Influence of metabolic state and body composition on the action of pharmacological treatment of migraine
Language English Country Great Britain, England Media electronic
Document type Journal Article, Review
PubMed
38347465
PubMed Central
PMC10863119
DOI
10.1186/s10194-024-01724-3
PII: 10.1186/s10194-024-01724-3
Knihovny.cz E-resources
- Keywords
- CGRP, Diabetes mellitus, Lifestyle, Metabolic disorders, Migraine, Obesity,
- MeSH
- Quality of Life MeSH
- Humans MeSH
- Metabolic Diseases * drug therapy MeSH
- Migraine Disorders * MeSH
- Obesity MeSH
- Body Composition MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Migraine is a disabling neurovascular disorder among people of all ages, with the highest prevalence in the fertile years, and in women. Migraine impacts the quality of life of affected individuals tremendously and, in addition, it is associated with highly prevalent metabolic diseases, such as obesity, diabetes mellitus and thyroid dysfunction. Also, the clinical response to drugs might be affected in patients with metabolic disease due to body composition and metabolic change. Therefore, the efficacy of antimigraine drugs could be altered in patients with both migraine and metabolic disease. However, knowledge of the pharmacology and the related clinical effects of antimigraine drugs in patients with metabolic disease are limited. Therefore, and given the clinical relevance, this article provides a comprehensive overview of the current research and hypotheses related to the influence of metabolic state and body composition on the action of antimigraine drugs. In addition, the influence of antimigraine drugs on metabolic functioning and, vice versa, the influence of metabolic diseases and its hormonal modulating medication on migraine activity is outlined. Future exploration on personalizing migraine treatment to individual characteristics is necessary to enhance therapeutic strategies, especially given its increasing significance in recent decades.
Casa Di Cura Santa Maria Maddalena Neurology and Neurophysiology Service Occhiobello Italy
Department of Human Neurosciences Sapienza University of Rome Rome Italy
Department of Neurology Charité Universitätsmedizin Berlin Berlin Germany
Department of Neurology University Hospital Wroclaw Medical University Wroclaw Poland
Neurology Department Vall d'Hebron University Hospital Barcelona Spain
See more in PubMed
Amiri P, Kazeminasab S, Nejadghaderi SA, Mohammadinasab R, Pourfathi H, Araj-Khodaei M, et al. Migraine: a review on its history, global epidemiology, risk factors, and comorbidities. Front Neurol. 2021;12:800605. doi: 10.3389/fneur.2021.800605. PubMed DOI PMC
Olesen J (2018) Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Vol. 38, Cephalalgia. SAGE Publications Ltd; p. 1–211 PubMed
Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):954–976. doi: 10.1016/S1474-4422(18)30322-3. PubMed DOI PMC
Scher AI, Bigal ME, Lipton RB. Comorbidity of migraine. Curr Opin Neurol. 2005;18(3):305–310. doi: 10.1097/01.wco.0000169750.52406.a2. PubMed DOI
Rivera-Mancilla E, Al-Hassany L, Villalón CM, MaassenVanDenBrink A. Metabolic aspects of migraine: association with obesity and diabetes mellitus. Front Neurol. 2021;9:12. PubMed PMC
Tasnim S, Wilson SG, Walsh JP, Nyholt DR, International Headache Genetics Consortium (IHGC) Shared genetics and causal relationships between migraine and thyroid function traits. Cephalalgia. 2023;43(2):03331024221139253.. doi: 10.1177/03331024221139253. PubMed DOI
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. doi: 10.1093/eurheartj/ehz486. PubMed DOI
Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51(8):481–499. doi: 10.1007/BF03261926. PubMed DOI
Smit C, De Hoogd S, Brüggemann RJM, Knibbe CAJ (2018) Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Vol. 14, Expert Opinion on Drug Metabolism and Toxicology. Taylor and Francis Ltd; p. 275–85 PubMed
Al-Hassany L, Haas J, Piccininni M, Kurth T, Van Den Maassen Brink A, Rohmann JL. Giving researchers a headache - sex and gender differences in migraine. Front Neurol. 2020;11:549038. doi: 10.3389/fneur.2020.549038. PubMed DOI PMC
Kristoffersen ES, Børte S, Hagen K, Zwart JA, Winsvold BS. Migraine, obesity and body fat distribution – a population-based study. J Headache Pain. 2020;21(1):97. doi: 10.1186/s10194-020-01163-w. PubMed DOI PMC
Haam J-H, Kim BT, Kim EM, Kwon H, Kang J-H, Park JH, et al. Diagnosis of obesity: 2022 update of clinical practice guidelines for obesity by the Korean society for the study of obesity. J Obes Metab Syndr. 2023;32(2):121–129. doi: 10.7570/jomes23031. PubMed DOI PMC
Bigal ME, Lipton RB, Holland PR, Goadsby PJ. Obesity, migraine, and chronic migraine: possible mechanisms of interaction. Neurology. 2007;68(21):1851–1861. doi: 10.1212/01.wnl.0000262045.11646.b1. PubMed DOI
Bowman SL, Hudson SA, Simpson G, Munro JF, Clements JA. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br J Clin Pharmacol. 1986;21(5):529–532. doi: 10.1111/j.1365-2125.1986.tb02837.x. PubMed DOI PMC
Brill MJE, van Rongen A, Houwink API, Burggraaf J, van Ramshorst B, Wiezer RJ, et al. Midazolam pharmacokinetics in morbidly obese patients following semi-simultaneous oral and intravenous administration: a comparison with healthy volunteers. Clin Pharmacokinet. 2014;53(10):931–941. doi: 10.1007/s40262-014-0166-x. PubMed DOI PMC
Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49(2):71–87. doi: 10.2165/11318100-000000000-00000. PubMed DOI
