Metal recovery from spent lithium-ion batteries via two-step bioleaching using adapted chemolithotrophs from an acidic mine pit lake
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38348186
PubMed Central
PMC10861312
DOI
10.3389/fmicb.2024.1347072
Knihovny.cz E-zdroje
- Klíčová slova
- acidic mine pit lake, bacterial adaptation, bioleaching, black mass, lithium-ion batteries, metal recovery, microbial enrichment,
- Publikační typ
- časopisecké články MeSH
The demand for lithium-ion batteries (LIBs) has dramatically increased in recent years due to their application in various electronic devices and electric vehicles (EVs). Great amount of LIB waste is generated, most of which ends up in landfills. LIB wastes contain substantial amounts of critical metals (such as Li, Co, Ni, Mn, and Cu) and can therefore serve as valuable secondary sources of these metals. Metal recovery from the black mass (shredded spent LIBs) can be achieved via bioleaching, a microbiology-based technology that is considered to be environmentally friendly, due to its lower costs and energy consumption compared to conventional pyrometallurgy or hydrometallurgy. However, the growth and metabolism of bioleaching microorganisms can be inhibited by dissolved metals. In this study, the indigenous acidophilic chemolithotrophs in a sediment from a highly acidic and metal-contaminated mine pit lake were enriched in a selective medium containing iron, sulfur, or both electron donors. The enriched culture with the highest growth and oxidation rate and the lowest microbial diversity (dominated by Acidithiobacillus and Alicyclobacillus spp. utilizing both electron donors) was then gradually adapted to increasing concentrations of Li+, Co2+, Ni2+, Mn2+, and Cu2+. Finally, up to 100% recovery rates of Li, Co, Ni, Mn, and Al were achieved via two-step bioleaching using the adapted culture, resulting in more effective metal extraction compared to bioleaching with a non-adapted culture and abiotic control.
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Department of Earth and Environmental Sciences University of Waterloo Waterloo ON Canada
Zobrazit více v PubMed
Akcil A., Ciftci H., Deveci H. (2007). Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner. Eng. 20, 310–318. doi: 10.1016/j.mineng.2006.10.016 DOI
Ali H., Khan H. A., Pecht M. G. (2021). Circular economy of Li batteries: technologies and trends. J. Energy Stor. 40:102690. doi: 10.1016/j.est.2021.102690 DOI
Alipanah M., Reed D., Thompson V., Fujita Y., Jin H. (2023). Sustainable bioleaching of lithium-ion batteries for critical materials recovery. J. Clean. Prod. 382:135274. doi: 10.1016/j.jclepro.2022.135274 DOI
Bahaloo-Horeh N., Mousavi S. M., Baniasadi M. (2018). Use of adapted metal tolerant aspergillus Niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J. Clean. Prod. 197, 1546–1557. doi: 10.1016/j.jclepro.2018.06.299 DOI
Bajestani M. I., Mousavi S. M., Shojaosadati S. A. (2014). Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep. Purif. Technol. 132, 309–316. doi: 10.1016/j.seppur.2014.05.023 DOI
Bankole O. E., Gong C., Lei L. (2013). Battery recycling technologies: recycling waste lithium ion batteries with the impact on the environment in-view. J. Environ. Ecol. 4:14. doi: 10.5296/jee.v4i1.3257 DOI
Boyden A., Soo V. K., Doolan M. (2016). The environmental impacts of recycling portable lithium-ion batteries. Procedia CIRP 48, 188–193. doi: 10.1016/j.procir.2016.03.100 DOI
Breuker A., Schippers A. (2023). Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates. Res. Microbiol. 104110:104110. doi: 10.1016/j.resmic.2023.104110, PMID: PubMed DOI
Dopson M., Baker-Austin C., Hind A., Bowman J. P., Bond P. L. (2004). Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme Acidophiles from acid mine drainage and industrial bioleaching environments. Appl. Environ. Microbiol. 70, 2079–2088. doi: 10.1128/AEM.70.4.2079-2088.2004, PMID: PubMed DOI PMC
Dopson M., Johnson D. B. (2012). Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ. Microbiol. 14, 2620–2631. doi: 10.1111/j.1462-2920.2012.02749.x PubMed DOI
Hansford G. S., Vargas T. (2001). Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy 59, 135–145. doi: 10.1016/S0304-386X(00)00166-3 DOI
Hartono M., Astrayudha M. A., Petrus H. T. B. M., Budhijanto W., Sulistyo H. (2017). Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism. Rasayan J. Chem. 10, 897–903. doi: 10.7324/RJC.2017.1031767 DOI
