Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ATCZ183, IRAS
European fund for regional development, program Interreg V-A Austria - Czech Republic
861392, MELOS
Austrian Climate and Energy Fund
PubMed
34073192
PubMed Central
PMC8229196
DOI
10.3390/bios11060170
PII: bios11060170
Knihovny.cz E-zdroje
- Klíčová slova
- bioelectrochemical system, bioelectrodes, biosensor, electrode pretreatment, metagenomic analysis, microbial communities,
- MeSH
- biofilmy * MeSH
- elektrody * MeSH
- elektrolýza MeSH
- Geobacter MeSH
- karbonové vlákno * MeSH
- uhlík MeSH
- zdroje bioelektrické energie * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karbonové vlákno * MeSH
- uhlík MeSH
Sustainable technologies for energy production and storage are currently in great demand. Bioelectrochemical systems (BESs) offer promising solutions for both. Several attempts have been made to improve carbon felt electrode characteristics with various pretreatments in order to enhance performance. This study was motivated by gaps in current knowledge of the impact of pretreatments on the enrichment and microbial composition of bioelectrochemical systems. Therefore, electrodes were treated with poly(neutral red), chitosan, or isopropanol in a first step and then fixed in microbial electrolysis cells (MECs). Four MECs consisting of organic substance-degrading bioanodes and methane-producing biocathodes were set up and operated in batch mode by controlling the bioanode at 400 mV vs. Ag/AgCl (3M NaCl). After 1 month of operation, Enterococcus species were dominant microorganisms attached to all bioanodes and independent of electrode pretreatment. However, electrode pretreatments led to a decrease in microbial diversity and the enrichment of specific electroactive genera, according to the type of modification used. The MEC containing isopropanol-treated electrodes achieved the highest performance due to presence of both Enterococcus and Geobacter. The obtained results might help to select suitable electrode pretreatments and support growth conditions for desired electroactive microorganisms, whereby performance of BESs and related applications, such as BES-based biosensors, could be enhanced.
Zobrazit více v PubMed
Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2001.
Kumar S.S., Kumar V., Kumar R., Malyan S.K., Pugazhendhi A. Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel. 2019;255:115682. doi: 10.1016/j.fuel.2019.115682. DOI
Logan B.E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006;40:5181–5192. doi: 10.1021/es0605016. PubMed DOI
Kadier A., Kalil M.S., Abdeshahian P., Chandrasekhar K., Mohamed A., Azman N.F., Logroño W., Simayi Y., Hamid A.A. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew. Sustain. Energy Rev. 2016;61:501–525. doi: 10.1016/j.rser.2016.04.017. DOI
Bajracharya S., Sharma M., Mohanakrishna G., Dominguez Benneton X., Strik D.P.B.T.B., Sarma P.M., Pant D. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energy. 2016;98:153–170. doi: 10.1016/j.renene.2016.03.002. DOI
Rabaey K., Rozendal R.A. Microbial electrosynthesis-Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010;8:706–716. doi: 10.1038/nrmicro2422. PubMed DOI
Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009;43:3953–3958. doi: 10.1021/es803531g. PubMed DOI
Potter M.C. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proc. R. Soc. B Biol. Sci. 1911;84:260–276. doi: 10.1098/rspb.1911.0073. DOI
Kumar R., Singh L., Zularisam A.W. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 2016;56:1322–1336. doi: 10.1016/j.rser.2015.12.029. DOI
Do M.H., Ngo H.H., Guo W., Chang S.W., Nguyen D.D., Liu Y., Varjani S., Kumar M. Microbial fuel cell-based biosensor for online monitoring wastewater quality: A critical review. Sci. Total Environ. 2020;712:135612. doi: 10.1016/j.scitotenv.2019.135612. PubMed DOI
Abrevaya X.C., Sacco N.J., Bonetto M.C., Hilding-Ohlsson A., Cortón E. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens. Bioelectron. 2015;63:591–601. doi: 10.1016/j.bios.2014.04.053. PubMed DOI
Pham T.H., Aelterman P., Verstraete W. Bioanode performance in bioelectrochemical systems: Recent improvements and prospects. Trends Biotechnol. 2009;27:168–178. doi: 10.1016/j.tibtech.2008.11.005. PubMed DOI