Yoshinari K, Takagi S, Yoshimasa T, Sugatani J, Miwa M. Hepatic CYP3A expression is attenuated in obese mice fed a high-fat diet. Pharm Res. 2006;23(6):1188–1200. doi: 10.1007/s11095-006-0071-6. PubMed DOI
Emery MG, Fisher JM, Chien JY, Kharasch ED, Dellinger EP, Kowdley KV, et al. CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology. 2003;38(2):428–435. doi: 10.1053/jhep.2003.50342. PubMed DOI
Abernethy DR, Greenblatt DJ, Divoll M, Shader RI. Enhanced glucuronide conjugation of drugs in obesity: studies of lorazepam, oxazepam, and acetaminophen. J Lab Clin Med. 1983;101(6):873–880. PubMed
Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord. 2015;13(10):423–444. doi: 10.1089/met.2015.0095. PubMed DOI PMC
Tong JH, D’Iorio A, Kandaswami C. On the characteristics of mitochondrial monoamine oxidase in pancreas and adipose tissues from genetically obese mice. Can J Biochem. 1979;57(3):197–200. doi: 10.1139/o79-024. PubMed DOI
Bour S, Daviaud D, Gres S, Lefort C, Prévot D, Zorzano A, et al. Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes. Biochimie. 2007;89(8):916–925. doi: 10.1016/j.biochi.2007.02.013. PubMed DOI
Visentin V, Prévot D, De Saint Front VD, Morin-Cussac N, Thalamas C, Galitzky J, et al. Alteration of amine oxidase activity in the adipose tissue of obese subjects. Obes Res. 2004;12(3):547–555. doi: 10.1038/oby.2004.62. PubMed DOI
Lloret-Linares C, Luo H, Rouquette A, Labat L, Poitou C, Tordjman J, et al. The effect of morbid obesity on morphine glucuronidation. Pharmacol Res. 2017;1(118):64–70. doi: 10.1016/j.phrs.2016.08.031. PubMed DOI
van der Schoor LW, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol. 2015;11(2):273–293. doi: 10.1517/17425255.2015.981152. PubMed DOI
Aaseth J, Ellefsen S, Alehagen U, Sundfør TM, Alexander J. Diets and drugs for weight loss and health in obesity - An update. Biomed Pharmacother. 2021;140:111789. doi: 10.1016/j.biopha.2021.111789. PubMed DOI
Kotlyar M, Brauer LH, Tracy TS, Hatsukami DK, Harris J, Bronars CA, et al. Inhibition of CYP2D6 activity by bupropion. J Clin Psychopharmacol. 2005;25(3):226–229. doi: 10.1097/01.jcp.0000162805.46453.e3. PubMed DOI
Filip M, Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol Rep. 2009;61(5):761–777. doi: 10.1016/S1734-1140(09)70132-X. PubMed DOI
Tfelt-Hansen P, De Vries P, Saxena PR. Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs. 2000;60(6):1259–1287. doi: 10.2165/00003495-200060060-00003. PubMed DOI
Akerman S, Romero-Reyes M. Insights into the pharmacological targeting of the trigeminocervical complex in the context of treatments of migraine. Expert Rev Neurother. 2013;13(9):1041–1059. doi: 10.1586/14737175.2013.827472. PubMed DOI
Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi J, Bagdy G. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia. 2005;25(3):179–183. doi: 10.1111/j.1468-2982.2005.00836.x. PubMed DOI
Gawel MJ, Worthington I, Maggisano A. A systematic review of the use of triptans in acute migraine. Can J Neurol Sci. 2001;28(1):30–41. doi: 10.1017/S0317167100052525. PubMed DOI
Fowler PA, Lacey LF, Thomas M, Keene ON, Tanner RJ, Baber NS. The clinical pharmacology, pharmacokinetics and metabolism of sumatriptan. Eur Neurol. 1991;31(5):291–294. doi: 10.1159/000116756. PubMed DOI
Tfelt-Hansen P, Hougaard A. Sumatriptan: a review of its pharmacokinetics, pharmacodynamics and efficacy in the acute treatment of migraine. Expert Opin Drug Metab Toxicol. 2013;9(1):91–103. doi: 10.1517/17425255.2013.744394. PubMed DOI
Rapoport AM, Tepper SJ. All triptans are not the same. J Headache Pain. 2001;2(S1):s87–92. doi: 10.1007/s101940170017. DOI
Jhee SS, Shiovitz T, Crawford AW, Cutler NR. Pharmacokinetics and pharmacodynamics of the triptan antimigraine agents: a comparative review. Clin Pharmacokinet. 2001;40(3):189–205. doi: 10.2165/00003088-200140030-00004. PubMed DOI
Visser WH, de Vriend RH, Jaspers MW, Ferrari MD. Sumatriptan in clinical practice: a 2-year review of 453 migraine patients. Neurology. 1996;47(1):46–51. doi: 10.1212/WNL.47.1.46. PubMed DOI
Balbisi EA. Frovatriptan: a review of pharmacology, pharmacokinetics and clinical potential in the treatment of menstrual migraine. Ther Clin Risk Manag. 2006;2(3):303–308. doi: 10.2147/tcrm.2006.2.3.303. PubMed DOI PMC
Saracco MG, Allais G, Tullo V, Zava D, Pezzola D, Reggiardo G, et al. Efficacy of frovatriptan and other triptans in the treatment of acute migraine of normal weight and obese subjects: a review of randomized studies. Neurol Sci. 2014;35(S1):115–119. doi: 10.1007/s10072-014-1752-2. PubMed DOI
Munjal S, Gautam A, Rapoport AM, Fisher DM. The effect of weight, body mass index, age, sex, and race on plasma concentrations of subcutaneous sumatriptan: a pooled analysis. Clin Pharmacol. 2016;8:109–116. PubMed PMC
Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev. 2019;40(4):1092–1107. doi: 10.1210/er.2018-00283. PubMed DOI PMC
Rouru J, Pesonen U, Isaksson K, Huupponen R, Koulu M. Effect of chronic treatment with TFMPP, a 5-HT1 receptor agonist, on food intake, weight gain, plasma insulin and neuropeptide mRNA expression in obese Zucker rats. Eur J Pharmacol. 1993;234(2–3):191–198. doi: 10.1016/0014-2999(93)90953-F. PubMed DOI
Rolan PE. Drug interactions with triptans : which are clinically significant? CNS Drugs. 2012;26(11):949–957. doi: 10.1007/s40263-012-0002-5. PubMed DOI
Szkutnik-Fiedler D. Pharmacokinetics, Pharmacodynamics and Drug-Drug Interactions of New Anti-Migraine Drugs-Lasmiditan, Gepants, and Calcitonin-Gene-Related Peptide (CGRP) Receptor Monoclonal Antibodies. Pharmaceutics. 2020;12(12):1180. doi: 10.3390/pharmaceutics12121180. PubMed DOI PMC
