Zinc recovery from bioleachate using a microbial electrolysis cell and comparison with selective precipitation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37664121
PubMed Central
PMC10469928
DOI
10.3389/fmicb.2023.1238853
Knihovny.cz E-zdroje
- Klíčová slova
- bioleaching, metal recovery, microbial electrolysis cell, selective precipitation, zinc recovery,
- Publikační typ
- časopisecké články MeSH
Metal recycling is essential for strengthening a circular economy. Microbial leaching (bioleaching) is an economical and environmentally friendly technology widely used to extract metals from insoluble ores or secondary resources such as dust, ashes, and slags. On the other hand, microbial electrolysis cells (MECs) would offer an energy-efficient application for recovering valuable metals from an aqueous solution. In this study, we investigated a MEC for Zn recovery from metal-laden bioleachate for the first time by applying a constant potential of -100 mV vs. Ag/AgCl (3 M NaCl) on a synthetic wastewater-treating bioanode. Zn was deposited onto the cathode surface with a recovery efficiency of 41 ± 13% and an energy consumption of 2.55 kWh kg-1. For comparison, Zn recovery from zinc sulfate solution resulted in a Zn recovery efficiency of 100 ± 0% and an energy consumption of 0.70 kWh kg-1. Furthermore, selective metal precipitation of the bioleachate was performed. Individual metals were almost completely precipitated from the bioleachate at pH 5 (Al), pH 7 (Zn and Fe), and pH 9 (Mg and Mn).
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Department of Chemistry Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Andrade L. M., Botelho Junior A. B., Rosario C. G. A., Hashimoto H., Andrade C. J., Tenório J. A. S. (2022). Copper recovery through biohydrometallurgy route: chemical and physical characterization of magnetic (m), non-magnetic (nm) and mix samples from obsolete smartphones. Bioprocess Biosyst. Eng. 46, 1121–1131. doi: 10.1007/s00449-022-02775-z, PMID: PubMed DOI
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC
Cao J., Zhang G., Mao Z., Fang Z., Yang C. (2009). Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Miner. Eng. 22, 289–295. doi: 10.1016/j.mineng.2008.08.006 DOI
European Commission . (2019). The European green Deal. Available at: https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf
Hasibar B., Ergal İ., Moser S., Bochmann G., Rittmann S. K. M. R., Fuchs W. (2020). Increasing biohydrogen production with the use of a co-culture inside a microbial electrolysis cell. Biochem. Eng. J. 164, 107802–107806. doi: 10.1016/j.bej.2020.107802 DOI
International Zinc Association . (2022). Zinc recycling 2050 demand + supply. Available at: https://www.zinc.org/wp-content/uploads/sites/30/2022/10/2050-Demand-Supply_VF_11_22.pdf
Işıldar A., van Hullebusch E. D., Lenz M., Du Laing G., Marra A., Cesaro A., et al. . (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J. Hazard. Mater. 362, 467–481. doi: 10.1016/j.jhazmat.2018.08.050, PMID: PubMed DOI
Kölbl D., Memic A., Schnideritsch H., Wohlmuth D., Klösch G., Albu M., et al. . (2022). Thermoacidophilic bioleaching of industrial metallic steel waste product. Front. Microbiol. 13, 1–14. doi: 10.3389/fmicb.2022.864411, PMID: PubMed DOI PMC
Kremser K., Thallner S., Schoen H., Weiss S., Hemmelmair C., Schnitzhofer W., et al. . (2020). Stirred-tank and heap-bioleaching of shredder-light-fractions (SLF) by acidophilic bacteria. Hydrometallurgy 193:105315. doi: 10.1016/j.hydromet.2020.105315 DOI
Kremser K., Thallner S., Spiess S., Kucera J., Vaculovic T., Všiansk D., et al. . (2022). Bioleaching and selective precipitation for metal recovery from basic oxygen furnace slag. PRO 10, 1–12. doi: 10.3390/pr10030576 DOI
Kremser K., Thallner S., Strbik D., Spiess S., Kucera J., Vaculovic T., et al. . (2021). Leachability of metals from waste incineration residues by iron-and sulfur-oxidizing bacteria. J. Environ. Manag. 280:111734. doi: 10.1016/j.jenvman.2020.111734, PMID: PubMed DOI
Leon-Fernandez L. F., Medina-Díaz H. L., Pérez O. G., Romero L. R., Villaseñor J., Fernández-Morales F. J. (2021). Acid mine drainage treatment and sequential metal recovery by means of bioelectrochemical technology. J. Chem. Technol. Biotechnol. 96, 1543–1552. doi: 10.1002/jctb.6669 DOI
Lim S. S., Fontmorin J. M., Pham H. T., Milner E., Abdul P. M., Scott K., et al. . (2021). Zinc removal and recovery from industrial wastewater with a microbial fuel cell: experimental investigation and theoretical prediction. Sci. Total Environ. 776:145934. doi: 10.1016/j.scitotenv.2021.145934, PMID: PubMed DOI
