• This record comes from PubMed

Proteomic Profiling of Dilated Cardiomyopathy Plasma Samples ─ Searching for Biomarkers with Potential to Predict the Outcome of Therapy

. 2024 Mar 01 ; 23 (3) : 971-984. [epub] 20240216

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Determination of the prognosis and treatment outcomes of dilated cardiomyopathy is a serious problem due to the lack of valid specific protein markers. Using in-depth proteome discovery analysis, we compared 49 plasma samples from patients suffering from dilated cardiomyopathy with plasma samples from their healthy counterparts. In total, we identified 97 proteins exhibiting statistically significant dysregulation in diseased plasma samples. The functional enrichment analysis of differentially expressed proteins uncovered dysregulation in biological processes like inflammatory response, wound healing, complement cascade, blood coagulation, and lipid metabolism in dilated cardiomyopathy patients. The same proteome approach was employed in order to find protein markers whose expression differs between the patients well-responding to therapy and nonresponders. In this case, 45 plasma proteins revealed statistically significant different expression between these two groups. Of them, fructose-1,6-bisphosphate aldolase seems to be a promising biomarker candidate because it accumulates in plasma samples obtained from patients with insufficient treatment response and with worse or fatal outcome. Data are available via ProteomeXchange with the identifier PXD046288.

See more in PubMed

Elliott P.; Andersson B.; Arbustini E.; Bilinska Z.; Cecchi F.; Charron P.; Dubourg O.; Kühl U.; Maisch B.; McKenna W. J.; Monserrat L.; Pankuweit S.; Rapezzi C.; Seferovic P.; Tavazzi L.; Keren A. Classification of the Cardiomyopathies: A Position Statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2007, 29 (2), 270–276. 10.1093/eurheartj/ehm342. PubMed DOI

Pinto Y. M.; Elliott P. M.; Arbustini E.; Adler Y.; Anastasakis A.; Böhm M.; Duboc D.; Gimeno J.; de Groote P.; Imazio M.; Heymans S.; Klingel K.; Komajda M.; Limongelli G.; Linhart A.; Mogensen J.; Moon J.; Pieper P. G.; Seferovic P. M.; Schueler S.; Zamorano J. L.; Caforio A. L. P.; Charron P. Proposal for a Revised Definition of Dilated Cardiomyopathy, Hypokinetic Non-Dilated Cardiomyopathy, and Its Implications for Clinical Practice: A Position Statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2016, 37 (23), 1850–1858. 10.1093/eurheartj/ehv727. PubMed DOI

Arbelo E.; Protonotarios A.; Gimeno J. R.; Arbustini E.; Barriales-Villa R.; Basso C.; Bezzina C. R.; Biagini E.; Blom N. A.; de Boer R. A.; De Winter T.; Elliott P. M.; Flather M.; Garcia-Pavia P.; Haugaa K. H.; Ingles J.; Jurcut R. O.; Klaassen S.; Limongelli G.; Loeys B.; Mogensen J.; Olivotto I.; Pantazis A.; Sharma S.; Van Tintelen J. P.; Ware J. S.; Kaski J. P. ESC Scientific Document Group. 2023 ESC Guidelines for the Management of Cardiomyopathies. Eur. Heart J. 2023, 44 (37), 3503–3626. 10.1093/eurheartj/ehad194. PubMed DOI

Weintraub R. G.; Semsarian C.; Macdonald P. Dilated Cardiomyopathy. Lancet 2017, 390 (10092), 400–414. 10.1016/S0140-6736(16)31713-5. PubMed DOI

Merlo M.; Pyxaras S. A.; Pinamonti B.; Barbati G.; Di Lenarda A.; Sinagra G. Prevalence and Prognostic Significance of Left Ventricular Reverse Remodeling in Dilated Cardiomyopathy Receiving Tailored Medical Treatment. J. Am. Coll. Cardiol. 2011, 57 (13), 1468–1476. 10.1016/j.jacc.2010.11.030. PubMed DOI

Merlo M.; Pivetta A.; Pinamonti B.; Stolfo D.; Zecchin M.; Barbati G.; Di Lenarda A.; Sinagra G. Long-Term Prognostic Impact of Therapeutic Strategies in Patients with Idiopathic Dilated Cardiomyopathy: Changing Mortality over the Last 30 Years. Eur. J. Heart Failure 2014, 16 (3), 317–324. 10.1002/ejhf.16. PubMed DOI

Losurdo P.; Stolfo D.; Merlo M.; Barbati G.; Gobbo M.; Gigli M.; Ramani F.; Pinamonti B.; Zecchin M.; Finocchiaro G.; Mestroni L.; Sinagra G. Early Arrhythmic Events in Idiopathic Dilated Cardiomyopathy. JACC Clin. Electrophysiol. 2016, 2 (5), 535–543. 10.1016/j.jacep.2016.05.002. PubMed DOI PMC

Merlo M.; Caiffa T.; Gobbo M.; Adamo L.; Sinagra G. Reverse Remodeling in Dilated Cardiomyopathy: Insights and Future Perspectives. Int. J. Cardiol. Heart Vasc. 2018, 18, 52–57. 10.1016/j.ijcha.2018.02.005. PubMed DOI PMC