Heydarian A., Mousavi S. M., Vakilchap F., Baniasadi M. (2018). Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sources 378, 19–30. doi: 10.1016/j.jpowsour.2017.12.009 DOI
Hippe H. (2000). Leptospirillumgen. Nov. (ex Markosyan 1972), nom. Rev., including Leptospirillumferrooxidan ssp. nov. (ex Markosyan 1972), nom. Rev. and Leptospirillumthermoferrooxidans sp. nov. (Golovachevaet al. 1992). Int. J. Syst. Evol. Microbiol. 50, 501–503. doi: 10.1099/00207713-50-2-501, PMID: PubMed DOI
Hosseini S. M., Vakilchap F., Baniasadi M., Mousavi S. M., Khodadadi Darban A., Farnaud S. (2022). Green recovery of cerium and strontium from gold mine tailings using an adapted acidophilic bacterium in one-step bioleaching approach. J. Taiwan Inst. Chem. Eng. 138:104482. doi: 10.1016/j.jtice.2022.104482 DOI
Hrdinka T., Šobr M., Fott J., Nedbalová L. (2013). The unique environment of the most acidified permanently meromictic lake in the Czech Republic. Limnologica 43, 417–426. doi: 10.1016/j.limno.2013.01.005 DOI
Hubau A., Minier M., Chagnes A., Joulian C., Silvente C., Guezennec A.-G. (2020). Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Sep. Purif. Technol. 238:116481. doi: 10.1016/j.seppur.2019.116481 DOI
Ilyas S., Anwar M. A., Niazi S. B., Afzal Ghauri M. (2007). Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88, 180–188. doi: 10.1016/j.hydromet.2007.04.007 DOI
Ishigaki T., Nakanishi A., Tateda M., Ike M., Fujita M. (2005). Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere 60, 1087–1094. doi: 10.1016/j.chemosphere.2004.12.060, PMID: PubMed DOI
Karavaiko G. I., Bogdanova T. I., Tourova T. P., Kondrat'eva T. F., Tsaplina I. A., Egorova M. A., et al. . (2005). Reclassification of “Sulfobacillus thermosulfidooxidans subsp. thermotolerans” strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int. J. Syst. Evol. Microbiol. 55, 941–947. doi: 10.1099/ijs.0.63300-0, PMID: PubMed DOI
Kelly D. P., Wood A. P. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. Nov., Halothiobacillus gen. Nov. and Thermithiobacillus gen. Nov. Int. J. Syst. Evol. Microbiol. 65, 3641–3644. doi: 10.1099/ijsem.0.000468 PubMed DOI
Kim T.-H., Park J.-S., Chang S. K., Choi S., Ryu J. H., Song H.-K. (2012). The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2, 860–872. doi: 10.1002/aenm.201200028 DOI
Kremser K., Thallner S., Strbik D., Spiess S., Kucera J., Vaculovic T., et al. . (2021). Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria. J. Environ. Manag. 280:111734. doi: 10.1016/j.jenvman.2020.111734, PMID: PubMed DOI
Li L., Dunn J. B., Zhang X. X., Gaines L., Chen R. J., Wu F., et al. . (2013a). Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J. Power Sources 233, 180–189. doi: 10.1016/j.jpowsour.2012.12.089 DOI
Li L., Zeng G., Luo S., Deng X., Xie Q. (2013b). Influences of solution pH and redox potential on the bioleaching of LiCoO2 from spent lithium-ion batteries. J. Korean Soc. Appl. Biol. Chem. 56, 187–192. doi: 10.1007/s13765-013-3016-x DOI
Mishra D., Kim D. J., Ralph D. E., Ahn J. G., Rhee Y. H. (2008). Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 28, 333–338. doi: 10.1016/j.wasman.2007.01.010, PMID: PubMed DOI
Mossali E., Picone N., Gentilini L., Rodrìguez O., Pérez J. M., Colledani M. (2020). Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 264:110500. doi: 10.1016/j.jenvman.2020.110500, PMID: PubMed DOI
Ňancucheo I., Rowe O. F., Hedrich S., Johnson D. B. (2016). Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria. FEMS Microbiol. Lett. 363, 1–6. doi: 10.1093/femsle/fnw083 PubMed DOI
Niu Z., Zou Y., Xin B., Chen S., Liu C., Li Y. (2014). Process controls for improving bioleaching performance of both Li and co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere 109, 92–98. doi: 10.1016/j.chemosphere.2014.02.059, PMID: PubMed DOI
Nurmi P., Özkaya B., Sasaki K., Kaksonen A. H., Riekkola-Vanhanen M., Tuovinen O. H., et al. . (2010). Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101, 7–14. doi: 10.1016/j.hydromet.2009.11.004 DOI
Qiu M., Xiong S., Zhang W., Wang G. (2005). A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng. 18, 987–990. doi: 10.1016/j.mineng.2005.01.004 DOI
Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC. (2023). Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2023:191:TOC.
