Diversity of selected toll-like receptor genes in cheetahs (Acinonyx jubatus) and African leopards (Panthera pardus pardus)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I 5081
Austrian Science Fund FWF - Austria
21-28637 L
Grantová Agentura České Republiky
I5081-B
Austrian Science Fund
ZA02/2019
Österreichische Agentur für Internationale Mobilität und Kooperation in Bildung, Wissenschaft und Forschung
PubMed
38355905
PubMed Central
PMC10866938
DOI
10.1038/s41598-024-54076-y
PII: 10.1038/s41598-024-54076-y
Knihovny.cz E-zdroje
- MeSH
- Acinonyx * genetika MeSH
- divoká zvířata genetika MeSH
- ekosystém MeSH
- infekční nemoci * MeSH
- lidé MeSH
- Panthera * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The anthropogenic impact on wildlife is ever increasing. With shrinking habitats, wild populations are being pushed to co-exist in proximity to humans leading to an increased threat of infectious diseases. Therefore, understanding the immune system of a species is key to assess its resilience in a changing environment. The innate immune system (IIS) is the body's first line of defense against pathogens. High variability in IIS genes, like toll-like receptor (TLR) genes, appears to be associated with resistance to infectious diseases. However, few studies have investigated diversity in TLR genes in vulnerable species for conservation. Large predators are threatened globally including leopards and cheetahs, both listed as 'vulnerable' by IUCN. To examine IIS diversity in these sympatric species, we used next-generation-sequencing to compare selected TLR genes in African leopards and cheetahs. Despite differences, both species show some TLR haplotype similarity. Historic cheetahs from all subspecies exhibit greater genetic diversity than modern Southern African cheetahs. The diversity in investigated TLR genes is lower in modern Southern African cheetahs than in African leopards. Compared to historic cheetah data and other subspecies, a more recent population decline might explain the observed genetic impoverishment of TLR genes in modern Southern African cheetahs. However, this may not yet impact the health of this cheetah subspecies.
Central European Institute of Technology University of Veterinary Sciences Brno Brno Czech Republic
Department of Animal Genetics University of Veterinary Sciences Brno Czech Republic
School of Health and Life Science Teesside University Middlesbrough Tees Valley TS1 3BX UK
University of Oulu Pentti Kaiteran Katu 1 90570 Oulu Finland
University of the Free State Bloemfontein Campus Bloemfontein 9300 South Africa
WWF South African Bridge House Boundary Terraces Mariendahl Ave Newlands 7725 Capetown South Africa
Zobrazit více v PubMed
Ausubel FM. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 2005;6:973–979. doi: 10.1038/ni1253. PubMed DOI
Medzhitov R, Janeway CA. Innate immunity: The virtues of a nonclonal system of recognition. Cell. 1997;91:295–298. doi: 10.1016/S0092-8674(00)80412-2. PubMed DOI
Eason DD, et al. Mechanisms of antigen receptor evolution. Semin. Immunol. 2004;16:215–226. doi: 10.1016/j.smim.2004.08.001. PubMed DOI
Lien E, et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Investig. 2000;105:497–504. doi: 10.1172/JCI8541. PubMed DOI PMC
Muzio M, Mantovani A. Toll-like receptors. Microbes Infect. 2000;2:251–255. doi: 10.1016/S1286-4579(00)00303-8. PubMed DOI
Takeda K, Akira S. Toll-like receptors. Curr. Protoc. Immunol. 2015;109:14121–141210. doi: 10.1002/0471142735.im1412s109. PubMed DOI
