Ultrastructure of macromolecular assemblies contributing to bacterial spore resistance revealed by in situ cryo-electron tomography

. 2024 Feb 14 ; 15 (1) : 1376. [epub] 20240214

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38355696

Grantová podpora
ANR-10-INBS-0005-02 Agence Nationale de la Recherche (French National Research Agency)
ANR-17-EURE-0003 Agence Nationale de la Recherche (French National Research Agency)

Odkazy

PubMed 38355696
PubMed Central PMC10867305
DOI 10.1038/s41467-024-45770-6
PII: 10.1038/s41467-024-45770-6
Knihovny.cz E-zdroje

Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia. The reconstructed tomograms reveal that early during sporulation, the chromosome in the forespore adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a stack of amorphous or structured layers with distinct electron density, dimensions and organization. By analyzing mutant strains using cryo-electron tomography and transmission electron microscopy on resin sections, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of coat morphogenetic proteins.

Zobrazit více v PubMed

Setlow, P. & Christie, G. New thoughts on an old topic: secrets of bacterial spore resistance slowly being revealed. Microbiol. Mol. Biol. Rev.10.1128/mmbr.00080-22 (2023). PubMed PMC

Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 2014;6:212–225. doi: 10.1111/1758-2229.12130. PubMed DOI PMC

Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 2004;68:234–262. doi: 10.1128/MMBR.68.2.234-262.2004. PubMed DOI PMC

Chan H, Mohamed AMT, Grainge I, Rodrigues CDA. FtsK and SpoIIIE, coordinators of chromosome segregation and envelope remodeling in bacteria. Trends Microbiol. 2022;30:480–494. doi: 10.1016/j.tim.2021.10.002. PubMed DOI

Khanna, K. et al. The molecular architecture of engulfment during Bacillus subtilis sporulation. eLife8, e45257 (2019). PubMed PMC

Khanna K, Lopez-Garrido J, Pogliano K. Shaping an endospore: architectural transformations during Bacillus subtilis sporulation. Annu. Rev. Microbiol. 2020;74:361–386. doi: 10.1146/annurev-micro-022520-074650. PubMed DOI PMC

Morlot C, Uehara T, Marquis KA, Bernhardt TG, Rudner DZ. A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis. Genes Dev. 2010;24:411–422. doi: 10.1101/gad.1878110. PubMed DOI PMC

Morlot C, Rodrigues CDA. The new kid on the block: a specialized secretion system during bacterial sporulation. Trends Microbiol. 2018;26:663–676. doi: 10.1016/j.tim.2018.01.001. PubMed DOI

Driks, A. & Eichenberger, P. The spore coat. Microbiol. Spectr. 10.1128/microbiolspec.tbs-0023-2016 (2016). PubMed

Popham, D. L. & Bernhards, C. B. Spore peptidoglycan. Microbiol. Spectr.10.1128/microbiolspec.tbs-0005-2012 (2015). PubMed

McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 2013;11:33–44. doi: 10.1038/nrmicro2921. PubMed DOI PMC

Frenkiel-Krispin D, Minsky A. Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans. J. Struct. Biol. 2006;156:311–319. doi: 10.1016/j.jsb.2006.05.014. PubMed DOI

Asano S, Engel BD, Baumeister W. In situ cryo-electron tomography: a post-reductionist approach to structural biology. J. Mol. Biol. 2016;428:332–343. doi: 10.1016/j.jmb.2015.09.030. PubMed DOI

Liedtke J, Depelteau JS, Briegel A. How advances in cryo-electron tomography have contributed to our current view of bacterial cell biology. J. Struct. Biol. X. 2022;6:100065. PubMed PMC

Rigort A, Villa E, Bäuerlein FJB, Engel BD, Plitzko JM. Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining. Methods Cell Biol. 2012;111:259–281. doi: 10.1016/B978-0-12-416026-2.00014-5. PubMed DOI

Wagner FR, et al. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 2020;15:2041–2070. doi: 10.1038/s41596-020-0320-x. PubMed DOI PMC

Bauer T, Little S, Stöver AG, Driks A. Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE. J. Bacteriol. 1999;181:7043–7051. doi: 10.1128/JB.181.22.7043-7051.1999. PubMed DOI PMC

McKenney PT, Eichenberger P. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol. Microbiol. 2012;83:245–260. doi: 10.1111/j.1365-2958.2011.07936.x. PubMed DOI PMC

Tocheva EI, et al. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol. 2013;88:673–686. doi: 10.1111/mmi.12201. PubMed DOI PMC

Castaing J-P, Nagy A, Anantharaman V, Aravind L, Ramamurthi KS. ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. Proc. Natl Acad. Sci. USA. 2013;110:E151–E160. doi: 10.1073/pnas.1210554110. PubMed DOI PMC

Ramamurthi KS, Clapham KR, Losick R. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. Mol. Microbiol. 2006;62:1547–1557. doi: 10.1111/j.1365-2958.2006.05468.x. PubMed DOI

Aronson AI, Ekanayake L, Fitz-James PC. Protein filaments may initiate the assembly of the Bacillus subtilis spore coat. Biochimie. 1992;74:661–667. doi: 10.1016/0300-9084(92)90138-5. PubMed DOI

Zheng LB, Donovan WP, Fitz-James PC, Losick R. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev. 1988;2:1047–1054. doi: 10.1101/gad.2.8.1047. PubMed DOI