Lupi C, Benemei S, Guerzoni S, Pellesi L, Negro A. Pharmacokinetics and pharmacodynamics of new acute treatments for migraine. Expert Opin Drug Metab Toxicol. 2019;15(3):189–198. doi: 10.1080/17425255.2019.1578749. PubMed DOI
Moreno-Ajona D, Villar-Martínez MD, Goadsby PJ. New generation gepants: migraine acute and preventive medications. J Clin Med. 2022;11(6):1656. doi: 10.3390/jcm11061656. PubMed DOI PMC
Al-Hassany L, Goadsby PJ, Danser AHJ, MaassenVanDenBrink A. Calcitonin gene-related peptide-targeting drugs for migraine: how pharmacology might inform treatment decisions. Lancet Neurol. 2022;21(3):284–294. doi: 10.1016/S1474-4422(21)00409-9. PubMed DOI
Kielbasa W, Helton DL. A new era for migraine: Pharmacokinetic and pharmacodynamic insights into monoclonal antibodies with a focus on galcanezumab, an anti-CGRP antibody. Cephalalgia. 2019;39(10):1284–1297. doi: 10.1177/0333102419840780. PubMed DOI PMC
Keizer RJ, Huitema ADR, Schellens JHM, Beijnen JH. Clinical Pharmacokinetics of Therapeutic Monoclonal Antibodies. Clin Pharmacokinet. 2010;49:493–507. doi: 10.2165/11531280-000000000-00000. PubMed DOI
Roberts BV, Susano I, Gipson DS, Trachtman H, Joy MS. Contribution of renal and non-renal clearance on increased total clearance of adalimumab in glomerular disease. J Clin Pharmacol. 2013;53(9):919–924. doi: 10.1002/jcph.121. PubMed DOI
Vu T, Ma P, Chen JS, de Hoon J, Van Hecken A, Yan L, et al. Pharmacokinetic-Pharmacodynamic Relationship of Erenumab (AMG 334) and Capsaicin-Induced Dermal Blood Flow in Healthy and Migraine Subjects. Pharm Res. 2017;34(9):1784–1795. doi: 10.1007/s11095-017-2183-6. PubMed DOI PMC
Barbanti P, Egeo G, Aurilia C, Altamura C, d’Onofrio F, Finocchi C, et al. Predictors of response to anti-CGRP monoclonal antibodies: a 24-week, multicenter, prospective study on 864 migraine patients. J Headache Pain. 2022;23(1):138. doi: 10.1186/s10194-022-01498-6. PubMed DOI PMC
Szperka CL, VanderPluym J, Orr SL, Oakley CB, Qubty W, Patniyot I, et al. Recommendations on the Use of Anti-CGRP Monoclonal Antibodies in Children and Adolescents. Headache. 2018;58(10):1658–69. doi: 10.1111/head.13414. PubMed DOI PMC
Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–558. doi: 10.1038/clpt.2008.170. PubMed DOI
Kuzmiski JB, Barr W, Zamponi GW, MacVicar BA. Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia. 2005;46(4):481–489. doi: 10.1111/j.0013-9580.2005.35304.x. PubMed DOI
Simeone TA, Wilcox KS, White HS. Subunit selectivity of topiramate modulation of heteromeric GABAA receptors. Neuropharmacology. 2006;50(7):845–857. doi: 10.1016/j.neuropharm.2005.12.006. PubMed DOI
Poulsen CF, Simeone TA, Maar TE, Smith-Swintosky V, White HS, Schousboe A. Modulation by topiramate of AMPA and kainate mediated calcium influx in cultured cerebral cortical, hippocampal and cerebellar neurons. Neurochem Res. 2004;29(1):275–282. doi: 10.1023/B:NERE.0000010456.92887.3b. PubMed DOI
Garnett WR. Clinical pharmacology of topiramate: a review. Epilepsia. 2000;41(S1):61–65. doi: 10.1111/j.1528-1157.2000.tb02174.x. PubMed DOI
Benedetti MS. Enzyme induction and inhibition by new antiepileptic drugs: a review of human studies. Fundam Clin Pharmacol. 2000;14(4):301–319. doi: 10.1111/j.1472-8206.2000.tb00411.x. PubMed DOI
McElroy SL, Hudson JI, Capece JA, Beyers K, Fisher AC, Rosenthal NR. Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol Psychiatry. 2007;61(9):1039–1048. doi: 10.1016/j.biopsych.2006.08.008. PubMed DOI
Bjørk MH, Zoega H, Leinonen MK, Cohen JM, Dreier JW, Furu K, et al. Association of prenatal exposure to Antiseizure medication with risk of autism and intellectual disability. JAMA Neurol. 2022;79(7):672–681. doi: 10.1001/jamaneurol.2022.1269. PubMed DOI
Cosentino G, Conrad AO, Uwaifo GI. Phentermine and topiramate for the management of obesity: a review. Drug Des Devel Ther. 2013;7:267–278. PubMed PMC
Ben-Menachem E, Axelsen M, Johanson EH, Stagge A, Smith U. Predictors of weight loss in adults with Topiramate-treated epilepsy. Obes Res. 2003;11(4):556–562. doi: 10.1038/oby.2003.78. PubMed DOI
Lowenthal D, Saris SD, Jeffrey P, Alan H, Kathleen C. Mechanisms of action and the clinical pharmacology of beta-adrenergic blocking drugs. Am J Med. 1984;5(77):119–127. doi: 10.1016/S0002-9343(84)80047-9. PubMed DOI
Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J Pharm Pharm Sci. 2001;4(2):185–200. PubMed
Frishman WH, Saunders E. β-Adrenergic blockers. J Clin Hypertens (Greenwich) 2011;13(9):649–653. doi: 10.1111/j.1751-7176.2011.00515.x. PubMed DOI PMC
Kalam MN, Rasool MF, Rehman AU, Ahmed N. Clinical pharmacokinetics of propranolol hydrochloride: a review. Curr Drug Metab. 2020;21(2):89–105. doi: 10.2174/1389200221666200414094644. PubMed DOI
Dentali F, Sharma AM, Douketis JD. Management of hypertension in overweight and obese patients: a practical guide for clinicians. Curr Hypertens Rep. 2005;7(5):330–336. doi: 10.1007/s11906-005-0065-5. PubMed DOI
Filser JG, Kaumeier S, Brand T, Schanz H, Terlinden R, Müller WE. Pharmacokinetics of amitriptyline and amitriptylinoxide after intravenous or oral administration in humans. Pharmacopsychiatry. 1988;21(6):381–383. doi: 10.1055/s-2007-1017018. PubMed DOI
Henry JF, Altamura C, Gomeni R, Hervy MP, Forette F, Morselli PL. Pharmacokinetics of amitriptyline in the elderly. Int J Clin Pharmacol. 1981;19(1):1–5. PubMed
McClure EW, Daniels RN. Classics in chemical neuroscience: amitriptyline. ACS Chem Neurosci. 2021;12(3):354–362. doi: 10.1021/acschemneuro.0c00467. PubMed DOI
Cassano GB, Sjöstrand SE, Hansson E. Distribution and fate of C-14-amitriptyline in mice and rats. Psychopharmacologia. 1965;8(1):1–11. doi: 10.1007/BF00405356. PubMed DOI
