Zinc recovery from bioleachate using a microbial electrolysis cell and comparison with selective precipitation

. 2023 ; 14 () : 1238853. [epub] 20230817

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37664121

Metal recycling is essential for strengthening a circular economy. Microbial leaching (bioleaching) is an economical and environmentally friendly technology widely used to extract metals from insoluble ores or secondary resources such as dust, ashes, and slags. On the other hand, microbial electrolysis cells (MECs) would offer an energy-efficient application for recovering valuable metals from an aqueous solution. In this study, we investigated a MEC for Zn recovery from metal-laden bioleachate for the first time by applying a constant potential of -100 mV vs. Ag/AgCl (3 M NaCl) on a synthetic wastewater-treating bioanode. Zn was deposited onto the cathode surface with a recovery efficiency of 41 ± 13% and an energy consumption of 2.55 kWh kg-1. For comparison, Zn recovery from zinc sulfate solution resulted in a Zn recovery efficiency of 100 ± 0% and an energy consumption of 0.70 kWh kg-1. Furthermore, selective metal precipitation of the bioleachate was performed. Individual metals were almost completely precipitated from the bioleachate at pH 5 (Al), pH 7 (Zn and Fe), and pH 9 (Mg and Mn).

Zobrazit více v PubMed

Andrade L. M., Botelho Junior A. B., Rosario C. G. A., Hashimoto H., Andrade C. J., Tenório J. A. S. (2022). Copper recovery through biohydrometallurgy route: chemical and physical characterization of magnetic (m), non-magnetic (nm) and mix samples from obsolete smartphones. Bioprocess Biosyst. Eng. 46, 1121–1131. doi: 10.1007/s00449-022-02775-z, PMID: PubMed DOI

Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC

Cao J., Zhang G., Mao Z., Fang Z., Yang C. (2009). Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Miner. Eng. 22, 289–295. doi: 10.1016/j.mineng.2008.08.006 DOI

European Commission . (2019). The European green Deal. Available at: https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf

Hasibar B., Ergal İ., Moser S., Bochmann G., Rittmann S. K. M. R., Fuchs W. (2020). Increasing biohydrogen production with the use of a co-culture inside a microbial electrolysis cell. Biochem. Eng. J. 164, 107802–107806. doi: 10.1016/j.bej.2020.107802 DOI

International Zinc Association . (2022). Zinc recycling 2050 demand + supply. Available at: https://www.zinc.org/wp-content/uploads/sites/30/2022/10/2050-Demand-Supply_VF_11_22.pdf

Işıldar A., van Hullebusch E. D., Lenz M., Du Laing G., Marra A., Cesaro A., et al. . (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J. Hazard. Mater. 362, 467–481. doi: 10.1016/j.jhazmat.2018.08.050, PMID: PubMed DOI

Kölbl D., Memic A., Schnideritsch H., Wohlmuth D., Klösch G., Albu M., et al. . (2022). Thermoacidophilic bioleaching of industrial metallic steel waste product. Front. Microbiol. 13, 1–14. doi: 10.3389/fmicb.2022.864411, PMID: PubMed DOI PMC

Kremser K., Thallner S., Schoen H., Weiss S., Hemmelmair C., Schnitzhofer W., et al. . (2020). Stirred-tank and heap-bioleaching of shredder-light-fractions (SLF) by acidophilic bacteria. Hydrometallurgy 193:105315. doi: 10.1016/j.hydromet.2020.105315 DOI

Kremser K., Thallner S., Spiess S., Kucera J., Vaculovic T., Všiansk D., et al. . (2022). Bioleaching and selective precipitation for metal recovery from basic oxygen furnace slag. PRO 10, 1–12. doi: 10.3390/pr10030576 DOI

Kremser K., Thallner S., Strbik D., Spiess S., Kucera J., Vaculovic T., et al. . (2021). Leachability of metals from waste incineration residues by iron-and sulfur-oxidizing bacteria. J. Environ. Manag. 280:111734. doi: 10.1016/j.jenvman.2020.111734, PMID: PubMed DOI

Leon-Fernandez L. F., Medina-Díaz H. L., Pérez O. G., Romero L. R., Villaseñor J., Fernández-Morales F. J. (2021). Acid mine drainage treatment and sequential metal recovery by means of bioelectrochemical technology. J. Chem. Technol. Biotechnol. 96, 1543–1552. doi: 10.1002/jctb.6669 DOI

Lim S. S., Fontmorin J. M., Pham H. T., Milner E., Abdul P. M., Scott K., et al. . (2021). Zinc removal and recovery from industrial wastewater with a microbial fuel cell: experimental investigation and theoretical prediction. Sci. Total Environ. 776:145934. doi: 10.1016/j.scitotenv.2021.145934, PMID: PubMed DOI

Liu H., Ramanathan R., Logan B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285. doi: 10.1021/es034923g PubMed DOI

