Bringing to Light the Importance of the miRNA Methylome in Colorectal Cancer Prognosis Through Electrochemical Bioplatforms
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38348822
PubMed Central
PMC10955513
DOI
10.1021/acs.analchem.3c05474
Knihovny.cz E-resources
- MeSH
- Biosensing Techniques * methods MeSH
- Epigenome MeSH
- Nucleic Acid Hybridization methods MeSH
- Colorectal Neoplasms * diagnosis genetics MeSH
- Humans MeSH
- MicroRNAs * genetics analysis MeSH
- Prognosis MeSH
- Antibodies genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs * MeSH
- Antibodies MeSH
This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.
See more in PubMed
Asefi M.; Rezvani N.; Soheilifar M. H.; Saidijam M.; Mahdavinezhad A. MicroRNA promoter methylation in colorectal cancer. BCCR 2019, 11 (3), 135–141. 10.18502/bccr.v11i3.5720. DOI
Fang Z.; Hu Y.; Hu J.; Huang Y.; Zheng S.; Guo C. The crucial roles of N6-methyladenosine (m6A) modification in the carcinogenesis and progression of colorectal cancer. Cell Biosci. 2021, 11, 72.10.1186/s13578-021-00583-8. PubMed DOI PMC
Baharudin R.; Rus Bakarurraini N. Q.; Ismail I.; Lee L.-H.; Ab Mutalib N. S. MicroRNA methylome signature and their functional roles in colorectal cancer diagnosis, prognosis, and chemoresistance. Int. J. Mol. Sci. 2022, 23, 7281.10.3390/ijms23137281. PubMed DOI PMC
Kaur S.; Lotsari-Salomaa J. E.; Seppänen-Kaijansinkko R.; Peltomäki P. (2016). MicroRNA Methylation in Colorectal Cancer. In: Slaby O.; Calin G. (eds) Non-coding RNAs in Colorectal Cancer. Advances in Experimental Medicine and Biology, vol 937. Springer: Cham. 10.1007/978-3-319-42059-2_6. PubMed DOI
Muhammad S.; Kaur K.; Huang R.; Zhang Q.; Kaur P.; Yazdani H. O.; Bilal M. U.; Zheng J.; Zheng L.; Wang X.-S. MicroRNAs in colorectal cancer: Role in metastasis and clinical perspectives. World J. Gastroenterol. 2014, 20 (45), 17011–17019. 10.3748/wjg.v20.i45.17011. PubMed DOI PMC
Ma S.; Chen C.; Ji X.; Liu J.; Zhou Q.; Wang G.; Yuan W.; Kan Q.; Sun Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. Hematol. Oncol. 2019, 12, 121.10.1186/s13045-019-0805-7. PubMed DOI PMC
Liu L.; Wang Y.; Wu J.; Liu J.; Qin Z.; Fan H. N(6)-methyladenosine: a potential breakthrough for human cancer. Mol. Ther. Nucleic Acids 2020, 19, 804–813. 10.1016/j.omtn.2019.12.013. PubMed DOI PMC
Han X.; Guo J.; Fan Z. Interactions between m6A modification and miRNAs in malignant tumors. Cell Death Dis. 2021, 12, 598.10.1038/s41419-021-03868-5. PubMed DOI PMC
Peng W.; Li J.; Chen R.; Gu Q.; Yang P.; Qian W.; Ji D.; Wang Q.; Zhang Z.; Tang J.; Sun Y. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 393.10.1186/s13046-019-1408-4. PubMed DOI PMC
Ji L.; Chen S.; Gu L.; Zhang X. Exploration of potential roles of m6A regulators in colorectal cancer prognosis. Front. Oncol. 2020, 10, 768.10.3389/fonc.2020.00768. PubMed DOI PMC
Huang L.; Zhu J.; Kong W.; Li P.; Zhu S. Expression and prognostic characteristics of m6A RNA methylation regulators in colon cancer. Int. J. Mol. Sci. 2021, 22, 2134.10.3390/ijms22042134. PubMed DOI PMC
Liang W.; Yi H.; Mao C.; Meng Q.; Wu X.; Li S.; Xue J. Research progress of RNA methylation modification in colorectal cancer. Front. Pharmacol. 2022, 13, 90369910.3389/fphar.2022.903699. PubMed DOI PMC
Li W.; Gao Y.; Jin X.; Wang H.; Lan T.; Wei M.; Yan W.; Wang G.; Li Z.; Zhao Z.; Jiang X. Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer. Mol. Ther. Nucleic Acids 2022, 27, 598–610. 10.1016/j.omtn.2021.12.007. PubMed DOI PMC