Setlow P. I will survive: DNA protection in bacterial spores. Trends Microbiol. 2007;15:172–180. doi: 10.1016/j.tim.2007.02.004. PubMed DOI

Frenkiel-Krispin D, et al. Structure of the DNA-SspC complex: implications for DNA packaging, protection, and repair in bacterial spores. J. Bacteriol. 2004;186:3525–3530. doi: 10.1128/JB.186.11.3525-3530.2004. PubMed DOI PMC

Ragkousi K, Cowan AE, Ross MA, Setlow P. Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J. Bacteriol. 2000;182:5556–5562. doi: 10.1128/JB.182.19.5556-5562.2000. PubMed DOI PMC

Dittmann C, Han H-M, Grabenbauer M, Laue M. Dormant Bacillus spores protect their DNA in crystalline nucleoids against environmental stress. J. Struct. Biol. 2015;191:156–164. doi: 10.1016/j.jsb.2015.06.019. PubMed DOI

Doan T, et al. Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. PLoS Genet. 2009;5:e1000566. doi: 10.1371/journal.pgen.1000566. PubMed DOI PMC

Peluso EA, Updegrove TB, Chen J, Shroff H, Ramamurthi KS. A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface. Proc. Natl Acad. Sci. USA. 2019;116:21789–21799. doi: 10.1073/pnas.1907397116. PubMed DOI PMC

Driks A, Roels S, Beall B, Moran CP, Losick R. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 1994;8:234–244. doi: 10.1101/gad.8.2.234. PubMed DOI

Müllerová D, Krajčíková D, Barák I. Interactions between Bacillus subtilis early spore coat morphogenetic proteins. FEMS Microbiol. Lett. 2009;299:74–85. doi: 10.1111/j.1574-6968.2009.01737.x. PubMed DOI

Delerue T, et al. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev. Cell. 2022;57:344–360.e6. doi: 10.1016/j.devcel.2021.12.021. PubMed DOI PMC

Wang KH, et al. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis. Mol. Microbiol. 2009;74:634–649. doi: 10.1111/j.1365-2958.2009.06886.x. PubMed DOI PMC

de Francesco M, et al. Physical interaction between coat morphogenetic proteins SpoVID and CotE is necessary for spore encasement in Bacillus subtilis. J. Bacteriol. 2012;194:4941–4950. doi: 10.1128/JB.00914-12. PubMed DOI PMC

Costa T, Isidro AL, Moran CP, Henriques AO. Interaction between coat morphogenetic proteins SafA and SpoVID. J. Bacteriol. 2006;188:7731–7741. doi: 10.1128/JB.00761-06. PubMed DOI PMC

Nunes F, et al. SpoVID functions as a non-competitive hub that connects the modules for assembly of the inner and outer spore coat layers in Bacillus subtilis. Mol. Microbiol. 2018;110:576–595. doi: 10.1111/mmi.14116. PubMed DOI PMC

Pereira FC, et al. A LysM domain intervenes in sequential protein-protein and protein-peptidoglycan interactions important for spore coat assembly in Bacillus subtilis. J. Bacteriol. 2019;201:e00642–18. doi: 10.1128/JB.00642-18. PubMed DOI PMC

Ozin AJ, Samford CS, Henriques AO, Moran CP. SpoVID guides SafA to the spore coat in Bacillus subtilis. J. Bacteriol. 2001;183:3041–3049. doi: 10.1128/JB.183.10.3041-3049.2001. PubMed DOI PMC

Krajcíková D, Lukácová M, Müllerová D, Cutting SM, Barák I. Searching for protein-protein interactions within the Bacillus subtilis spore coat. J. Bacteriol. 2009;191:3212–3219. doi: 10.1128/JB.01807-08. PubMed DOI PMC

Harwood, C. R. & Cutting, S. M. Molecular Biological Methods for Bacillus (Wiley, 1990).

Wolff G, et al. Mind the gap: micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. J. Struct. Biol. 2019;208:107389. doi: 10.1016/j.jsb.2019.09.006. PubMed DOI

Moravcová, J., Pinkas, M., Holbová, R. & Nováček, J. Preparation and Cryo-FIB micromachining of saccharomyces cerevisiae for cryo-electron tomography. J. Vis. Exp.10.3791/62351 (2021). PubMed

Kandiah E, et al. CM01: a facility for cryo-electron microscopy at the European Synchrotron. Acta Crystallogr. Sect. Struct. Biol. 2019;75:528–535. doi: 10.1107/S2059798319006880. PubMed DOI PMC

Turoňová B, et al. Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nat. Commun. 2020;11:876. doi: 10.1038/s41467-020-14535-2. PubMed DOI PMC

Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. doi: 10.1016/j.jsb.2005.07.007. PubMed DOI

Zheng SQ, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193. PubMed DOI PMC

Mastronarde DN. Correction for non-perpendicularity of beam and tilt axis in tomographic reconstructions with the IMOD package. J. Microsc. 2008;230:212–217. doi: 10.1111/j.1365-2818.2008.01977.x. PubMed DOI

Zheng S, et al. AreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X. 2022;6:100068. PubMed PMC

Chen M, et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods. 2017;14:983–985. doi: 10.1038/nmeth.4405. PubMed DOI PMC

Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI

Goddard TD, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. Publ. Protein Soc. 2018;27:14–25. doi: 10.1002/pro.3235. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...