Modin O., Fuad N., Rauch S. (2017). Microbial electrochemical recovery of zinc. Electrochim. Acta 248, 58–63. doi: 10.1016/j.electacta.2017.07.120 DOI

Motos P. R., Weijden R. V., ter Heijne A., Saakes M., Buisman C. J., Sleutels T. H. (2015). High rate copper and energy recovery in microbial fuel cells. Front. Microbiol. 6, 1–8. doi: 10.3389/fmicb.2015.00527, PMID: PubMed DOI PMC

Nancharaiah Y. V., Venkata Mohan S., Lens P. N. L. (2015). Metals removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 195, 102–114. doi: 10.1016/j.biortech.2015.06.058, PMID: PubMed DOI

Nurmi P., Özkaya B., Sasaki K., Kaksonen A. H., Riekkola-Vanhanen M., Tuovinen O. H., et al. . (2010). Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101, 7–14. doi: 10.1016/j.hydromet.2009.11.004 DOI

Pankratova G., Leech D., Gorton L., Hederstedt L. (2018). Extracellular Electron transfer by the gram-positive bacterium Enterococcus faecalis. Biochemistry 57, 4597–4603. doi: 10.1021/acs.biochem.8b00600, PMID: PubMed DOI

Pillai S. K., Sakoulas G., Eliopoulos G. M., Moellering R. C., Murray B. E., Inouye R. T. (2004). Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J. Infect. Dis. 190, 967–970. doi: 10.1086/423139, PMID: PubMed DOI

Pozo G., Pongy S., Keller J., Ledezma P., Freguia S. (2017). A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Res. 126, 411–420. doi: 10.1016/j.watres.2017.09.058, PMID: PubMed DOI

Ramachandran P., Nandakumar V., Sathaiyan N. (2004). Electrolytic recovery of zinc from zinc ash using a catalytic anode. J. Chem. Technol. Biotechnol. 79, 578–583. doi: 10.1002/jctb.1007 DOI

Santaolalla A., Lens P. N. L., Barona A., Rojo N., Ocio A., Gallastegui G. (2021). Metal extraction and recovery from mobile phone PCBs by a combination of bioleaching and precipitation processes. Minerals 11, 1004. doi: 10.3390/min11091004 DOI

Spiess S., Conde A. S., Kucera J., Novak D., Thallner S., Kieberger N., et al. . (2022). Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell. Front. Bioeng. Biotechnol. 10:972653. doi: 10.3389/fbioe.2022.972653, PMID: PubMed DOI PMC

Spiess S., Kucera J., Seelajaroen H., Sasiain A., Thallner S., Kremser K., et al. . (2021). Impact of carbon felt electrode pretreatment on anodic biofilm composition in microbial electrolysis cells. Biosensors 11, 170. doi: 10.3390/bios11060170, PMID: PubMed DOI PMC

Tao H. C., Lei T., Shi G., Sun X. N., Wei X. Y., Zhang L. J., et al. . (2014). Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J. Hazard. Mater. 264, 1–7. doi: 10.1016/j.jhazmat.2013.10.057, PMID: PubMed DOI

Teng W., Liu G., Luo H., Zhang R., Xiang Y. (2016). Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode. J. Hazard. Mater. 304, 159–165. doi: 10.1016/j.jhazmat.2015.10.050, PMID: PubMed DOI

Utimura S. K., Arevalo S. J., Rosario C. G. A., Aguilar M. Q., Tenório J. A. S., Espinosa D. C. R. (2019). Bioleaching of metal from waste stream using a native strain of Acidithiobacillus isolated from a coal mine drainage. Can. J. Chem. Eng. 97, 2920–2927. doi: 10.1002/cjce.23519 DOI

Vítěz T., Novák D., Lochman J., Vítězová M. (2020). Methanogens diversity during anaerobic sewage sludge stabilization and the effect of temperature. Processes 8, 822. doi: 10.3390/pr8070822 DOI

Wakeman K., Auvinen H., Johnson D. B. (2008). Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Biotechnol. Bioeng. 101, 739–750. doi: 10.1002/bit.21951, PMID: PubMed DOI

Wang L. P., Chen Y. J. (2019). Sequential precipitation of Iron, copper, and zinc from wastewater for metal recovery. J. Environ. Eng. 145, 1–11. doi: 10.1061/(asce)ee.1943-7870.0001480 DOI

Wei X., Viadero R. C., Buzby K. M. (2005). Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environ. Eng. Sci. 22, 745–755. doi: 10.1089/ees.2005.22.745 DOI

Yang C., Zhu N., Shen W., Zhang T., Wu P. (2017). Bioleaching of copper from metal concentrates of waste printed circuit boards by a newly isolated Acidithiobacillus ferrooxidans strain Z1. J. Mater. Cycl. Waste Manag. 19, 247–255. doi: 10.1007/s10163-015-0414-7 DOI

Zeppilli M., Paiano P., Villano M., Majone M. (2019). Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading. Biochem. Eng. J. 152:107393. doi: 10.1016/j.bej.2019.107393 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...