Nakano S, Hollister LE. Chronopharmacology of amitriptyline. Clin Pharmacol Ther. 1983;33(4):453–459. doi: 10.1038/clpt.1983.61. PubMed DOI
Koh A, Pak KC, Choi HY, Ryu S, Choi SE, Kim KS, et al. Quantitative Modeling Analysis Demonstrates the Impact of CYP2C19 and CYP2D6 Genetic Polymorphisms on the Pharmacokinetics of Amitriptyline and Its Metabolite. Nortriptyline J Clin Pharmacol. 2019;59(4):532–540. doi: 10.1002/jcph.1344. PubMed DOI
Thour A, Marwaha R. Amitriptyline. 2023. PubMed
Dean L. Amitriptyline Therapy and CYP2D6 and CYP2C19 Genotype. 2012. PubMed
Puzhko S, Aboushawareb SAE, Kudrina I, Schuster T, Barnett TA, Renoux C, et al. Excess body weight as a predictor of response to treatment with antidepressants in patients with depressive disorder. J Affect Disord. 2020;267:153–170. doi: 10.1016/j.jad.2020.01.113. PubMed DOI
Young WB. Preventive treatment of migraine: Effect on weight. Curr Pain Headache Rep. 2008;12(3):201–206. doi: 10.1007/s11916-008-0035-0. PubMed DOI
Berilgen MS, Bulut S, Gonen M, Tekatas A, Dag E, Mungen B. Comparison of the effects of amitriptyline and flunarizine on weight gain and serum leptin, C peptide and insulin levels when used as migraine preventive treatment. Cephalalgia. 2005;25(11):1048–1053. doi: 10.1111/j.1468-2982.2005.00956.x. PubMed DOI
Caproni S, Corbelli I, Pini LA, Cupini ML, Calabresi P, Sarchielli P. Migraine preventive drug-induced weight gain may be mediated by effects on hypothalamic peptides: the results of a pilot study. Cephalalgia. 2011;31(5):543–549. doi: 10.1177/0333102410392605. PubMed DOI
Di Vincenzo A, Beghetto M, Vettor R, Tana C, Rossato M, Bond DS, et al. Effects of surgical and non-surgical weight loss on migraine headache: a systematic review and meta-analysis. Obes Surg. 2020;30(6):2173–2185. doi: 10.1007/s11695-020-04429-z. PubMed DOI
Afshinmajd S, Davati A, Akbari F. The effects of body mass index on the treatment of the patients with migraine headaches. Iran J Neurol. 2011;10(3–4):35–38. PubMed PMC
Rainero I, Limone P, Ferrero M, Valfrè W, Pelissetto C, Rubino E, et al. Insulin sensitivity is impaired in patients with migraine. Cephalalgia. 2005;25(8):593–597. doi: 10.1111/j.1468-2982.2005.00928.x. PubMed DOI
Cavestro C, Rosatello A, Micca G, Ravotto M, Marino MP, Asteggiano G, et al. Insulin metabolism is altered in migraineurs: a new pathogenic mechanism for migraine? Headache. 2007;47(10):1436–1442. doi: 10.1111/j.1526-4610.2007.00719.x. PubMed DOI
McCarthy LC, Hosford DA, Riley JH, Bird MI, White NJ, Hewett DR, et al. Single-Nucleotide Polymorphism Alleles in the Insulin Receptor Gene Are Associated with Typical Migraine. Genomics. 2001;78(3):135–149. doi: 10.1006/geno.2001.6647. PubMed DOI
Wang LH, Zhou SX, Li RC, Zheng LR, Zhu JH, Hu SJ, et al. Serum levels of calcitonin gene-related peptide and substance P are decreased in patients with diabetes mellitus and coronary artery disease. J Int Med Res. 2012;40(1):134–140. doi: 10.1177/147323001204000114. PubMed DOI
Berge LI, Riise T, Fasmer OB, Hundal O, Oedegaard KJ, Midthjell K, et al. Does diabetes have a protective effect on migraine? Epidemiology. 2013;24:129–134. doi: 10.1097/EDE.0b013e31827623d0. PubMed DOI
Antonazzo IC, Riise T, Cortese M, Berge LI, Engeland A, Fasmer OB, et al. Diabetes is associated with decreased migraine risk: a nationwide cohort study. Cephalgia. 2018;38:1759–64. doi: 10.1177/0333102417748573. PubMed DOI
Aamodt AH, Stovner LJ, Midthjell K, Hagen K, Zwart JA. Headache prevalence related to diabetes mellitus. The Head-HUNT study. Eur J Neurol. 2007;14(7):738–744. doi: 10.1111/j.1468-1331.2007.01765.x. PubMed DOI
Fagherazzi G, El Fatouhi D, Fournier A, Gusto G, Mancini FR, Balkau B, et al. Associations between migraine and type 2 diabetes in women: findings from the E3N cohort study. JAMA Neurol. 2019;76(3):257–263. doi: 10.1001/jamaneurol.2018.3960. PubMed DOI PMC
Haghighi FS, Rahmanian M, Namiranian N, Arzaghi SM, Dehghan F, Chavoshzade F, et al. Migraine and type 2 diabetes; is there any association? J Diabetes Metab Disord. 2015;15(1):37. doi: 10.1186/s40200-016-0241-y. PubMed DOI PMC
Bigal ME, Kurth T, Santanello N, Buse D, Golden W, Robbins M, et al. Migraine and cardiovascular disease: s population-based study. Neurology. 2010;74(8):628–635. doi: 10.1212/WNL.0b013e3181d0cc8b. PubMed DOI PMC
Del Moro L, Rota E, Pirovano E, Rainero I. Migraine, Brain Glucose Metabolism and the "Neuroenergetic" Hypothesis: a scoping review. J Pain. 2022;23(8):1294–1317. doi: 10.1016/j.jpain.2022.02.006. PubMed DOI
Hosseinpour M, Maleki F, Khoramdad M, Sullman MJM, Nejadghaderi SA, Kolahi AA, et al. A systematic literature review of observational studies of the bilateral association between diabetes and migraine. Diabetes Metab Syndr. 2021;15(3):673–678. doi: 10.1016/j.dsx.2021.03.018. PubMed DOI
Hagen K, Åsvold BO, Midthjell K, Stovner LJ, Zwart JA, Linde M. Inverse relationship between type 1 diabetes mellitus and migraine. Data from the Nord-Trøndelag Health Surveys 1995–1997 and 2006–2008. Cephalalgia. 2018;38(3):417–26. doi: 10.1177/0333102417690488. PubMed DOI
Horowitz M, Wishart JM, Jones KL, Hebbard GS. Gastric emptying in diabetes: an overview. Diabet Med. 1996;13(9 Suppl 5):S16–22. PubMed
Triantafyllou K, Kalantzis C, Papadopoulos AA, Apostolopoulos P, Rokkas T, Kalantzis N, et al. Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Dig Liver Dis. 2007;39(6):575–580. doi: 10.1016/j.dld.2007.01.024. PubMed DOI