Jafary T., Daud W.R.W., Ghasemi M., Kim B.H., Md Jahim J., Ismail M., Lim S.S. Biocathode in microbial electrolysis cell; Present status and future prospects. Renew. Sustain. Energy Rev. 2015;47:23–33. doi: 10.1016/j.rser.2015.03.003. DOI
Zhao H.Z., Zhang Y., Chang Y.Y., Li Z.S. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells. J. Power Sources. 2012;217:59–64. doi: 10.1016/j.jpowsour.2012.06.014. DOI
Steinbusch K.J.J., Hamelers H.V.M., Schaap J.D., Kampman C., Buisman C.J.N. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ. Sci. Technol. 2010;44:513–517. doi: 10.1021/es902371e. PubMed DOI
Clauwaert P., Tolêdo R., van der Ha D., Crab R., Verstraete W., Hu H., Udert K.M., Rabaey K. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 2008;57:575–579. doi: 10.2166/wst.2008.084. PubMed DOI
Villano M., Aulenta F., Ciucci C., Ferri T., Giuliano A., Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 2010;101:3085–3090. doi: 10.1016/j.biortech.2009.12.077. PubMed DOI
Villano M., Monaco G., Aulenta F., Majone M. Electrochemically assisted methane production in a biofilm reactor. J. Power Sources. 2011;196:9467–9472. doi: 10.1016/j.jpowsour.2011.07.016. DOI
Villano M., Ralo C., Zeppilli M., Aulenta F., Majone M. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell. Bioelectrochemistry. 2016;107:1–6. doi: 10.1016/j.bioelechem.2015.07.008. PubMed DOI
Jiang Y., Su M., Li D. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system. Appl. Biochem. Biotechnol. 2014;172:2720–2731. doi: 10.1007/s12010-013-0718-9. PubMed DOI
Clauwaert P., Van Der Ha D., Boon N., Verbeken K., Verhaege M., Rabaey K., Verstraete W. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol. 2007;41:7564–7569. doi: 10.1021/es0709831. PubMed DOI
Clauwaert P., Rabaey K., Aelterman P., De Schamphelaire L., Pham T.H., Boeckx P., Boon N., Verstraete W. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 2007;41:3354–3360. doi: 10.1021/es062580r. PubMed DOI
Zeppilli M., Paiano P., Villano M., Majone M. Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading. Biochem. Eng. J. 2019;152:107393. doi: 10.1016/j.bej.2019.107393. DOI
Zeppilli M., Villano M., Aulenta F., Lampis S., Vallini G., Majone M. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell. Environ. Sci. Pollut. Res. 2015;22:7349–7360. doi: 10.1007/s11356-014-3158-3. PubMed DOI
Villano M., Scardala S., Aulenta F., Majone M. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 2013;130:366–371. doi: 10.1016/j.biortech.2012.11.080. PubMed DOI
Penteado E.D., Fernandez-Marchante C.M., Zaiat M., Gonzalez E.R., Rodrigo M.A. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell. Environ. Technol. 2017;38:1333–1341. doi: 10.1080/09593330.2016.1226961. PubMed DOI
Santoro C., Guilizzoni M., Correa Baena J.P., Pasaogullari U., Casalegno A., Li B., Babanova S., Artyushkova K., Atanassov P. The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon N. Y. 2014;67:128–139. doi: 10.1016/j.carbon.2013.09.071. DOI
Kaur R., Marwaha A., Chhabra V.A., Kim K.H., Tripathi S.K. Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renew. Sustain. Energy Rev. 2020;119:109551. doi: 10.1016/j.rser.2019.109551. DOI
Palanisamy G., Jung H.Y., Sadhasivam T., Kurkuri M.D., Kim S.C., Roh S.H. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J. Clean. Prod. 2019;221:598–621. doi: 10.1016/j.jclepro.2019.02.172. DOI
Li S., Cheng C., Thomas A. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. Adv. Mater. 2017;29 doi: 10.1002/adma.201602547. PubMed DOI
Sonawane J.M., Yadav A., Ghosh P.C., Adeloju S.B. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017;90:558–576. doi: 10.1016/j.bios.2016.10.014. PubMed DOI
Srinophakun P., Thanapimmetha A., Plangsri S., Vetchayakunchai S., Saisriyoot M. Application of modified chitosan membrane for microbial fuel cell: Roles of proton carrier site and positive charge. J. Clean. Prod. 2017;142:1274–1282. doi: 10.1016/j.jclepro.2016.06.153. DOI
Harewood A.J.T., Popuri S.R., Cadogan E.I., Lee C.H., Wang C.C. Bioelectricity generation from brewery wastewater in a microbial fuel cell using chitosan/biodegradable copolymer membrane. Int. J. Environ. Sci. Technol. 2017;14:1535–1550. doi: 10.1007/s13762-017-1258-6. DOI
