran przewlekłych [Using of hydrogel dressing in the treatment of chronic wounds] Pielęgniarstwo Chir. Angiol. 2021;18:123–130.
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Verdolino D.V., Thomason H.A., Fotticchia A., Cartmell S. Wound dressings: Curbing inflammation in chronic wound healing. Emerg. Top. Life Sci. 2021;5:523–537. doi: 10.1042/ETLS20200346. PubMed DOI PMC
Du B., Li W., Bai Y., Pan Z., Wang Q., Wang X., Ding H., Lv G., Zhou J. Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application. Int. J. Biol. Macromol. 2022;214:170–180. doi: 10.1016/j.ijbiomac.2022.06.066. PubMed DOI
Norahan M.H., Pedroza-González S.C., Sánchez-Salazar M.G., Álvarez M.M., de Santiago G.T. Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 2023;24:197–235. doi: 10.1016/j.bioactmat.2022.11.019. PubMed DOI PMC
Tyliszczak B., Pielichowski K. Charakterystyka matryc hydrożelowych—Zastosowania biomedyczne superabsorbentów polimerowych. Czas. Tech. 2007;1:160–167.
Atala A., Irvine D.J., Moses M., Shaunak S. Wound Healing Versus Regeneration: Role of the Tissue Environment in Regener-ative Medicine. MRS Bull. 2011;35:528. doi: 10.1557/mrs2010.528. PubMed DOI PMC
Wrzecionek M., Szymaniak M., Gadomska-Gajadhur A.A. Wybrane rozwiązania technologiczne w medycynie. Wydawnictwo Naukowe TYGIEL sp. z o. o. 2018:79–96.
Ho T.-C., Chang C.-C., Chan H.-P., Chung T.-W., Shu C.-W., Chuang K.-P., Duh T.-H., Yang M.-H., Tyan Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022;27:2902. doi: 10.3390/molecules27092902. PubMed DOI PMC
Hennink W.E., van Nostrum C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2002;54:13–36. doi: 10.1016/S0169-409X(01)00240-X. PubMed DOI
Słota D., Florkiewicz W., Piętak K., Pluta K., Sadlik J., Miernik K., Sobczak-Kupiec A. Preparation of PVP and betaine biomaterials enriched with hydroxyapatite and its evaluation as a drug carrier for controlled release of clindamycin. Ceram. Int. 2022;48:35467–35473. doi: 10.1016/j.ceramint.2022.08.151. DOI
Liu J., Zheng X.J., Tang K.Y. Study on the gravimetric measurement of the swelling behaviors of polymer films. Rev. Adv. Mater. Sci. 2013;33:452–458.
Nowicka D. Kwas hialuronowy w macierzy zewnątrzkomórkowej mózgu. Kosm. Problrmy Nauk. Biol. 2015;2:261–270.
Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC
Volpi N., Schiller J., Stern R., Soltes L. Role, metabolism, chemical modifications and applications of hyaluronan. Curr. Med. Chem. 2009;16:1718–1745. doi: 10.2174/092986709788186138. PubMed DOI
Kogan G., Šoltés L., Stern R., Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 2007;29:17–25. doi: 10.1007/s10529-006-9219-z. PubMed DOI
Czajkowska D., Milner-Krawczyk M., Kazanecka M. Kwas hialuronowy-charakterystyka, otrzymywanie i zastosowanie. Biotechnol. Food Sci. 2011;75:55–70.
Sadlik J., Słota D. Fish skin as a source of collagen. Characteristics, extraction methods and applications. Skóra rybia jako źródło kolagenu Charakterystyka, metody ekstrakcji i zastosowanie. Inżynieria Materiałowa. 2023;1:22–27. doi: 10.15199/28.2023.1.3. DOI
Gauza M., Kubisz L., Przybylski J. Properties of Fish Skin Collagen Obtained by Acidic Hydration Method. Now. Lek. 2010;79:157–162.
Kuzan A., Chwiłkowska A. Heterogeneity and functions of collagen in arteries. Pol. Merkur. Lek. 2011;31:111–113. PubMed
Zuchowski A., Nowicka-Zuchowska A. Kolagen—Rola w organizmie i skutki niedoboru. Lek Polsce. 2019;29:6–10.