Remonsellez F., Galleguillos F., Moreno-Paz M., Parro V., Acosta M., Demergasso C. (2009). Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray. Microb. Biotechnol. 2, 613–624. doi: 10.1111/j.1751-7915.2009.00112.x, PMID: PubMed DOI PMC
Retnaningrum E., Wilopo W., Warmada I. W. (2021). Enhancement of manganese extraction in a biochar-enriched bioleaching column with a mixed culture of indigenous bacteria. Biodiversitas 22, 2949–2955. doi: 10.13057/biodiv/d220560 DOI
Roy J. J., Cao B., Madhavi S. (2021b). A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 282:130944. doi: 10.1016/j.chemosphere.2021.130944, PMID: PubMed DOI
Roy J. J., Madhavi S., Cao B. (2021a). Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based Lithium-ion batteries at a high pulp density. ACS Sustain. Chem. Eng. 9, 3060–3069. doi: 10.1021/acssuschemeng.0c06573 DOI
Roy J. J., Madhavi S., Cao B. (2021c). Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. J. Clean. Prod. 280:124242. doi: 10.1016/j.jclepro.2020.124242 DOI
Sajjad W., Zheng G., Din G., Ma X., Rafiq M., Xu W. (2019). Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments. Trans. Indian Inst. Metals 72, 559–579. doi: 10.1007/s12666-018-1516-4 DOI
Salo-Zieman V. L. A., Sivonen T., Plumb J. J., Haddad C. M., Laukkanen K., Kinnunen P. H. M., et al. . (2006). Characterization of a thermophilic sulfur oxidizing enrichment culture dominated by a Sulfolobus sp. obtained from an underground hot spring for use in extreme bioleaching conditions. J. Ind. Microbiol. Biotechnol. 33, 984–994. doi: 10.1007/s10295-006-0144-x, PMID: PubMed DOI
Sonoc A., Jeswiet J. (2014). A review of lithium supply and demand and a preliminary investigation of a room temperature method to recycle lithium ion batteries to recover lithium and other materials. Procedia CIRP 15, 289–293. doi: 10.1016/j.procir.2014.06.006 DOI
Spiess S., Kucera J., Seelajaroen H., Sasiain A., Thallner S., Kremser K., et al. . (2021). Impact of carbon felt electrode pretreatment on anodic biofilm composition in microbial electrolysis cells. Biosensors 11:170. doi: 10.3390/bios11060170, PMID: PubMed DOI PMC
Spiess S., Sasiain Conde A., Kucera J., Novak D., Thallner S., Kieberger N., et al. . (2022). Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell. Front. Bioeng. Biotechnol. 10:1589. doi: 10.3389/FBIOE.2022.972653 PubMed DOI PMC
Sun X., Hao H., Hartmann P., Liu Z., Zhao F. (2019). Supply risks of lithium-ion battery materials: an entire supply chain estimation. Mater. Today Energy 14:100347. doi: 10.1016/j.mtener.2019.100347 DOI
Vera M., Schippers A., Hedrich S., Sand W. (2022). Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation – part A. Appl. Microbiol. Biotechnol. 106, 6933–6952. doi: 10.1007/s00253-022-12168-7, PMID: PubMed DOI PMC
Wang X., Gaustad G., Babbitt C. W., Richa K. (2014). Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycl. 83, 53–62. doi: 10.1016/j.resconrec.2013.11.009 DOI
Wood M., Li J., Ruther R. E., Du Z., Self E. C., Meyer H. M., et al. . (2020). Chemical stability and long-term cell performance of low-cobalt, Ni-rich cathodes prepared by aqueous processing for high-energy Li-ion batteries. Energy Stor. Mater. 24, 188–197. doi: 10.1016/j.ensm.2019.08.020 DOI
Wu W., Liu X., Zhang X., Li X., Qiu Y., Zhu M., et al. . (2019). Mechanism underlying the bioleaching process of LiCoO2 by sulfur-oxidizing and iron-oxidizing bacteria. J. Biosci. Bioeng. 128, 344–354. doi: 10.1016/j.jbiosc.2019.03.007, PMID: PubMed DOI
Xia L., Liu X., Zeng J., Yin C., Gao J., Liu J., et al. . (2008). Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite. Hydrometallurgy 92, 95–101. doi: 10.1016/j.hydromet.2008.01.002 DOI
Xiang Y., Wu P., Zhu N., Zhang T., Liu W., Wu J., et al. . (2010). Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J. Hazard. Mater. 184, 812–818. doi: 10.1016/j.jhazmat.2010.08.113, PMID: PubMed DOI
Xin Y., Guo X., Chen S., Wang J., Wu F., Xin B. (2016). Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J. Clean. Prod. 116, 249–258. doi: 10.1016/j.jclepro.2016.01.001 DOI
Xin B., Zhang D., Zhang X., Xia Y., Wu F., Chen S., et al. . (2009). Bioleaching mechanism of co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 100, 6163–6169. doi: 10.1016/j.biortech.2009.06.086, PMID: PubMed DOI
Zeng G., Deng X., Luo S., Luo X., Zou J. (2012). A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J. Hazard. Mater. 199–200, 164–169. doi: 10.1016/j.jhazmat.2011.10.063, PMID: PubMed DOI
Zeng G., Luo S., Deng X., Li L., Au C. (2013). Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner. Eng. 49, 40–44. doi: 10.1016/j.mineng.2013.04.021 DOI