Zhang T., Nie H., Bain T.S., Lu H., Cui M., Snoeyenbos-West O.L., Franks A.E., Nevin K.P., Russell T.P., Lovley D.R. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 2013;6:217–224. doi: 10.1039/C2EE23350A. DOI
Pauliukaite R., Ghica M.E., Barsan M., Brett C.M.A. Characterisation of poly(neutral red) modified carbon film electrodes; Application as a redox mediator for biosensors. J. Solid State Electrochem. 2007;11:899–908. doi: 10.1007/s10008-007-0281-9. DOI
Park D.H., Zeikus J.G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 2000;66:1292–1297. doi: 10.1128/AEM.66.4.1292-1297.2000. PubMed DOI PMC
Seelajaroen H., Haberbauer M., Hemmelmair C., Aljabour A., Dumitru L.M., Hassel A.W., Sariciftci N.S. Enhanced Bio-Electrochemical Reduction of Carbon Dioxide by Using Neutral Red as a Redox Mediator. ChemBioChem. 2019;20:1196–1205. doi: 10.1002/cbic.201800784. PubMed DOI PMC
Cheng S., Liu W., Sun D., Huang H. Enhanced power production of microbial fuel cells by reducing the oxygen and nitrogen functional groups of carbon cloth anode. Surf. Interface Anal. 2017;49:410–418. doi: 10.1002/sia.6173. DOI
Kondaveeti S., Min B. Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess. Biosyst. Eng. 2013;36:231–238. doi: 10.1007/s00449-012-0779-0. PubMed DOI
Seelajaroen H., Spiess S., Haberbauer M., Hassel M.M., Aljabour A., Thallner S., Guebitz G., Sariciftci N.S. Enhanced methane producing microbial electrolysis cells for wastewater treatment using poly(neutral red) and chitosan modified electrodes. Sustain. Energy Fuels. 2020 doi: 10.1039/D0SE00770F. DOI
Pichler M., Coskun Ö.K., Ortega-Arbulú A.S., Conci N., Wörheide G., Vargas S., Orsi W.D. A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. Microbiologyopen. 2018;7:1–10. doi: 10.1002/mbo3.611. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Vítěz T., Novák D., Lochman J., Vítězová M. Methanogens diversity during anaerobic sewage sludge stabilization and the effect of temperature. Processes. 2020;8:822. doi: 10.3390/pr8070822. DOI
Geppert F., Liu D., van Eerten-Jansen M., Weidner E., Buisman C., ter Heijne A. Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives. Trends Biotechnol. 2016;34:879–894. doi: 10.1016/j.tibtech.2016.08.010. PubMed DOI
Feng Y., Yang Q., Wang X., Logan B.E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources. 2010;195:1841–1844. doi: 10.1016/j.jpowsour.2009.10.030. DOI
Cai H., Wang J., Bu Y., Zhong Q. Treatment of carbon cloth anodes for improving power generation in a dual-chamber microbial fuel cell. J. Chem. Technol. Biotechnol. 2013;88:623–628. doi: 10.1002/jctb.3875. DOI
Pankratova G., Leech D., Gorton L., Hederstedt L. Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis. Biochemistry. 2018;57:4597–4603. doi: 10.1021/acs.biochem.8b00600. PubMed DOI
Pillai S.K., Sakoulas G., Eliopoulos G.M., Moellering R.C., Murray B.E., Inouye R.T. Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J. Infect. Dis. 2004;190:967–970. doi: 10.1086/423139. PubMed DOI
Freguia S., Masuda M., Tsujimura S., Kano K. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry. 2009;76:14–18. doi: 10.1016/j.bioelechem.2009.04.001. PubMed DOI
Bohn J., Yüksel-Dadak A., Dröge S., König H. Isolation of lactic acid-forming bacteria from biogas plants. J. Biotechnol. 2017;244:4–15. doi: 10.1016/j.jbiotec.2016.12.015. PubMed DOI
Grabowski A., Tindall B.J., Bardin V., Blanchet D., Jeanthon C. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int. J. Syst. Evol. Microbiol. 2005;55:1113–1121. doi: 10.1099/ijs.0.63426-0. PubMed DOI
Khan F., Pham D.T.N., Oloketuyi S.F., Manivasagan P., Oh J., Kim Y.M. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surfaces B Biointerfaces. 2020;185:110627. doi: 10.1016/j.colsurfb.2019.110627. PubMed DOI
Joicy A., Song Y.C., Li J., Oh S.E., Jang S.H., Ahn Y. Effect of electrostatic field strength on bioelectrochemical nitrogen removal from nitrogen-rich wastewater. Energies. 2020;13:3218. doi: 10.3390/en13123218. DOI
