Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36159676
PubMed Central
PMC9500408
DOI
10.3389/fbioe.2022.972653
PII: 972653
Knihovny.cz E-zdroje
- Klíčová slova
- bioelectrodes, electromethanogenesis, exhaust gas, metagenomic analysis, microbial electrolysis cell,
- Publikační typ
- časopisecké články MeSH
Carbon capture and utilization has been proposed as one strategy to combat global warming. Microbial electrolysis cells (MECs) combine the biological conversion of carbon dioxide (CO2) with the formation of valuable products such as methane. This study was motivated by the surprising gap in current knowledge about the utilization of real exhaust gas as a CO2 source for methane production in a fully biocatalyzed MEC. Therefore, two steel mill off-gases differing in composition were tested in a two-chamber MEC, consisting of an organic substrate-oxidizing bioanode and a methane-producing biocathode, by applying a constant anode potential. The methane production rate in the MEC decreased immediately when steel mill off-gas was tested, which likely inhibited anaerobic methanogens in the presence of oxygen. However, methanogenesis was still ongoing even though at lower methane production rates than with pure CO2. Subsequently, pure CO2 was studied for methanation, and the cathodic biofilm successfully recovered from inhibition reaching a methane production rate of 10.8 L m-2d-1. Metagenomic analysis revealed Geobacter as the dominant genus forming the anodic organic substrate-oxidizing biofilms, whereas Methanobacterium was most abundant at the cathodic methane-producing biofilms.
Zobrazit více v PubMed
Angel R., Claus P., Conrad R. (2012). Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862. 10.1038/ismej.2011.141 PubMed DOI PMC
Bajracharya S., Srikanth S., Mohanakrishna G., Zacharia R., Strik D. P., Pant D. (2017). Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects. J. Power Sources 356, 256–273. 10.1016/j.jpowsour.2017.04.024 DOI
Batlle-Vilanova P., Ganigué R., Ramió-Pujol S., Bañeras L., Jiménez G., Hidalgo M., et al. (2017). Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction. Bioelectrochemistry 117, 57–64. 10.1016/j.bioelechem.2017.06.004 PubMed DOI
Bian B., Bajracharya S., Xu J., Pant D., Saikaly P. E. (2020). Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresour. Technol. 302, 122863. 10.1016/j.biortech.2020.122863 PubMed DOI
Bond D. R., Lovley D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555. 10.1128/aem.69.3.1548-1555.2003 PubMed DOI PMC
Borole A. P., Hamilton C. Y., Vishnivetskaya T. A., Leak D., Andras C., Morrell-Falvey J., et al. (2009). Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. J. Power Sources 191, 520–527. 10.1016/j.jpowsour.2009.02.006 DOI
Cai W., Cui K., Liu Z., Jin X., Chen Q., Guo K., et al. (2022). An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2. Chem. Eng. J. 428, 132093. 10.1016/j.cej.2021.132093 DOI
Chae K. J., Choi M. J., Kim K. Y., Ajayi F. F., Park W., Kim C. W., et al. (2010). Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresour. Technol. 101, 5350–5357. 10.1016/j.biortech.2010.02.035 PubMed DOI
Cheng S., Xing D., Call D. F., Logan B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958. 10.1021/es803531g PubMed DOI
Denman S. E., Tomkins N. W., McSweeney C. S. (2007). Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62, 313–322. 10.1111/j.1574-6941.2007.00394.x PubMed DOI
Dessì P., Rovira-Alsina L., Sánchez C., Dinesh G. K., Tong W., Chatterjee P., et al. (2021). Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions. Biotechnol. Adv. 46, 107675. 10.1016/j.biotechadv.2020.107675 PubMed DOI
Garcia J. L., Patel B. K. C., Ollivier B. (2000). Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6, 205–226. 10.1006/anae.2000.0345 PubMed DOI