Buwitt-Beckmann U, et al. TLR1-and TLR6-independent recognition of bacterial lipopeptides. J. Biol. Chem. 2006;281:9049–9057. doi: 10.1074/jbc.M512525200. PubMed DOI
Gazzinelli RT, Denkers EY. Protozoan encounters with Toll-like receptor signalling pathways: Implications for host parasitism. Nat. Rev. Immunol. 2006;6:895–906. doi: 10.1038/nri1978. PubMed DOI
Moresco EMY, LaVine D, Beutler B. Toll-like receptors. Curr. Biol. 2011;21:R488–R493. doi: 10.1016/j.cub.2011.05.039. PubMed DOI
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180:1044–1066. doi: 10.1016/j.cell.2020.02.041. PubMed DOI PMC
Hawley DM, Sydenstricker KV, Kollias GV, Dhondt AA. Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches. Biol. Lett. 2005;1:326–329. doi: 10.1098/rsbl.2005.0303. PubMed DOI PMC
Morris KM, Wright B, Grueber CE, Hogg C, Belov K. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (S arcophilus harrisii) Mol. Ecol. 2015;24:3860–3872. doi: 10.1111/mec.13291. PubMed DOI
Hughes AL, Hughes MK. Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics. 1995;42:233–243. doi: 10.1007/BF00176440. PubMed DOI
Spielman D, Brook BW, Briscoe DA, Frankham R. Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv. Genet. 2004;5:439–448. doi: 10.1023/B:COGE.0000041030.76598.cd. DOI
Tonteri A, Vasemägi A, Lumme J, Primmer C. Beyond MHC: Signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Mol. Ecol. 2010;19:1273–1282. doi: 10.1111/j.1365-294X.2010.04573.x. PubMed DOI
Downing T, Lloyd AT, O’Farrelly C, Bradley DG. The differential evolutionary dynamics of avian cytokine and TLR gene classes. J. Immunol. 2010;184:6993–7000. doi: 10.4049/jimmunol.0903092. PubMed DOI
Villasenor-Cardoso M, Ortega E. Polymorphisms of innate immunity receptors in infection by parasites. Parasite Immunol. 2011;33:643–653. doi: 10.1111/j.1365-3024.2011.01327.x. PubMed DOI
Netea MG, Wijmenga C, O’neill LA. Genetic variation in Toll-like receptors and disease susceptibility. Nat. Immunol. 2012;13:535–542. doi: 10.1038/ni.2284. PubMed DOI
Abrantes J, Areal H, Esteves PJ. Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: Genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds. BMC Genet. 2013;14:73. doi: 10.1186/1471-2156-14-73. PubMed DOI PMC
Dalton DL, Vermaak E, Smit-Robinson HA, Kotze A. Lack of diversity at innate immunity Toll-like receptor genes in the Critically Endangered White-winged Flufftail (Sarothrura ayresi) Sci. Rep. 2016;6:36757. doi: 10.1038/srep36757. PubMed DOI PMC
Grueber CE, Wallis GP, King TM, Jamieson IG. Variation at innate immunity toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLOS ONE. 2012;7:e45011. doi: 10.1371/journal.pone.0045011. PubMed DOI PMC
Liman N, Alan E, Apaydın N. The expression and localization of Toll-like receptors 2, 4, 5 and 9 in the epididymis and vas deferens of a adult tom cats. Theriogenology. 2019;128:62–73. doi: 10.1016/j.theriogenology.2019.02.001. PubMed DOI
Whitney J, Haase B, Beatty J, Barrs VR. Breed-specific variations in the coding region of toll-like receptor 4 in the domestic cat. Vet. Immunol. Immunopathol. 2019;209:61–69. doi: 10.1016/j.vetimm.2019.02.009. PubMed DOI PMC
Robert-Tissot C, et al. The innate antiviral immune system of the cat: Molecular tools for the measurement of its state of activation. Vet. Immunol. Immunopathol. 2011;143:269–281. doi: 10.1016/j.vetimm.2011.06.005. PubMed DOI PMC
Loots AK, et al. The role of toll-like receptor polymorphisms in susceptibility to canine distemper virus. Mammalian Biol. 2018;88:94–99. doi: 10.1016/j.mambio.2017.11.014. DOI