Xu H., Wang L., Wen Q., Chen Y., Qi L., Huang J., Tang Z. A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell. Bioelectrochemistry. 2019;129:144–153. doi: 10.1016/j.bioelechem.2019.05.008. PubMed DOI
Logan B.E., Rossi R., Ragab A., Saikaly P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019;17:307–319. doi: 10.1038/s41579-019-0173-x. PubMed DOI
Gregory K.B., Bond D.R., Lovley D.R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 2004;6:596–604. doi: 10.1111/j.1462-2920.2004.00593.x. PubMed DOI
Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003;69:1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003. PubMed DOI PMC
Reguera G., Nevin K.P., Nicoll J.S., Covalla S.F., Woodard T.L., Lovley D.R. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 2006;72:7345–7348. doi: 10.1128/AEM.01444-06. PubMed DOI PMC
White G.F., Edwards M.J., Gomez-Perez L., Richardson D.J., Butt J.N., Clarke T.A. Mechanisms of Bacterial Extracellular Electron. Exchange. 1st ed. Volume 68 Elsevier Ltd.; Amsterdam, The Netherlands: 2016. PubMed
Dennis P.G., Virdis B., Vanwonterghem I., Hassan A., Hugenholtz P., Tyson G.W., Rabaey K. Anode potential influences the structure and function of anodic electrode and electrolyte-associated microbiomes. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep39114. PubMed DOI PMC
Zhang Y., Min B., Huang L., Angelidaki I. Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour. Technol. 2011;102:1166–1173. doi: 10.1016/j.biortech.2010.09.044. PubMed DOI
Baldwin S.A., Khoshnoodi M., Rezadehbashi M., Taupp M., Hallam S., Mattes A., Sanei H. The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage. Front. Bioeng. Biotechnol. 2015;3:1–13. doi: 10.3389/fbioe.2015.00027. PubMed DOI PMC
Pelletier E., Kreimeyer A., Bocs S., Rouy Z., Gyapay G., Chouari R., Rivière D., Ganesan A., Daegelen P., Sghir A., et al. “Candidatus Cloacamonas acidaminovorans”: Genome sequence reconstruction provides a first glimpse of a new bacterial division. J. Bacteriol. 2008;190:2572–2579. doi: 10.1128/JB.01248-07. PubMed DOI PMC
Dahle H., Birkeland N.K. Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int. J. Syst. Evol. Microbiol. 2006;56:1539–1545. doi: 10.1099/ijs.0.63894-0. PubMed DOI
Commault A.S., Barrière F., Lapinsonnière L., Lear G., Bouvier S., Weld R.J. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms. Bioresour. Technol. 2015;195:265–272. doi: 10.1016/j.biortech.2015.06.141. PubMed DOI
Guo K., Freguia S., Dennis P.G., Chen X., Donose B.C., Keller J., Gooding J.J., Rabaey K. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 2013;47:7563–7570. doi: 10.1021/es400901u. PubMed DOI
Stöckl M., Teubner N.C., Holtmann D., Mangold K.M., Sand W. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. ACS Appl. Mater. Interfaces. 2019;11:8961–8968. doi: 10.1021/acsami.8b14340. PubMed DOI
Yang G., Huang L., Yu Z., Liu X., Chen S., Zeng J., Zhou S., Zhuang L. Anode potentials regulate Geobacter biofilms: New insights from the composition and spatial structure of extracellular polymeric substances. Water Res. 2019;159:294–301. doi: 10.1016/j.watres.2019.05.027. PubMed DOI
Rezaei F., Xing D., Wagner R., Regan J.M., Richard T.L., Logan B.E. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 2009;75:3673–3678. doi: 10.1128/AEM.02600-08. PubMed DOI PMC
Fedorovich V., Knighton M.C., Pagaling E., Ward F.B., Free A., Goryanin I. Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl. Environ. Microbiol. 2009;75:7326–7334. doi: 10.1128/AEM.01345-09. PubMed DOI PMC
Ha P.T., Tae B., Chang I.S. Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels. 2008;22:164–168. doi: 10.1021/ef700294x. DOI
Zhang T., Cui C., Chen S., Yang H., Shen P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 2008;10:293–297. doi: 10.1016/j.elecom.2007.12.009. DOI
Bourdakos N., Marsili E., Mahadevan R. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell. Biotechnol. Bioeng. 2014;111:709–718. doi: 10.1002/bit.25137. PubMed DOI
Aulenta F., Catapano L., Snip L., Villano M., Majone M. Linking bacterial metabolism to graphite cathodes: Electrochemical insights into the H2-producing capability of desulfovibrio sp. ChemSusChem. 2012;5:1080–1085. doi: 10.1002/cssc.201100720. PubMed DOI