Geppert F., Liu D., van Eerten-Jansen M., Weidner E., Buisman C., ter Heijne A. (2016). Bioelectrochemical power-to-gas: State of the art and future perspectives. Trends Biotechnol. 34, 879–894. 10.1016/j.tibtech.2016.08.010 PubMed DOI
Holappa L. (2020). A general vision for reduction of energy consumption and CO2 emissions from the steel industry. Met. (Basel) 10, 1117. 10.3390/met10091117 DOI
Jafary T., Daud W. R. W., Ghasemi M., Kim B. H., Md Jahim J., Ismail M., et al. (2015). Biocathode in microbial electrolysis cell; Present status and future prospects. Renew. Sustain. Energy Rev. 47, 23–33. 10.1016/j.rser.2015.03.003 DOI
Jiang Y., May H. D., Lu L., Liang P., Huang X., Ren Z. J. (2019). Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res. 149, 42–55. 10.1016/j.watres.2018.10.092 PubMed DOI
Jiang Y., Su M., Zhang Y., Zhan G., Tao Y., Li D. (2013). Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen Energy 38, 3497–3502. 10.1016/j.ijhydene.2012.12.107 DOI
Kadier A., Kalil M. S., Abdeshahian P., Chandrasekhar K., Mohamed A., Azman N. F., et al. (2016). Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew. Sustain. Energy Rev. 61, 501–525. 10.1016/j.rser.2016.04.017 DOI
Liu L., Tsyganova O., Lee D. J., Chang J. S., Wang A., Ren N. (2013). Double-chamber microbial fuel cells started up under room and low temperatures. Int. J. Hydrogen Energy 38, 15574–15579. 10.1016/j.ijhydene.2013.02.090 DOI
Logan B. E., Rossi R., Ragab A., Saikaly P. E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 17, 307–319. 10.1038/s41579-019-0173-x PubMed DOI
Lovley D. R. (2017). Happy together: Microbial communities that hook up to swap electrons. ISME J. 11, 327–336. 10.1038/ismej.2016.136 PubMed DOI PMC
Mateos R., Escapa A., San-Martín M. I., De Wever H., Sotres A., Pant D. (2020). Long-term open circuit microbial electrosynthesis system promotes methanogenesis. J. Energy Chem. 41, 3–6. 10.1016/j.jechem.2019.04.020 DOI
Pachauri R. K., Meyer L. A. (2014). IPCC, 2014: Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC, 2014.
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596. 10.1093/nar/gks1219 PubMed DOI PMC
Rabaey K., Rozendal R. A. (2010). Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716. 10.1038/nrmicro2422 PubMed DOI
Remus R., Roudier S., Aguado Monsonet M. A., Delgado Sancho L. (2013). JRC Reference Report: Best available techniques (BAT) Reference Document for iron and steel production Luxembourg: European Union Luxembourg. 10.2791/97469 DOI
Rotaru A. E., Shrestha P. M., Liu F., Shrestha M., Shrestha D., Embree M., et al. (2014). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415. 10.1039/c3ee42189a DOI
Roy M., Yadav R., Chiranjeevi P., Patil S. A. (2021). Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis. Bioresour. Technol. 320, 124289. 10.1016/j.biortech.2020.124289 PubMed DOI
Seelajaroen H., Haberbauer M., Hemmelmair C., Aljabour A., Dumitru L. M., Hassel A. W., et al. (2019). Enhanced bio-electrochemical reduction of carbon dioxide by using neutral red as a redox mediator. ChemBioChem 20, 1196–1205. 10.1002/cbic.201800784 PubMed DOI PMC
Seelajaroen H., Spiess S., Haberbauer M., Hassel M. M., Aljabour A., Thallner S., et al. (2020). Enhanced methane producing microbial electrolysis cells for wastewater treatment using poly(neutral red) and chitosan modified electrodes. Sustain. Energy Fuels 4, 4238–4248. 10.1039/d0se00770f DOI
Siegert M., Yates M. D., Spormann A. M., Logan B. E. (2015). Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells. ACS Sustain. Chem. Eng. 3, 1668–1676. 10.1021/acssuschemeng.5b00367 DOI
Sleat R., Mah R. A., Robinson R. (1985). Bacterium that forms acetate from H2 and CO2. Int. J. Syst. Bacteriol. 10, 15.