Odewahn R, Wright BR, Czirják GÁ, Higgins DP. Differences in constitutive innate immunity between divergent Australian marsupials. Dev. Comp. Immunol. 2022;132:104399. doi: 10.1016/j.dci.2022.104399. PubMed DOI
Ripple WJ, et al. Status and ecological effects of the world’s largest carnivores. Science. 2014;343:1241484. doi: 10.1126/science.1241484. PubMed DOI
Tshabalala T, et al. Leopards and mesopredators as indicators of mammalian species richness across diverse landscapes of South Africa. Ecol. Indicators. 2021;121:107201. doi: 10.1016/j.ecolind.2020.107201. DOI
Atkins JL, et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science. 2019;364:173–177. doi: 10.1126/science.aau3561. PubMed DOI
Ford AT, et al. Large carnivores make savanna tree communities less thorny. Science. 2014;346:346–349. doi: 10.1126/science.1252753. PubMed DOI
Suraci JP, Clinchy M, Dill LM, Roberts D, Zanette LY. Fear of large carnivores causes a trophic cascade. Nat.Commun. 2016;7:10698. doi: 10.1038/ncomms10698. PubMed DOI PMC
Myers N. Leopard and cheetah in Ethiopia. Oryx. 1973;12:197–205. doi: 10.1017/S0030605300011534. DOI
Verschueren S, et al. Spatiotemporal sharing and partitioning of scent-marking sites by cheetahs and leopards in north-central Namibia. Afr. J. Ecol. 2021;59:605–613. doi: 10.1111/aje.12878. DOI
Hemami M-R, et al. Using ecological models to explore niche partitioning within a guild of desert felids. Hystrix. 2018;29:216.
Vogel JT, Somers MJ, Venter JA. Niche overlap and dietary resource partitioning in an African large carnivore guild. J. Zool. 2019;309:212–223. doi: 10.1111/jzo.12706. DOI
Seoraj-Pillai N, Pillay N. A meta-analysis of human–wildlife conflict: South African and global perspectives. Sustainability. 2016;9:34. doi: 10.3390/su9010034. DOI
Viollaz JS, Thompson ST, Petrossian GA. When human–wildlife conflict turns deadly: Comparing the situational factors that drive retaliatory leopard killings in South Africa. Animals. 2021;11:3281. doi: 10.3390/ani11113281. PubMed DOI PMC
Patterson BD, Kasiki SM, Selempo E, Kays RW. Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National Parks, Kenya. Biol. Conserv. 2004;119:507–516. doi: 10.1016/j.biocon.2004.01.013. DOI
Wykstra, M. & Fund, C. C. Cheetah Conservation and Human Impact in Kenya. Cheetah Conservation (2005).
Constant N, Bell S, Hill R. The impacts, characterisation and management of human–leopard conflict in a multi-use land system in South Africa. Biodivers. Conserv. 2015;24:2967–2989. doi: 10.1007/s10531-015-0989-2. DOI
Marker LL, Muntifering J, Dickman A, Mills M, Macdonald D. Quantifying prey preferences of free-ranging Namibian cheetahs. South African J. Wildlife Res. 2003;33:43–53.
Thuo D, et al. An insight into the prey spectra and livestock predation by cheetahs in Kenya using faecal DNA metabarcoding. Zoology. 2020;143:125853. doi: 10.1016/j.zool.2020.125853. PubMed DOI
Cushman SA, Elliot NB, Macdonald DW, Loveridge AJ. A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landscape Ecol. 2016;31:1337–1353. doi: 10.1007/s10980-015-0292-3. DOI
Durant SM, et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. 2017;114:528–533. doi: 10.1073/pnas.1611122114. PubMed DOI PMC
Belbachir F, Pettorelli N, Wacher T, Belbachir-Bazi A, Durant SM. Monitoring rarity: The critically endangered Saharan cheetah as a flagship species for a threatened ecosystem. PLoS One. 2015;10:e0115136. doi: 10.1371/journal.pone.0115136. PubMed DOI PMC
Marker, L. Cheetahs race for survival: Ecology and conservation. in Wildlife population monitoring (IntechOpen, 2019).