Liu H., Ramanathan R., Logan B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285. doi: 10.1021/es034923g PubMed DOI
Modin O., Fuad N., Rauch S. (2017). Microbial electrochemical recovery of zinc. Electrochim. Acta 248, 58–63. doi: 10.1016/j.electacta.2017.07.120 DOI
Motos P. R., Weijden R. V., ter Heijne A., Saakes M., Buisman C. J., Sleutels T. H. (2015). High rate copper and energy recovery in microbial fuel cells. Front. Microbiol. 6, 1–8. doi: 10.3389/fmicb.2015.00527, PMID: PubMed DOI PMC
Nancharaiah Y. V., Venkata Mohan S., Lens P. N. L. (2015). Metals removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 195, 102–114. doi: 10.1016/j.biortech.2015.06.058, PMID: PubMed DOI
Nurmi P., Özkaya B., Sasaki K., Kaksonen A. H., Riekkola-Vanhanen M., Tuovinen O. H., et al. . (2010). Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101, 7–14. doi: 10.1016/j.hydromet.2009.11.004 DOI
Pankratova G., Leech D., Gorton L., Hederstedt L. (2018). Extracellular Electron transfer by the gram-positive bacterium Enterococcus faecalis. Biochemistry 57, 4597–4603. doi: 10.1021/acs.biochem.8b00600, PMID: PubMed DOI
Pillai S. K., Sakoulas G., Eliopoulos G. M., Moellering R. C., Murray B. E., Inouye R. T. (2004). Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J. Infect. Dis. 190, 967–970. doi: 10.1086/423139, PMID: PubMed DOI
Pozo G., Pongy S., Keller J., Ledezma P., Freguia S. (2017). A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Res. 126, 411–420. doi: 10.1016/j.watres.2017.09.058, PMID: PubMed DOI
Ramachandran P., Nandakumar V., Sathaiyan N. (2004). Electrolytic recovery of zinc from zinc ash using a catalytic anode. J. Chem. Technol. Biotechnol. 79, 578–583. doi: 10.1002/jctb.1007 DOI
Santaolalla A., Lens P. N. L., Barona A., Rojo N., Ocio A., Gallastegui G. (2021). Metal extraction and recovery from mobile phone PCBs by a combination of bioleaching and precipitation processes. Minerals 11, 1004. doi: 10.3390/min11091004 DOI
Spiess S., Conde A. S., Kucera J., Novak D., Thallner S., Kieberger N., et al. . (2022). Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell. Front. Bioeng. Biotechnol. 10:972653. doi: 10.3389/fbioe.2022.972653, PMID: PubMed DOI PMC
Spiess S., Kucera J., Seelajaroen H., Sasiain A., Thallner S., Kremser K., et al. . (2021). Impact of carbon felt electrode pretreatment on anodic biofilm composition in microbial electrolysis cells. Biosensors 11, 170. doi: 10.3390/bios11060170, PMID: PubMed DOI PMC
Tao H. C., Lei T., Shi G., Sun X. N., Wei X. Y., Zhang L. J., et al. . (2014). Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J. Hazard. Mater. 264, 1–7. doi: 10.1016/j.jhazmat.2013.10.057, PMID: PubMed DOI
Teng W., Liu G., Luo H., Zhang R., Xiang Y. (2016). Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode. J. Hazard. Mater. 304, 159–165. doi: 10.1016/j.jhazmat.2015.10.050, PMID: PubMed DOI
Utimura S. K., Arevalo S. J., Rosario C. G. A., Aguilar M. Q., Tenório J. A. S., Espinosa D. C. R. (2019). Bioleaching of metal from waste stream using a native strain of Acidithiobacillus isolated from a coal mine drainage. Can. J. Chem. Eng. 97, 2920–2927. doi: 10.1002/cjce.23519 DOI
Vítěz T., Novák D., Lochman J., Vítězová M. (2020). Methanogens diversity during anaerobic sewage sludge stabilization and the effect of temperature. Processes 8, 822. doi: 10.3390/pr8070822 DOI
Wakeman K., Auvinen H., Johnson D. B. (2008). Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Biotechnol. Bioeng. 101, 739–750. doi: 10.1002/bit.21951, PMID: PubMed DOI
Wang L. P., Chen Y. J. (2019). Sequential precipitation of Iron, copper, and zinc from wastewater for metal recovery. J. Environ. Eng. 145, 1–11. doi: 10.1061/(asce)ee.1943-7870.0001480 DOI
Wei X., Viadero R. C., Buzby K. M. (2005). Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environ. Eng. Sci. 22, 745–755. doi: 10.1089/ees.2005.22.745 DOI
Yang C., Zhu N., Shen W., Zhang T., Wu P. (2017). Bioleaching of copper from metal concentrates of waste printed circuit boards by a newly isolated Acidithiobacillus ferrooxidans strain Z1. J. Mater. Cycl. Waste Manag. 19, 247–255. doi: 10.1007/s10163-015-0414-7 DOI
Zeppilli M., Paiano P., Villano M., Majone M. (2019). Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading. Biochem. Eng. J. 152:107393. doi: 10.1016/j.bej.2019.107393 DOI