Comparative genomics of the Natural Killer Complex in carnivores
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, srovnávací studie
PubMed
39421739
PubMed Central
PMC11484026
DOI
10.3389/fimmu.2024.1459122
Knihovny.cz E-zdroje
- Klíčová slova
- CLEC, Felids, KLR, Natural Killer Complex, carnivore, genomes,
- MeSH
- anotace sekvence MeSH
- buňky NK * imunologie metabolismus MeSH
- Carnivora * genetika MeSH
- fylogeneze * MeSH
- genom MeSH
- genomika * metody MeSH
- kočky genetika MeSH
- lektiny typu C genetika MeSH
- zvířata MeSH
- Check Tag
- kočky genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- lektiny typu C MeSH
BACKGROUND: The mammalian Natural Killer Complex (NKC) harbors genes and gene families encoding a variety of C-type lectin-like proteins expressed on various immune cells. The NKC is a complex genomic region well-characterized in mice, humans and domestic animals. The major limitations of automatic annotation of the NKC in non-model animals include short-read based sequencing, methods of assembling highly homologous and repetitive sequences, orthologues missing from reference databases and weak expression. In this situation, manual annotations of complex genomic regions are necessary. METHODS: This study presents a manual annotation of the genomic structure of the NKC region in a high-quality reference genome of the domestic cat and compares it with other felid species and with representatives of other carnivore families. Reference genomes of Carnivora, irrespective of sequencing and assembly methods, were screened by BLAST to retrieve information on their killer cell lectin-like receptor (KLR) gene content. Phylogenetic analysis of in silico translated proteins of expanded subfamilies was carried out. RESULTS: The overall genomic structure of the NKC in Carnivora is rather conservative in terms of its C-type lectin receptor gene content. A novel KLRH-like gene subfamily (KLRL) was identified in all Carnivora and a novel KLRJ-like gene was annotated in the Mustelidae. In all six families studied, one subfamily (KLRC) expanded and experienced pseudogenization. The KLRH gene subfamily expanded in all carnivore families except the Canidae. The KLRL gene subfamily expanded in carnivore families except the Felidae and Canidae, and in the Canidae it eroded to fragments. CONCLUSIONS: Knowledge of the genomic structure and gene content of the NKC region is a prerequisite for accurate annotations of newly sequenced genomes, especially of endangered wildlife species. Identification of expressed genes, pseudogenes and gene fragments in the context of expanded gene families would allow the assessment of functionally important variability in particular species.
Research Group Animal Immunogenomics Central European Institute of Technology VETUNI Brno Czechia
Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Vienna Austria
Zobrazit více v PubMed
Allan AJ, Sanderson ND, Gubbins S, Ellis SA, Hammond JA. Cattle NK cell heterogeneity and the influence of MHC class I. J Immunol. (2015) 195:2199–206. doi: 10.4049/jimmunol.1500227 PubMed DOI PMC
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. . Innate or adaptive immunity? The example of natural killer cells. Science. (2011) 331:44–9. doi: 10.1126/science.1198687 PubMed DOI PMC
Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol. (2005) 17:29–35. doi: 10.1016/j.col.2004.11.001 PubMed DOI
Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, et al. . Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife. (2014) 3:e01659. doi: 10.7554/eLife.01659 PubMed DOI PMC
Sojka DK, Yang L, Yokoyama WM. Uterine natural killer cells. Front Immunol. (2019) 10:960. doi: 10.3389/fimmu.2019.00960 PubMed DOI PMC
Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy? Front Immunol. (2021) 12:607669. doi: 10.3389/fimmu.2021.607669 PubMed DOI PMC
Lanier LL. NK cell receptors. Annu Rev Immunol. (1998) 16:359–93. doi: 10.1146/annurev.immunol.16.1.359 PubMed DOI
Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, et al. . Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. (2010) 120:4102–10. doi: 10.1172/JCI43998 PubMed DOI PMC
Lima PDA, Tu MM, Rahim MMA, Peng AR, Croy PA, Makrigiannis AP. Ly49 receptors activate angiogenic mouse DBA+ uterine natural killer cells. Cell Mol Immunol. (2014) 11:467–76. doi: 10.1038/cmi.2014.44 PubMed DOI PMC
Kelley J, Walter L, Trowsdale J. Comparative genomics of natural killer cell receptor gene clusters. PloS Genet. (2005) 1:129–39. doi: 10.1371/journal.pgen.0010027 PubMed DOI PMC
Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N. Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med. (2006) 203:289–95. doi: 10.1084/jem20051986 PubMed DOI PMC
Zhang Q, Rahim MMA, Allan DSJ, Tu MM, Belanger S, Abou-Samra E, et al. . Mouse Nkrp1-Clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance. PloS One. (2012) 7:e50561. doi: 10.1371/journal.pone.0050561 PubMed DOI PMC
Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol. (2023) 14:1126043. doi: 10.3389/fimmu.2023.1126043 PubMed DOI PMC
Saether PC, Westgaard IH, Hoelsbrekken SE, Benjamin J, Lanier LL, Fossum S, et al. . KLRE/I1 and KLRE/I2: a novel pair of heterodimeric receptors that inversely regulate NK cell cytotoxicity. J Immunol. (2008) 181:3177–82. doi: 10.4049/jimmunol.181.5.3177 PubMed DOI PMC