Charruau P, et al. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: Evidence for long-term geographic isolates. Mol. Ecol. 2011;20:706–724. doi: 10.1111/j.1365-294X.2010.04986.x. PubMed DOI PMC
Jacobson AP, et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ. 2016;4:e1974. doi: 10.7717/peerj.1974. PubMed DOI PMC
Farhadinia MS, et al. The critically endangered Asiatic cheetah Acinonyx jubatus venaticus in Iran: A review of recent distribution, and conservation status. Biodivers. Conserv. 2017;26:1027–1046. doi: 10.1007/s10531-017-1298-8. DOI
Khalatbari, L., Jowkar, H., Yusefi, G. H., Brito, J. C. & Ostrowski, S. The current status of Asiatic cheetah in Iran. (2018).
Gerhold RW, Jessup DA. Zoonotic Diseases associated with free-roaming cats. Zoonoses and Public Health. 2013;60:189–195. doi: 10.1111/j.1863-2378.2012.01522.x. PubMed DOI
Wiethoelter AK, Beltrán-Alcrudo D, Kock R, Mor SM. Global trends in infectious diseases at the wildlife–livestock interface. Proc. Natl. Acad. Sci. 2015;112:9662–9667. doi: 10.1073/pnas.1422741112. PubMed DOI PMC
Pečnerová P, et al. High genetic diversity and low differentiation reflect the ecological versatility of the African leopard. Curr. Biol. 2021;31:1862–1871.e5. doi: 10.1016/j.cub.2021.01.064. PubMed DOI
O’Brien SJ, et al. Genetic basis for species vulnerability in the Cheetah. Science. 1985;227:1428–1434. doi: 10.1126/science.2983425. PubMed DOI
O’Brien SJ, Wildt DE, Bush M. The Cheetah in genetic Peril. Sci. Am. 1986;254:84–95. doi: 10.1038/scientificamerican0586-84. PubMed DOI
Hedrick PW. Bottleneck (s) or metapopulation in cheetahs. Conserv. Biol. 1996;10:897–899. doi: 10.1046/j.1523-1739.1996.10030897.x. DOI
Menotti-Raymond M, O’Brien SJ. Dating the genetic bottleneck of the African cheetah. Proc. Natl. Acad. Sci. 1993;90:3172–3176. doi: 10.1073/pnas.90.8.3172. PubMed DOI PMC
Castro-Prieto A, Wachter B, Sommer S. Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Mol. Biol. Evol. 2011;28:1455–1468. doi: 10.1093/molbev/msq330. PubMed DOI PMC
Drake G, et al. The use of reference strand-mediated conformational analysis for the study of cheetah (Acinonyx jubatus) feline leucocyte antigen class II DRB polymorphisms. Mol. Ecol. 2004;13:221–229. doi: 10.1046/j.1365-294X.2003.02027.x. PubMed DOI
Meißner, R. et al. The potential and shortcomings of mitochondrial DNA analysis for cheetah conservation management. Conservation Genetics 1–12 (2022). PubMed PMC
Prost S, et al. Genomic analyses show extremely perilous conservation status of African and Asiatic cheetahs (Acinonyx jubatus) Mol. Ecol. 2022;31:4208–4223. doi: 10.1111/mec.16577. PubMed DOI PMC
Mirdita M, et al. ColabFold: Making protein folding accessible to all. Nat. Methods. 2022;19:679–682. doi: 10.1038/s41592-022-01488-1. PubMed DOI PMC
Sugimoto T, et al. Noninvasive genetic analyses for estimating population size and genetic diversity of the remaining Far Eastern leopard (Panthera pardus orientalis) population. Conserv. Genet. 2014;15:521–532. doi: 10.1007/s10592-013-0558-8. DOI
Wetzler LM. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine. 2003;21:S55–S60. doi: 10.1016/S0264-410X(03)00201-9. PubMed DOI
Heine H, et al. Cutting edge: Cells that carry a null allele for toll-like receptor 2 are capable of responding to endotoxin1. J. Immunol. 1999;162:6971–6975. doi: 10.4049/jimmunol.162.12.6971. PubMed DOI
Farhat K, et al. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J. Leukocyte Biol. 2008;83:692–701. doi: 10.1189/jlb.0807586. PubMed DOI
Ma Y, Haynes RL, Sidman RL, Vartanian T. TLR8: An innate immune receptor in brain, neurons and axons. Cell Cycle. 2007;6:2859–2868. doi: 10.4161/cc.6.23.5018. PubMed DOI PMC
Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B. Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4) Genome Biol. 2000;1:research002.1. doi: 10.1186/gb-2000-1-1-research002. PubMed DOI PMC
Creel S, et al. Changes in African large carnivore diets over the past half-century reveal the loss of large prey. J. Appl. Ecol. 2018;55:2908–2916. doi: 10.1111/1365-2664.13227. DOI
Woodroffe R. Predators and people: Using human densities to interpret declines of large carnivores. Anim. Conserv. 2000;3:165–173. doi: 10.1111/j.1469-1795.2000.tb00241.x. DOI
Searle CE, et al. Leopard population density varies across habitats and management strategies in a mixed-use Tanzanian landscape. Biol. Conserv. 2021;257:109120. doi: 10.1016/j.biocon.2021.109120. DOI
Morris, D. R. et al. Gene flow connects key leopard (Panthera pardus) populations despite habitat fragmentation and persecution. Biodiversity and Conservation 1–19 (2022).