Marangos MN, Skoutelis AT, Nightingale CH, Zhu Z, Psyrogiannis AG, Nicolau DP, et al. Absorption of ciprofloxacin in patients with diabetic gastroparesis. Antimicrob Agents Chemother. 1995;39(9):2161–2163. doi: 10.1128/AAC.39.9.2161. PubMed DOI PMC
Häggendal E, Steen B, Svanborg A. Blood flow in subcutaneous fat tissue in patients with diabetes mellitus. Acta Med Scand. 1970;187(1–2):49–53. doi: 10.1111/j.0954-6820.1970.tb02905.x. PubMed DOI
Dimitriadis G, Lambadiari V, Mitrou P, Maratou E, Boutati E, Panagiotakos DB, et al. Impaired postprandial blood flow in adipose tissue may be an early marker of insulin resistance in type 2 diabetes. Diabetes Care. 2007;30(12):3128–3130. doi: 10.2337/dc07-0699. PubMed DOI
Nosadini R, De Kreutzenberg S, Duner E, Iori E, Avogaro A, Trevisan R, et al. Porcine and human insulin absorption from subcutaneous tissues in normal and insulin-dependent diabetic subjects: a deconvolution-based approach. J Clin Endocrinol Metab. 1988;67(3):551–559. doi: 10.1210/jcem-67-3-551. PubMed DOI
Moore EW, Mitchell ML, Chalmers TC. Variability in absorption of insulin-I 131 in normal and diabetic subjects after subcutaneous and intramuscular injection. J Clin Invest. 1959;38(7):1222–1227. doi: 10.1172/JCI103897. PubMed DOI PMC
Bonadonna RC, Groop L, Kraemer N, Ferrannini E, Del Prato S, DeFronzo RA. Obesity and insulin resistance in humans: a dose-response study. Metabolism. 1990;39(5):452–459. doi: 10.1016/0026-0495(90)90002-T. PubMed DOI
Day JF, Thorpe SR, Baynes JW. Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J Biol Chem. 1979;254(3):595–7. doi: 10.1016/S0021-9258(17)37845-6. PubMed DOI
Ruiz-Cabello F, Erill S. Abnormal serum protein binding of acidic drugs in diabetes mellitus. Clin Pharmacol Ther. 1984;36(5):691–695. doi: 10.1038/clpt.1984.241. PubMed DOI
McNamara PJ, Blouin RA, Brazzell RK. The protein binding of phenytoin, propranolol, diazepam, and AL01576 (an aldose reductase inhibitor) in human and rat diabetic serum. Pharm Res. 1988;5(5):261–265. doi: 10.1023/A:1015966402084. PubMed DOI
Gatti G, Crema F, Attardo-Parrinello G, Fratino P, Aguzzi F, Perucca E. Serum protein binding of phenytoin and valproic acid in insulin-dependent diabetes mellitus. Ther Drug Monit. 1987;9(4):389–391. doi: 10.1097/00007691-198712000-00005. PubMed DOI
Petrides AS, Vogt C, Schulze-Berge D, Matthews D, Strohmeyer G. Pathogenesis of glucose intolerance and diabetes mellitus in cirrhosis. Hepatology. 1994;19(3):616–627. doi: 10.1002/hep.1840190312. PubMed DOI
Darakjian L, Deodhar M, Turgeon J, Michaud V. Chronic inflammatory status observed in patients with type 2 diabetes induces modulation of cytochrome P450 expression and activity. Int J Mol Sci. 2021;22(9):4967. doi: 10.3390/ijms22094967. PubMed DOI PMC
Lee JH, Yang SH, Oh JM, Lee MG. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol. 2010;62(1):1–23. doi: 10.1211/jpp.62.01.0001. PubMed DOI
Sotaniemi EA, Pelkonen O, Arranto AJ, Tapanainen P, Rautio A, Pasanen M. Diabetes and elimination of antipyrine in man: an analysis of 298 patients classified by type of diabetes, age, sex, duration of disease and liver involvement. Pharmacol Toxicol. 2002;90(3):155–160. doi: 10.1034/j.1600-0773.2002.900308.x. PubMed DOI
Pucci L, Chirulli V, Marini S, Lucchesi D, Penno G, Gervasi PG, et al. Expression and activity of CYP2E1 in circulating lymphocytes are not altered in diabetic individuals. Pharmacol Res. 2005;51(6):561–565. doi: 10.1016/j.phrs.2005.02.005. PubMed DOI
Wang Z, Hall SD, Maya JF, Li L, Asghar A, Gorski JC. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol. 2003;55(1):77–85. doi: 10.1046/j.1365-2125.2003.01731.x. PubMed DOI PMC
Adithan C, Sriram G, Swaminathan RP, Krishnan M, Bapna JS, Chandrasekar S. Effect of type II diabetes mellitus on theophylline elimination. Int J Clin Pharmacol. 1989;27(5):258–260. PubMed
Marques MP, Coelho EB, Dos Santos NAG, Geleilete TJM, Lanchote VL. Dynamic and kinetic disposition of nisoldipine enantiomers in hypertensive patients presenting with type-2 diabetes mellitus. Eur J Clin Pharmacol. 2002;58(9):607–614. doi: 10.1007/s00228-002-0528-4. PubMed DOI
Kvitne KE, Åsberg A, Johnson LK, Wegler C, Hertel JK, Artursson P, et al. Impact of type 2 diabetes on in vivo activities and protein expressions of cytochrome P450 in patients with obesity. Clin Transl Sci. 2022;15(11):2685–2696. doi: 10.1111/cts.13394. PubMed DOI PMC
West IC. Radicals and oxidative stress in diabetes. Diabet Med. 2000;17(3):171–180. doi: 10.1046/j.1464-5491.2000.00259.x. PubMed DOI
Dinçer Y, Alademir Z, Ilkova H, Akçay T. Susceptibility of glutatione and glutathione-related antioxidant activity to hydrogen peroxide in patients with type 2 diabetes: effect of glycemic control. Clin Biochem. 2002;35(4):297–301. doi: 10.1016/S0009-9120(02)00317-X. PubMed DOI
Zhou H, Tan KCB, Shiu SWM, Wong Y. Determinants of leukocyte adenosine triphosphate-binding cassette transporter G1 gene expression in type 2 diabetes mellitus. Metabolism. 2008;57(8):1135–1140. doi: 10.1016/j.metabol.2008.03.020. PubMed DOI
Sasso FC, De Nicola L, Carbonara O, Nasti R, Minutolo R, Salvatore T, et al. Cardiovascular risk factors and disease management in type 2 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29(3):498–503. doi: 10.2337/diacare.29.03.06.dc05-1776. PubMed DOI
Meeme A, Kasozi H. Effect of glycaemic control on glomerular filtration rate in diabetes mellitus patients. Afr Health Sci. 2009;9 Suppl 1(Suppl 1):S23–6. PubMed PMC
García G, de Vidal EL, Trujillo H. Serum levels and urinary concentrations of kanamicin, bekanamicin and amikacin (BB-K8) in diabetic children and a control group. J Int Med Res. 1977;5(5):322–329. doi: 10.1177/030006057700500506. PubMed DOI