Cindrova-Davies T., Sferruzzi-Perri A.N. Human placental development and function. Semin. Cell Dev. Biol. 2022;131:66–77. doi: 10.1016/j.semcdb.2022.03.039. PubMed DOI
Mice S., Chou M.-Y., Yang C.-P.O., Li W.-C., Yang Y.-M., Huang Y.-J., Wang M.-F. Evaluation of Antiaging Effect of Sheep Placenta Extract Using SAMP8 Mice. Processes. 2022;10:2242. doi: 10.3390/pr10112242. DOI
Klama-baryła A., Smętek W., Łabuś W., Kitala D. Przygotowanie przeszczepów z błon płodowych i możliwości ich klinicznego wykorzystania [Preparation and clinical application possibilities of human amniotic membrane grafts] Postep. Hig. Med. Dosw. 2019;73:674–680. doi: 10.5604/01.3001.0013.6286. DOI
Hong J.W., Lee W.J., Hahn S.B., Kim B.J., Lew D.H. The Effect of Human Placenta Extract in a Wound Healing Model. Ann. Plast. Surg. 2010;65:96–100. doi: 10.1097/SAP.0b013e3181b0bb67. PubMed DOI
Park K.M., Cho D.P., Cho T.H. In: Placenta Therapy: Its Biological Role Anti-Inflammation and Regeneration. Ahmed R.G., editor. IntechOpen; Rijeka, Croatia: 2018.
Yeom M.-J., Lee H.-C., Kim G.-H., Shim I., Lee H.-J., Hahm D.-H. Therapeutic Effects of Hominis placenta Injection into an Acupuncture Point on the Inflammatory Responses in Subchondral Bone Region of Adjuvant-Induced Polyarthritic Rat. Biol. Pharm. Bull. 2003;26:1472–1477. doi: 10.1248/bpb.26.1472. PubMed DOI
Słota D., Głąb M., Tyliszczak B., Douglas T.E.L., Rudnicka K., Miernik K., Urbaniak M.M., Rusek-Wala P., Sobczak-Kupiec A. Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. Materials. 2021;14:2317. doi: 10.3390/ma14092317. PubMed DOI PMC
Jayaramudu T., Ko H.-U., Kim H.C., Kim J.W., Kim J. Swelling Behavior of Polyacrylamide–Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and pH Effects. Materials. 2019;12:2080. doi: 10.3390/ma12132080. PubMed DOI PMC
Belbachir K., Noreen R., Gouspillou G., Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 2009;395:829–837. doi: 10.1007/s00216-009-3019-y. PubMed DOI
Nishida Y., Yoshida S., Li H.J., Higuchi Y., Takai N., Miyakawa I. FTIR spectroscopic analyses of human placental membranes. Biopolym.-Biospectrosc. Sect. 2001;62:22–28. doi: 10.1002/1097-0282(2001)62:1<22::AID-BIP40>3.0.CO;2-I. PubMed DOI
Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 2021.
Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009.
Yu R., Zhang H., Guo B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nano-Micro Lett. 2021;14:1. doi: 10.1007/s40820-021-00751-y. PubMed DOI PMC
Velnar T., Bailey T., Smrkolj V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009;37:1528–1542. doi: 10.1177/147323000903700531. PubMed DOI
Litwiniuk M., Krejner A., Grzela T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds. 2016;28:78–88. PubMed
Bell S.E.J., Xu Y. Infrared spectroscopy | Industrial applications. Encycl. Anal. Sci. 2019;5:124–133. doi: 10.1016/B978-0-12-409547-2.14526-3. DOI
Silverstein R.M., Webster F.X., Kiemle D.J. Spektroskopowe Metody Identyfikacji Związków Organicznych. PWN; Sydney, NSW, Australia: 2007.
Nawrotek K., Tylman M., Rudnicka K., Gatkowska J., Wieczorek M. Epineurium-mimicking chitosan conduits for peripheral nervous tissue engineering. Carbohydr. Polym. 2016;152:119–128. doi: 10.1016/j.carbpol.2016.07.002. PubMed DOI
Bańkosz M., Urbaniak M.M., Szwed A., Rudnicka K., Włodarczyk M., Drabczyk A., Kudłacik-Kramarczyk S., Tyliszczak B., Sobczak-Kupiec A. Physicochemical and biological analysis of composite biomaterials containing hydroxyapatite for biological applications. J. Biomed. Mater. Res. Part B. 2023;111:2077–2088. doi: 10.1002/jbm.b.35309. PubMed DOI
Cucchiarini M., Madry H., Biernat M., Szwed-Georgiou A., Rudnicka K., Płociński P., Pagacz J., Tymowicz-Grzyb P., Woźniak A., Włodarczyk M., et al. Dual Modification of Porous Ca-P/PLA Composites with APTES and Alendronate Improves Their Mechanical Strength and Cytobiocompatibility towards Human Osteoblasts. Int. J. Mol. Sci. 2022;23:14315. doi: 10.3390/ijms232214315. PubMed DOI PMC