Smith K. S., Ingram-Smith C. (2007). Methanosaeta, the forgotten methanogen? Trends Microbiol. 15, 150–155. 10.1016/j.tim.2007.02.002 PubMed DOI
Spiess S., Kucera J., Seelajaroen H., Sasiain A., Thallner S., Kremser K., et al. (2021). Impact of carbon felt electrode pretreatment on anodic biofilm composition in microbial electrolysis cells. Biosensors 11, 170. 10.3390/bios11060170 PubMed DOI PMC
Steinberg L. M., Regan J. M. (2008). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 74, 6663–6671. 10.1128/AEM.00553-08 PubMed DOI PMC
Sun Y., Wei J., Liang P., Huang X. (2011). Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Bioresour. Technol. 102, 10886–10891. 10.1016/j.biortech.2011.09.038 PubMed DOI
Van Eerten-Jansen M. C. A. A., Jansen N. C., Plugge C. M., de Wilde V., Buisman C. J. N., Ter Heijne A. (2015). Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. J. Chem. Technol. Biotechnol. 90, 963–970. 10.1002/jctb.4413 DOI
Van Eerten-Jansen M. C. A. A., Ter Heijne A., Buisman C. J. N., Hamelers H. V. M. (2012). Microbial electrolysis cells for production of methane from CO2: Long-term performance and perspectives. Int. J. energy Res. 36, 809–819. 10.1002/er.1954 DOI
Villano M., Aulenta F., Ciucci C., Ferri T., Giuliano A., Majone M. (2010). Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101, 3085–3090. 10.1016/j.biortech.2009.12.077 PubMed DOI
Villano M., Monaco G., Aulenta F., Majone M. (2011). Electrochemically assisted methane production in a biofilm reactor. J. Power Sources 196, 9467–9472. 10.1016/j.jpowsour.2011.07.016 DOI
Villano M., Ralo C., Zeppilli M., Aulenta F., Majone M. (2016). Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell. Bioelectrochemistry 107, 1–6. 10.1016/j.bioelechem.2015.07.008 PubMed DOI
Wagner R. C., Call D. F., Logan B. E. (2010). Optimal set anode potentials vary in bioelectrochemical systems. Environ. Sci. Technol. 44, 6036–6041. 10.1021/es101013e PubMed DOI
Wu H., Pan H., Li Z., Liu T., Liu F., Xiu S., et al. (2022). Efficient production of lycopene from CO2 via microbial electrosynthesis. Chem. Eng. J. 430, 132943. 10.1016/j.cej.2021.132943 DOI
Yang H. Y., Bao B. L., Liu J., Qin Y., Wang Y. R., Su K. Z., et al. (2018). Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode. Bioelectrochemistry 119, 180–188. 10.1016/j.bioelechem.2017.10.002 PubMed DOI
Yang H. Y., Wang Y. X., He C. S., Qin Y., Li W. Q., Li W. H., et al. (2020). Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide. Appl. Energy 274, 115292. 10.1016/j.apenergy.2020.115292 DOI
Yi H., Nevin K. P., Kim B. C., Franks A. E., Klimes A., Tender L. M., et al. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. X. 24, 3498–3503. 10.1016/j.bios.2009.05.004 PubMed DOI
Zeppilli M., Cristiani L., Dell’Armi E., Villano M. (2021). Potentiostatic vs galvanostatic operation of a Microbial Electrolysis Cell for ammonium recovery and biogas upgrading. Biochem. Eng. J. 167, 107886. 10.1016/j.bej.2020.107886 DOI
Zeppilli M., Paiano P., Villano M., Majone M. (2019). Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading. Biochem. Eng. J. 152, 107393. 10.1016/j.bej.2019.107393 DOI
Zhang Y., Angelidaki I. (2014). Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges. Water Res. 56, 11–25. 10.1016/j.watres.2014.02.031 PubMed DOI
Zhao Z., Zhang Y., Wang L., Quan X. (2015). Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci. Rep. 5, 11094. 10.1038/srep11094 PubMed DOI PMC
Zheng S., Li M., Liu Y., Liu F. (2021). Desulfovibrio feeding Methanobacterium with electrons in conductive methanogenic aggregates from coastal zones. Water Res. 202, 117490. 10.1016/j.watres.2021.117490 PubMed DOI
Zitomer D. H., Shrout J. D. (2000). High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds. Water Environ. Res. 72, 90–97. 10.2175/106143000x137158 DOI