Madácsy L, Bokor M, Matusovits L. Penicillin clearance in diabetic children. Acta Paediatr Acad Sci Hung. 1975;16(2):139–142. PubMed
Trovik TS, Jaeger R, Jorde R, Sager G. Reduced sensitivity to beta-adrenoceptor stimulation and blockade in insulin dependent diabetic patients with hypoglycaemia unawareness. Br J Clin Pharmacol. 1994;38(5):427–432. doi: 10.1111/j.1365-2125.1994.tb04378.x. PubMed DOI PMC
Lloyd-Mostyn RH, Watkins PJ. Defective innervation of heart in diabetic autonomic neuropathy. Br Med J. 1975;3(5974):15–17. doi: 10.1136/bmj.3.5974.15. PubMed DOI PMC
Berlin I, Grimaldi A, Landault C, Zoghbi F, Thervet F, Puech AJ, et al. Lack of hypoglycemic symptoms and decreased beta-adrenergic sensitivity in insulin-dependent diabetic patients. J Clin Endocrinol Metab. 1988;66(2):273–278. doi: 10.1210/jcem-66-2-273. PubMed DOI
de OliveiraSouza C, Sun X, Oh D. Metabolic Functions of G Protein-Coupled Receptors and β-Arrestin-Mediated Signaling Pathways in the Pathophysiology of Type 2 Diabetes and Obesity. Front Endocrinol (Lausanne) 2021;12:715877. doi: 10.3389/fendo.2021.715877. PubMed DOI PMC
Clissold S, Edwards C. Acarbose. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs. 1988;35:214–43. doi: 10.2165/00003495-198835030-00003. PubMed DOI
Infante M, Leoni M, Caprio M, Fabbri A. Long-term metformin therapy and vitamin B12 deficiency: an association to bear in mind. World J Diabetes. 2021;12:916–31. doi: 10.4239/wjd.v12.i7.916. PubMed DOI PMC
Hsu WH, Hsiao PJ, Lin PC, Che SC, Lee MY, Shin SJ. Effect of metformin on kidney function in patients with type 2 diabetes mellitus and moderate chronic kidney disease. Oncotarget. 2017;17:5416–5423. PubMed PMC
Scheen A. Drug-drug and food-drug pharmacokinetic interactions with new insulinotropic agents repaglinide and nateglinide. Clin Pharmacokinet. 2007;46:93–108. doi: 10.2165/00003088-200746020-00001. PubMed DOI
Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl. 2001;121:13–18. PubMed
Hirsch IB, Juneja R, Beals JM, Antalis CJ, Wright EE. The evolution of insulin and how it informs therapy and treatment choices. Endocr Rev. 2020;41(5):733–755. doi: 10.1210/endrev/bnaa015. PubMed DOI PMC
Polidori DC, Bergman RN, Chung ST, Sumner AE. Hepatic and extrahepatic insulin clearance are differentially regulated: Results from a novel model-based. Diabetes. 2016;65(6):1556–1564. doi: 10.2337/db15-1373. PubMed DOI PMC
Levien TL, Baker DE, White JR, Campbell RK. Insulin glargine: a new basal insulin. Ann Pharmacother. 2002;36(6):1019–1027. doi: 10.1345/aph.1A301. PubMed DOI
Spector JT, Kahn SR, Jones MR, Jayakumar M, Dalal D, Nazarian S. Migraine headache and ischemic stroke risk: an updated meta-analysis. Am J Med. 2010;123(7):612–624. doi: 10.1016/j.amjmed.2009.12.021. PubMed DOI PMC
Tfelt-Hansen P. Parenteral vs. oral sumatriptan and naratriptan: plasma levels and efficacy in migraine. a comment. J Headache Pain. 2007;8(5):273–6. doi: 10.1007/s10194-007-0411-x. PubMed DOI PMC
Coulie B, Tack J, Bouillon R, Peeters T, Janssens J. 5-Hydroxytryptamine-1 receptor activation inhibits endocrine pancreatic secretion in humans. Am J Physiol. 1998;274(2):E317–E320. PubMed
Golubic R, Hussein Ismail M, Josipovic M, Kennet J, Galderisi A, Evans ML. Sumatriptan, a serotonin 5HT1B receptor agonist, acutely reduces insulin secretion and sensitivity and glucose effectiveness in overweight humans: a double-blinded placebo-controlled cross-over trial. Diabetes Obes Metab. 2023;25(10):3059–3063. doi: 10.1111/dom.15176. PubMed DOI
Labastida-Ramírez A, Rubio-Beltrán E, Haanes KA, Chan KY, Garrelds IM, Johnson KW, et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system. Pain. 2020;161(5):1092–1099. doi: 10.1097/j.pain.0000000000001801. PubMed DOI PMC
Sonne N, Karsdal MA, Henriksen K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol Metab. 2021;46:101109. doi: 10.1016/j.molmet.2020.101109. PubMed DOI PMC
Ghanizada H, Al-Karagholi MAM, Walker CS, Arngrim N, Rees T, Petersen J, et al. Amylin Analog Pramlintide Induces Migraine-like Attacks in Patients. Ann Neurol. 2021;89(6):1157–1171. doi: 10.1002/ana.26072. PubMed DOI PMC
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–1142. doi: 10.1152/physrev.00034.2013. PubMed DOI PMC
Halloran J, Lalande A, Zang M, Chodavarapu H, Riera CE. Monoclonal therapy against calcitonin gene-related peptide lowers hyperglycemia and adiposity in type 2 diabetes mouse models. Metabol Open. 2020;8:100060. doi: 10.1016/j.metop.2020.100060. PubMed DOI PMC
Riera CE. Can Monoclonal Antibodies against CGRP Offer New Treatment Options for Type 2 Diabetes? J Diabetes Clin Res. 2020;2(4):114–118. PubMed PMC
Paravattil B, Wilby KJ, Turgeon R. Topiramate monotherapy for weight reduction in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2016;114:9–14. doi: 10.1016/j.diabres.2016.02.002. PubMed DOI
Khanna V, Arumugam S, Roy S, Mittra S, Bansal VS. Topiramate and type 2 diabetes: an old wine in a new bottle. Expert Opin Ther Targets. 2008;12(1):81–90. doi: 10.1517/14728222.12.1.81. PubMed DOI
Richard D, Ferland J, Lalonde J, Samson P, Deshaies Y. Influence of Topiramate in the Regulation of Energy Balance. Nutrition. 2000;16:961–966. doi: 10.1016/S0899-9007(00)00452-4. PubMed DOI
Toplak H, Hamann A, Moore R, Masson E, Gorska M, Vercruysse F, et al. Efficacy and safety of topiramate in combination with metformin in the treatment of obese subjects with type 2 diabetes: A randomized, double-blind, placebo-controlled study. Int J Obes. 2007;31(1):138–146. doi: 10.1038/sj.ijo.0803382. PubMed DOI