Qiao H.; Liu L.; Chen J.; Shang B.; Wang L. The functions of N6-methyladenosine (m6A) RNA modifications in colorectal cancer. Med. Oncol. 2022, 39, 235.10.1007/s12032-022-01827-4. PubMed DOI
Konno M.; Koseki J.; Asai A.; Yamagata A.; Shimamura T.; Motooka D.; Okuzaki D.; Kawamoto K.; Mizushima T.; Eguchi H.; Takiguchi S.; Satoh T.; Mimori K.; Ochiya T.; Doki Y.; Ofusa K.; Mori M.; Ishii H. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat. Commun. 2019, 10, 3888.10.1038/s41467-019-11826-1. PubMed DOI PMC
Pandolfini L.; Barbieri I.; Bannister A. J.; Hendrick A.; Andrews B.; Webster N.; Murat P.; Mach P.; Brandi R.; Robson S. C.; Migliori V.; Alendar A.; d’Onofrio M.; Balasubramanian S.; Kouzarides T. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol. Cell 2019, 74 (6), 1278–1290. 10.1016/j.molcel.2019.03.040. PubMed DOI PMC
El Aamri M.; Yammouri G.; Mohammadi H.; Amine A.; Korri-Youssoufi H. Electrochemical biosensors for detection of microRNA as a cancer biomarker: Pros and cons. Biosensors 2020, 10 (11), 186.10.3390/bios10110186. PubMed DOI PMC
Negahdary M.; Angnes L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coord. Chem. Rev. 2022, 464, 21456510.1016/j.ccr.2022.214565. DOI
Campuzano S.; Pedrero M.; Yáñez-Sedeño P.; Pingarrón J. M. Advances in electrochemical (bio)sensing targeting epigenetic modifications of nucleic acids. Electroanalysis 2019, 31, 1816–1832. 10.1002/elan.201900180. DOI
Campuzano S.; Barderas R.; Pedrero M.; Yáñez-Sedeño P.; Pingarrón J. M. Electrochemical biosensing to move forward in cancer epigenetics and metastasis: A review. Anal. Chim. Acta 2020, 1109, 169–190. 10.1016/j.aca.2020.01.047. PubMed DOI
Torrente-Rodríguez R. M.; Ruiz-Valdepeñas Montiel V.; Campuzano S.; Farchado-Dinia M.; Barderas R.; San Segundo-Acosta P.; Montoya J. J.; Pingarrón J. M. Fast electrochemical miRNAs determination in cancer cells and tumor tissues with antibody-functionalized magnetic microcarriers. ACS Sens. 2016, 1, 896–903. 10.1021/acssensors.6b00266. DOI
Vargas E.; Torrente-Rodríguez R. M.; Ruiz-Valdepeñas Montiel V.; Povedano E.; Pedrero M.; Montoya J. J.; Campuzano S.; Pingarrón J. M. Magnetic beads-based sensor with tailored sensitivity for rapid and single-step amperometric determination of miRNAs. Int. J. Mol. Sci. 2017, 18, 2151.10.3390/ijms18112151. PubMed DOI PMC
Zouari M.; Campuzano S.; Pingarrón J. M.; Raouafi N. Amperometric biosensing of miRNA-21 in serum and cancer cells at nanostructured platforms using anti-DNA–RNA hybrid antibodies. ACS Omega 2018, 3, 8923–8931. 10.1021/acsomega.8b00986. PubMed DOI PMC
Jirakova L.; Hrstka R.; Campuzano S.; Pingarrón J. M.; Bartosik M. Multiplexed immunosensing platform coupled to hybridization chain reaction for electrochemical determination of microRNAs in clinical samples. Electroanalysis 2019, 31, 293–302. 10.1002/elan.201800573. DOI
Povedano E.; Gamella M.; Torrente-Rodríguez R. M.; Montero-Calle A.; Pedrero M.; Solís-Fernández G.; Navarro-Villoslada F.; Barderas R.; Campuzano S.; Pingarrón J. M. Magnetic microbeads-based amperometric immunoplatform for the rapid and sensitive detection of N6-methyladenosine to assist in metastatic cancer cells discrimination. Biosens. Bioelectron. 2021, 171, 11270810.1016/j.bios.2020.112708. PubMed DOI
Povedano E.; Gamella M.; Torrente-Rodríguez R. M.; Ruiz-Valdepeñas Montiel V.; Montero-Calle A.; Solís-Fernández G.; Navarro-Villoslada F.; Pedrero M.; Peláez-García A.; Mendiola M.; Hardisson D.; Feliú J.; Barderas R.; Pingarrón J. M.; Campuzano S. Multiplexed magnetic beads-assisted amperometric bioplatforms for global detection of methylations in nucleic acids. Anal. Chim. Acta 2021, 1182, 33894610.1016/j.aca.2021.338946. PubMed DOI