Tricorache P, Yashphe S, Marker L. Global dataset for seized and non-intercepted illegal cheetah trade (Acinonyx jubatus) 2010–2019. Data in Brief. 2021;35:106848. doi: 10.1016/j.dib.2021.106848. PubMed DOI PMC
Tong M, et al. Transcript profiling of toll-like receptor mRNAs in selected tissues of mink (Neovison vison) J. Microbiol. Biotechnol. 2016;26:2214–2223. doi: 10.4014/jmb.1604.04063. PubMed DOI
Wlasiuk G, Nachman MW. Adaptation and constraint at toll-like receptors in primates. Mol. Biol. Evol. 2010;27:2172–2186. doi: 10.1093/molbev/msq104. PubMed DOI PMC
Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. Int. Rev. Immunol. 2018;37:217–228. doi: 10.1080/08830185.2018.1506780. PubMed DOI
Vasseur E, et al. The selective footprints of viral pressures at the human RIG-I-like receptor family. Hum. Mol. Genet. 2011;20:4462–4474. doi: 10.1093/hmg/ddr377. PubMed DOI
Heinrich SK, et al. Cheetahs have a stronger constitutive innate immunity than leopards. Sci. Rep. 2017;7:44837. doi: 10.1038/srep44837. PubMed DOI PMC
Schwensow N, Castro-Prieto A, Wachter B, Sommer S. Immunological MHC supertypes and allelic expression: How low is the functional MHC diversity in free-ranging Namibian cheetahs? Conserv. Genet. 2019;20:65–80. doi: 10.1007/s10592-019-01143-x. DOI
McDade TW, Georgiev AV, Kuzawa CW. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Public Health. 2016;2016:1–16. doi: 10.1093/emph/eov033. PubMed DOI PMC
De Volo SB, Reynolds RT, Douglas MR, Antolin MF. An improved extraction method to increase DNA yield from molted feathers. The Condor. 2008;110:762–766. doi: 10.1525/cond.2008.8586. DOI
Dobrynin P, et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 2015;16:1–20. doi: 10.1186/s13059-015-0837-4. PubMed DOI PMC
Kõressaar T, et al. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics. 2018;34:1937–1938. doi: 10.1093/bioinformatics/bty036. PubMed DOI
Chen S, Zhou Y, Chen Y, Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Institute, B. Picard toolkit. Broad Institute, GitHub repository (2019).
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Danecek P, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Milne I, et al. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013;14:193–202. doi: 10.1093/bib/bbs012. PubMed DOI
Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 2006;23:1891–1901. doi: 10.1093/molbev/msl051. PubMed DOI
Murrell B, et al. Detecting individual sites subject to episodic diversifying selection. PLOS Genet. 2012;8:e1002764. doi: 10.1371/journal.pgen.1002764. PubMed DOI PMC
Weaver S, et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 2018;35:773–777. doi: 10.1093/molbev/msx335. PubMed DOI PMC