Raffaelli B, García-Azorín D, Boucherie DM, Amin FM, Deligianni CI, Gil-Gouveia R, et al. European Headache Federation (EHF) critical reappraisal and meta-analysis of oral drugs in migraine prevention - part 3: topiramate. J Headache Pain. 2023;24(1):134. doi: 10.1186/s10194-023-01671-5. PubMed DOI PMC
Manitpisitkul P, Curtin CR, Shalayda K, Wang SS, Ford L, Heald D. Pharmacokinetic interactions between topiramate and pioglitazone and metformin. Epilepsy Res. 2014;108(9):1519–1532. doi: 10.1016/j.eplepsyres.2014.08.013. PubMed DOI
Mills GA, Horn JR. Beta-blockers and glucose control. Drug Intell Clin Pharm. 1985;19(4):246–251. PubMed
Dunne F, Kendall MJ, Martin U. Beta-blockers in the management of hypertension in patients with type 2 diabetes mellitus: is there a role? Drugs. 2001;61(4):429–435. doi: 10.2165/00003495-200161040-00001. PubMed DOI
Tuncay E, Zeydanli EN, Turan B. Cardioprotective effect of propranolol on diabetes-induced altered intracellular Ca2+ signaling in rat. J Bioenerg Biomembr. 2011;43(6):747–756. doi: 10.1007/s10863-011-9400-5. PubMed DOI
Blaufarb I, Pfeifer T, Frishman W. beta-blockers. Drug interactions of clinical significance. Drug Saf. 1995;13:359–70. doi: 10.2165/00002018-199513060-00005. PubMed DOI
Joseph Haas S, Pharm B, Pharm Sci B, Vos T, Gilbert RE, Krum H, et al. Are-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J. 2003;146(5):848–853. doi: 10.1016/S0002-8703(03)00403-4. PubMed DOI
Lu Z, Li Y, Syn WK, Wang Z, Lopes-Virella MF, Lyons TJ, et al. Amitriptyline inhibits nonalcoholic steatohepatitis and atherosclerosis induced by high-fat diet and LPS through modulation of sphingolipid metabolism. Am J Physiol Endocrinol Metab. 2020;318(2):E131–E144. doi: 10.1152/ajpendo.00181.2019. PubMed DOI PMC
Weber-Hamann B, Gilles M, Lederbogen F, Heuser I, Deuschle M. Improved insulin sensitivity in 80 nondiabetic patients with MDD after clinical remission in a double-blind, randomized trial of amitriptyline and paroxetine. J Clin Psychiatry. 2006;67(12):1856–1861. doi: 10.4088/JCP.v67n1204. PubMed DOI
Chadwick W, Wilson G, van de Venter M, Oelofsen W, Roux S. Shifts in metabolic parameters surrounding glucose homoeostasis resulting from tricyclic antidepressant therapy: implications of insulin resistance? J Pharm Pharmacol. 2010;59(1):95–103. doi: 10.1211/jpp.59.1.0013. PubMed DOI
Tuchendler D, Bolanowski M. The influence of thyroid dysfunction on bone metabolism. Thyroid Res. 2014;7(1):12. doi: 10.1186/s13044-014-0012-0. PubMed DOI PMC
Tasnim S, Nyholt DR. Migraine and thyroid dysfunction: Co-occurrence, shared genes and biological mechanisms. Eur J Neurol. 2023;30(6):1815–1827. doi: 10.1111/ene.15753. PubMed DOI
Rovet JF. The role of thyroid hormones for brain development and cognitive function. Endocr Dev. 2014;26:26–43. doi: 10.1159/000363153. PubMed DOI
Le H, Tfelt-Hansen P, Russell MB, Skytthe A, Kyvik KO, Olesen J. Co-morbidity of migraine with somatic disease in a large population-based study. Cephalalgia. 2011;31(1):43–64. doi: 10.1177/0333102410373159. PubMed DOI
Martin AT, Pinney SM, Xie C, Herrick RL, Bai Y, Buckholz J, et al. Headache disorders may be a risk factor for the development of new onset hypothyroidism. Headache. 2017;57(1):21–30. doi: 10.1111/head.12943. PubMed DOI PMC
Abou Elmaaty AA, Flifel ME, Belal T, Zarad CA. Migraine and tension headache comorbidity with hypothyroidism in Egypt. Egypt J Neurol Psychiatr Neurosurg. 2020;56(1):78. doi: 10.1186/s41983-020-00208-w. DOI
Bougea A, Spantideas N, Anagnostou E, Voskou P, Katsika P, Evdokimidis I, et al. Efficacy of levothyroxine in migraine patients with subclinical hypothyroidism. Eur J Neurol. 2017;24(Supp. 1):19–122.
Dev P, Favas TT, Jaiswal RK, Cyriac M, Mishra VN, Pathak A. The effect of low dose thyroid replacement therapy in patients with episodic migraine and subclinical hypothyroidism: A randomised placebo-controlled trial. Cephalalgia. 2023;43(10):3331024231182684. doi: 10.1177/03331024231182684. PubMed DOI
Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol. 2019;18(8):795–804. doi: 10.1016/S1474-4422(19)30185-1. PubMed DOI PMC
May A, Burstein R. Hypothalamic regulation of headache and migraine. Cephalalgia. 2019;39(13):1710–1719. doi: 10.1177/0333102419867280. PubMed DOI PMC
Thomas FB, Caldwell JH, Greenberger NJ. Steatorrhea in thyrotoxicosis. Relation to hypermotility and excessive dietary fat. Ann Intern Med. 1973;78(5):669–75. doi: 10.7326/0003-4819-78-5-669. PubMed DOI
Aro A, Anttila M, Korhonen T, Sundquist H. Pharmacokinetics of propranolol and sotalol in hyperthyroidism. Eur J Clin Pharmacol. 1982;21(5):373–377. doi: 10.1007/BF00542321. PubMed DOI
Misra GC, Bose SL, Samal AK. Malabsorption in thyroid dysfunctions. J Indian Med Assoc. 1991;89(7):195–197. PubMed
Burk O, Brenner SS, Hofmann U, Tegude H, Igel S, Schwab M, et al. The impact of thyroid disease on the regulation, expression, and function of ABCB1 (MDR1/P glycoprotein) and consequences for the disposition of digoxin. Clin Pharmacol Ther. 2010;88(5):685–694. doi: 10.1038/clpt.2010.176. PubMed DOI
Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–382. doi: 10.1152/physrev.00030.2013. PubMed DOI PMC
Vargas F, Moreno JM, Rodríguez-Gómez I, Wangensteen R, Osuna A, Alvarez-Guerra M, et al. Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol. 2006;154(2):197–212. doi: 10.1530/eje.1.02093. PubMed DOI
Liddle C, Goodwin BJ, George J, Tapner M, Farrell GC. Separate and interactive regulation of cytochrome P450 3A4 by triiodothyronine, dexamethasone, and growth hormone in cultured hepatocytes. J Clin Endocrinol Metab. 1998;83(7):2411–2416. PubMed