Schwartz JC, Gibson MS, Heimeier D, Koren S, Phillippy AM, Bickhart DM, et al. . The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation. Immunogenetics. (2017) 69:255–69. doi: 10.1007/s00251-017-0973-y PubMed DOI PMC
Futas J, Oppelt J, Jelinek A, Elbers JP, Wijacki J, Knoll A, et al. . Natural killer cell receptor genes in camels: Another Mammalian Model. Front Genet. (2019) 10:620. doi: 10.3389/fgene.2019.00620 PubMed DOI PMC
Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med. (1998) 188:1841–8. doi: 10.1084/jem.188.10.1841 PubMed DOI PMC
Braud VM, Allan DS, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS, et al. . HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. (1998) 391:795–9. doi: 10.1038/35869 PubMed DOI
Le Drean E, Vely F, Olcese L, Cambiaggi A, Guia S, Krystal G, et al. . Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatase. Eur J Immunol. (1998) 28:264–76. doi: 10.1002/(SICI)1521-4141(199801)28:01<264::AID-IMMU264>3.0.CO;2-O PubMed DOI
Lanier LL, Corliss B, Wu J, Phillips JH. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity. (1998) 8:693–701. doi: 10.1016/S1074-7613(00)80574-9 PubMed DOI
Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. (2015) 3:575–82. doi: 10.1158/2326-6066.CIR-15-0098 PubMed DOI PMC
Daws MR, Ke-Zheng D, Zinöcker S, Naper Ch, Kveberg L, Hedrich HJ, et al. . Identification of an MHC class I ligand for the single member of a killer cell lectin-like receptor family, KLRH1. J Immunol. (2012) 189:5178–84. doi: 10.4049/jimmunol.1201983 PubMed DOI
Hilton HG, Rubinstein ND, Janki P, Ireland AT, Bernstein N, Fong NL, et al. . Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity. PloS Biol. (2019) 17:e3000528. doi: 10.1371/journal.pbio.3000528 PubMed DOI PMC
Dimasi N, Biassoni R. Structural and functional aspects of the Ly49 natural killer cell receptors. Immunol Cell Biol. (2005) 83:1–8. doi: 10.1111/j.1440-1711.2005.01301.x PubMed DOI
Takahashi T, Yawata M, Raudsepp T, Lear TL, Chowdhary BP, Antczak DF, et al. . Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed LY49 genes. Eur J Immunol. (2004) 34:773–84. doi: 10.1002/eji.200324695 PubMed DOI
Futas J, Horin P. Natural killer cell receptor genes in the family Equidae: not only Ly49. PloS One. (2013) 8:e64736. doi: 10.1371/journal.pone.0064736 PubMed DOI PMC
Hao L, Klein J, Nei M. Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A. (2006) 103:3192–7. doi: 10.1073/pnas.0511280103 PubMed DOI PMC
Storset AK, Slettedal I, Williams JL, Law A, Dissen E. Natural killer cell receptors in cattle: a bovine killer cell immunoglobulin-like receptor multigene family contains members with divergent signaling motifs. Eur J Immunol. (2003) 33:980–90. doi: 10.1002/eji.200323710 PubMed DOI
Peel E, Silver L, Brandies P, Zhu Y, Cheng Y, Hogg CJ, et al. . Best genome sequencing strategies for annotation of complex immune gene families in wildlife. GigaScience. (2022) 11:giac100. doi: 10.1093/gigascience/giac100 PubMed DOI PMC
Jelinek AL, Futas J, Burger PA, Horin P. Comparative genomics of the Leukocyte Receptor Complex in carnivores. Front Immunol. (2023) 14:1197687. doi: 10.3389/fimmu.2023.1197687 PubMed DOI PMC
Han Y, Zhang M, Li N, Chen T, Zhang Y, Wan T, et al. . KLRL1, a novel killer cell lectinlike receptor, inhibits natural killer cell cytotoxicity. Blood. (2004) 104:2858–66. doi: 10.1182/blood-2004-03-0878 PubMed DOI
Liu G, Yin S, Li P, Han Y, Zheng Y, Zhang Y, et al. . mKLRL1 regulates the maturation of dendritic cells and plays important roles in immune tolerance. Am J Transl Res. (2019) 11:300–13. PubMed PMC
Kapustin Y, Souvorov A, Tatusova T, Lipman D. Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct. (2008) 3:20. doi: 10.1186/1745-6150-3-20 PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. (1999) 41:95–8.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. (2018) 35:1547. doi: 10.1093/molbev/msy096 PubMed DOI PMC
Bauer B, Steinle A. HemITAM: A single tyrosine motif that packs a punch. Sci Signal. (2017) 10:eaan3676. doi: 10.1126/scisignal.aan3676 PubMed DOI
Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P. Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. J Immunol. (2009) 182:3618–27. doi: 10.4049/jimmunol.0803026 PubMed DOI PMC
Gingrich AA, Reiter TE, Judge SJ, York D, Yanagisawa M, Razmara A, et al. . Comparative immunogenomics of canine natural killer cells as immunotherapy target. Front Immunol. (2021) 12:670309. doi: 10.3389/fimmu.2021.670309 PubMed DOI PMC
Li Z, Sun C, Wang F, Wang X, Zhu J, Luo L, et al. . Molecular mechanisms governing circulating immune cell heterogeneity across different species revealed by single-cell sequencing. Clin Transl Med. (2022) 12:e689. doi: 10.1002/ctm2.689 PubMed DOI PMC
Gingrich AA, Razmara AM, Gingrich PW, Rebhun RB, Murphy WJ, Kent MS, et al. . Missing a “missing self” mechanism: modeling and detection of Ly49 expression in canine NK cells. Immunohorizons. (2023) 7:760–70. doi: 10.4049/immunohorizons.2300092 PubMed DOI PMC
Meißner R, Mokgokong P, Pretorius C, Winter S, Labuschagne K, Kotze A, et al. . Diversity of selected toll-like receptor genes in cheetahs (Acinonyx jubatus) and African leopards (Panthera pardus pardus). Sci Rep. (2024) 14:3756. doi: 10.1038/s41598-024-54076-y PubMed DOI PMC