Fang W. J.; Lin C. Z.; Zhang H. H.; Qian J.; Zhong L.; Xu N. Detection of let-7a microRNA by real-time PCR in colorectal cancer: a single-centre experience from China. J. Int. Med. Res. 2007, 35 (5), 716–723. 10.1177/147323000703500518. PubMed DOI
Mizuno R.; Kawada K.; Sakai Y. The molecular basis and therapeutic potential of Let-7 microRNAs against colorectal cancer. Can. J. Gastroenterol. Hepatol. 2018, 7, 576959110.1155/2018/5769591. PubMed DOI PMC
Liu Y. D.; Zhuang X. P.; Cai D. L.; Cao C.; Gu Q. S.; Liu X. N.; Zheng B. B.; Guan B. J.; Yu L.; Li J. K.; Ding H. B.; Yan D. W. Let-7a regulates EV secretion and mitochondrial oxidative phosphorylation by targeting SNAP23 in colorectal cancer. J. Exp. Clin. Cancer Res. 2021, 40, 31.10.1186/s13046-020-01813-6. PubMed DOI PMC
Qavi A. J.; Kindt J. T.; Gleeson M. A.; Bailey R. C. Anti-DNA:RNA antibodies and silicon photonic microring resonators: Increased sensitivity for multiplexed microRNA detection. Anal. Chem. 2011, 83, 5949–5956. 10.1021/ac201340s. PubMed DOI PMC
Camacho C.; Matías J. C.; Chico B.; Cao R.; Gómez L.; Simpson B. K.; Villalonga R. Amperometric biosensor for hydrogen peroxide, using supramolecularly immobilized horseradish peroxidase on the β-cyclodextrin-coated gold electrode. Electroanalysis 2007, 19 (24), 2538–2542. 10.1002/elan.200703993. DOI
Ruiz-Valdepeñas Montiel V.; Povedano E.; Vargas E.; Torrente-Rodríguez R. M.; Pedrero M.; Reviejo A. J.; Campuzano S.; Pingarrón J. M. Comparison of different strategies for the development of highly sensitive electrochemical nucleic acid biosensors using neither nanomaterials nor nucleic acid amplification. ACS Sens. 2018, 3, 211–221. 10.1021/acssensors.7b00869. PubMed DOI
Liu B.; Merriman D. K.; Choi S. H.; Schumacher M. A.; Plangger R.; Kreutz C.; Horner S. M.; Meyer K. D.; Al-Hashimi H. M. A potentially abundant junctional RNA motif stabilized by m6A and Mg2+. Nat. Commun. 2018, 9 (1), 2761.10.1038/s41467-018-05243-z. PubMed DOI PMC
Ren X.; Deng R.; Zhang K.; Sun Y.; Li Y.; Li J. Single-cell imaging of m6A modified RNA using m6A-specific in situ hybridization mediated proximity ligation assay (m6AISH-PLA). Angew. Chem., Int. Ed. 2021, 60, 22646–22651. 10.1002/anie.202109118. PubMed DOI
Roost C.; Lynch S. R.; Batista P. J.; Qu K.; Chang H. Y.; Kool E. T. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 2015, 137 (5), 2107–2115. 10.1021/ja513080v. PubMed DOI PMC
Liu B.; Shi H.; Rangadurai A.; Nussbaumer F.; Chu C. C.; Erharter K. A.; Case D. A.; Kreutz C.; Al-Hashimi H. M. A quantitative model predicts how m6A reshapes the kinetic landscape of nucleic acid hybridization and conformational transitions. Nat. Commun. 2021, 12 (1), 5201.10.1038/s41467-021-25253-8. PubMed DOI PMC
Sensi S.; Goebel A. Human auto-IgG purification from high volume serum sample by protein G affinity purification. Bio-Protoc. 2022, 12 (23), e456210.21769/BioProtoc.4562. PubMed DOI PMC
Zhao B.; Song J.; Guan Y. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification. Acta Biochim. Biophys. Sin. 2015, 47 (2), 130–136. 10.1093/abbs/gmu121. PubMed DOI
Madison B. B.; Jeganathan A. N.; Mizuno R.; Winslow M. M.; Castells A.; Cuatrecasas M.; Rustgi A. K. Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2. PLoS Genetics 2015, 11 (9), e100540810.1371/journal.pgen.1005408. PubMed DOI PMC
Sharafeldin M.; Rusling J. F. Multiplexed electrochemical assays for clinical applications. Curr. Opin. Electrochem. 2023, 39, 10125610.1016/j.coelec.2023.101256. PubMed DOI PMC