Takahashi N, Inui N, Morita H, Takeuchi K, Uchida S, Watanabe H, et al. Effect of thyroid hormone on the activity of CYP3A enzyme in humans. J Clin Pharmacol. 2010;50(1):88–93. doi: 10.1177/0091270009344336. PubMed DOI
Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–170. doi: 10.1210/er.2009-0007. PubMed DOI PMC
Egashira T, Yamanaka Y. Changes in MAO activities in several organs of rats after administration of l-thyroxine. Jpn J Pharmacol. 1987;45(2):135–142. doi: 10.1016/S0021-5198(19)43405-7. PubMed DOI
Cabanillas AM, Masini-Repiso AM, Coleoni AH. Rat thyroid monoamine oxidase (MAO) is regulated by thyrotrophin: Evidence that the main form of the enzyme (MAO-A) is not directly involved in iodide organification. J Endocrinol. 1991;131(1):25–31. doi: 10.1677/joe.0.1310025. PubMed DOI
Park YJ, Lee EK, Lee YK, Park DJ, Jang HC, Moore DD. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice. Toxicol Appl Pharmacol. 2012;263(2):131–137. doi: 10.1016/j.taap.2012.03.017. PubMed DOI PMC
Hallengren B, Nilsson OR, Karlberg BE, Melander A, Tegler L, Wåhlin-Boll E. Influence of hyperthyroidism on the kinetics of methimazole, propranolol, metoprolol and atenolol. Eur J Clin Pharmacol. 1982;21(5):379–384. doi: 10.1007/BF00542322. PubMed DOI
LeBoff MS, Kaplan MM, Silva JE, Larsen PR. Bioavailability of thyroid hormones from oral replacement preparations. Metabolism. 1982;31(9):900–905. doi: 10.1016/0026-0495(82)90179-2. PubMed DOI
Bartalena L, Robbins J. Variations in thyroid hormone transport proteins and their clinical implications. Thyroid. 1992;2(3):237–245. doi: 10.1089/thy.1992.2.237. PubMed DOI
Engler D, Burger AG. The deiodination of the iodothyronines and of their derivatives in man. Endocr Rev. 1984;5(2):151–184. doi: 10.1210/edrv-5-2-151. PubMed DOI
Crooks J, Hedley AJ, Macnee C, Stevenson IH. Proceedings: Changes in drug metabolizing ability in thyroid disease. Br J Pharmacol. 1973;49(1):156–157. PubMed PMC
Sarlis NJ, Gourgiotis L. Hormonal effects on drug metabolism through the CYP system: perspectives on their potential significance in the era of pharmacogenomics. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(4):439–448. doi: 10.2174/156800805774912971. PubMed DOI
Bagchi N, Brown TR, Mack RE. Studies on the mechanism of inhibition of thyroid function by lithium. Biochim Biophys Acta. 1978;542(1):163–169. doi: 10.1016/0304-4165(78)90242-8. PubMed DOI
Trip MD, Wiersinga W, Plomp TA. Incidence, predictability, and pathogenesis of amiodarone-induced thyrotoxicosis and hypothyroidism. Am J Med. 1991;91(5):507–511. doi: 10.1016/0002-9343(91)90187-3. PubMed DOI
Oppenheimer JH, Bernstein G, Surks MI. Increased thyroxine turnover and thyroidal function after stimulation of hepatocellular binding of thyroxine by phenobarbital. J Clin Invest. 1968;47(6):1399–1406. doi: 10.1172/JCI105831. PubMed DOI PMC
Isley WL. Effect of rifampin therapy on thyroid function tests in a hypothyroid patient on replacement L-thyroxine. Ann Intern Med. 1987;107(4):517–518. doi: 10.7326/0003-4819-107-4-517. PubMed DOI
Sahajpal R, Ahmed RA, Hughes CA, Foisy MM. Probable interaction between levothyroxine and ritonavir: case report and literature review. Am J Health Syst Pharm. 2017;74(8):587–592. doi: 10.2146/ajhp160200. PubMed DOI
van der Spek AH, Fliers E, Boelen A. Thyroid hormone metabolism in innate immune cells. J Endocrinol. 2017;232(2):R67–81. doi: 10.1530/JOE-16-0462. PubMed DOI
Shih FY, Chuang YC, Chuang MJ, Lu YT, Tsai WC, Fu TY, et al. Effects of antiepileptic drugs on thyroid hormone function in epilepsy patients. Seizure. 2017;48:7–10. doi: 10.1016/j.seizure.2017.03.011. PubMed DOI
Adhimoolam M, Arulmozhi R. Effect of antiepileptic drug therapy on thyroid hormones among adult epileptic patients: An analytical cross-sectional study. J Res Pharm Pract. 2016;5(3):171–174. doi: 10.4103/2279-042X.185717. PubMed DOI PMC
Han Y, Yang J, Zhong R, Guo X, Cai M, Lin W. Side effects of long-term oral anti-seizure drugs on thyroid hormones in patients with epilepsy: a systematic review and network meta-analysis. Neurol Sci. 2022;43(9):5217–5227. doi: 10.1007/s10072-022-06120-w. PubMed DOI
Wiersinga W. Propranolol and thyroid hormone metabolism. Thyroid. 1991;1:273–277. doi: 10.1089/thy.1991.1.273. PubMed DOI
Obi MF, Namireddy V, Garg Y, Sharma M. Benefit and Preference of Propranolol Over Metoprolol in Thyrotoxicosis-Induced Atrial Fibrillation: a case report and review of literature. Cureus. 2023;15(1):e34474. PubMed PMC
Franklyn J, Wilkins M, Wilkinson R, Ramsden DB, Sheppard MC. The effect of propranolol on circulating thyroid hormone measurements in thyrotoxic and euthyroid subjects. Acta Endocrinol (Copenh) 1985;108:351–355. PubMed
Wiersinga W, Van Noorden CJ, Touber JL. Propranolol inhibits the in vitro conversion of thyroxine into triiodothyronine by isolated rat liver parenchymal cells. Horm Metab Res. 1979;11:366–370. doi: 10.1055/s-0028-1092740. PubMed DOI
Levey GS. The adrenergic nervous system in hyperthyroidism: therapeutic role of beta adrenergic blocking drugs. Pharmacolo Ther Part C: Clin Pharmacol Ther. 1976;1(3–4):431–43.
Levitt MA, Sullivan JB, Owens SM, Burnham L, Finley PR. Amitriptyline plasma protein binding: effect of plasma pH and relevance to clinical overdose. Am J Emerg Med. 1986;4(2):121–125. doi: 10.1016/0735-6757(86)90155-5. PubMed DOI
Gross EC, Lisicki M, Fischer D, Sándor PS, Schoenen J. The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol. 2019;15(11):627–643. doi: 10.1038/s41582-019-0255-4. PubMed DOI