Konstam M. A.; Kramer D. G.; Patel A. R.; Maron M. S.; Udelson J. E. Left Ventricular Remodeling in Heart Failure: Current Concepts in Clinical Significance and Assessment. JACC Cardiovasc. Imaging 2011, 4 (1), 98–108. 10.1016/j.jcmg.2010.10.008. PubMed DOI

Matsumura Y.; Hoshikawa-Nagai E.; Kubo T.; Yamasaki N.; Furuno T.; Kitaoka H.; Takata J.; Sugiura T.; Doi Y. Left Ventricular Reverse Remodeling in Long-Term (>12 Years) Survivors with Idiopathic Dilated Cardiomyopathy. Am. J. Cardiol. 2013, 111 (1), 106–110. 10.1016/j.amjcard.2012.08.056. PubMed DOI

Kubanek M.; Sramko M.; Maluskova J.; Kautznerova D.; Weichet J.; Lupinek P.; Vrbska J.; Malek I.; Kautzner J. Novel Predictors of Left Ventricular Reverse Remodeling in Individuals with Recent-Onset Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2013, 61 (1), 54–63. 10.1016/j.jacc.2012.07.072. PubMed DOI

Liu S.; Xia Y.; Liu X.; Wang Y.; Chen Z.; Xie J.; Qian J.; Shen H.; Yang P. In-Depth Proteomic Profiling of Left Ventricular Tissues in Human End-Stage Dilated Cardiomyopathy. Oncotarget 2017, 8 (29), 48321–48332. 10.18632/oncotarget.15689. PubMed DOI PMC

Feig M. A.; Pop C.; Bhardwaj G.; Sappa P. K.; Dörr M.; Ameling S.; Weitmann K.; Nauck M.; Lehnert K.; Beug D.; Kühl U.; Schultheiss H.-P.; Völker U.; Felix S. B.; Hammer E. Global Plasma Protein Profiling Reveals DCM Characteristic Protein Signatures. J. Proteomics 2019, 209, 103508.10.1016/j.jprot.2019.103508. PubMed DOI

Piran S.; Liu P.; Morales A.; Hershberger R. E. Where Genome Meets Phenome: Rationale for Integrating Genetic and Protein Biomarkers in the Diagnosis and Management of Dilated Cardiomyopathy and Heart Failure. J. Am. Coll. Cardiol. 2012, 60 (4), 283–289. 10.1016/j.jacc.2012.05.005. PubMed DOI

McDonagh T. A.; Metra M.; Adamo M.; Gardner R. S.; Baumbach A.; Böhm M.; Burri H.; Butler J.; Čelutkienė J.; Chioncel O.; Cleland J. G. F.; Coats A. J. S.; Crespo-Leiro M. G.; Farmakis D.; Gilard M.; Heymans S.; Hoes A. W.; Jaarsma T.; Jankowska E. A.; Lainscak M.; Lam C. S. P.; Lyon A. R.; McMurray J. J. V.; Mebazaa A.; Mindham R.; Muneretto C.; Francesco Piepoli M.; Price S.; Rosano G. M. C.; Ruschitzka F.; Kathrine Skibelund A. ESC Scientific Document Group. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42 (36), 3599–3726. 10.1093/eurheartj/ehab368. PubMed DOI

Ponikowski P.; Voors A. A.; Anker S. D.; Bueno H.; Cleland J. G. F.; Coats A. J. S.; Falk V.; González-Juanatey J. R.; Harjola V.-P.; Jankowska E. A.; Jessup M.; Linde C.; Nihoyannopoulos P.; Parissis J. T.; Pieske B.; Riley J. P.; Rosano G. M. C.; Ruilope L. M.; Ruschitzka F.; Rutten F. H.; van der Meer P. ESC Scientific Document Group. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37 (27), 2129–2200. 10.1093/eurheartj/ehw128. PubMed DOI

Galderisi M.; Cosyns B.; Edvardsen T.; Cardim N.; Delgado V.; Di Salvo G.; Donal E.; Sade L. E.; Ernande L.; Garbi M.; Grapsa J.; Hagendorff A.; Kamp O.; Magne J.; Santoro C.; Stefanidis A.; Lancellotti P.; Popescu B.; Habib G. Standardization of Adult Transthoracic Echocardiography Reporting in Agreement with Recent Chamber Quantification, Diastolic Function, and Heart Valve Disease Recommendations: An Expert Consensus Document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18 (12), 1301–1310. 10.1093/ehjci/jex244. PubMed DOI

Lang R. M.; Badano L. P.; Mor-Avi V.; Afilalo J.; Armstrong A.; Ernande L.; Flachskampf F. A.; Foster E.; Goldstein S. A.; Kuznetsova T.; Lancellotti P.; Muraru D.; Picard M. H.; Rietzschel E. R.; Rudski L.; Spencer K. T.; Tsang W.; Voigt J.-U. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28 (1), 1–39.e14. 10.1016/j.echo.2014.10.003. PubMed DOI

Masuda T.; Tomita M.; Ishihama Y. Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. J. Proteome Res. 2008, 7 (2), 731–740. 10.1021/pr700658q. PubMed DOI

Cox J.; Mann M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008, 26 (12), 1367–1372. 10.1038/nbt.1511. PubMed DOI

Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; Walzer M.; Wang S.; Brazma A.; Vizcaíno J. A. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50 (D1), D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC

Tyanova S.; Temu T.; Sinitcyn P.; Carlson A.; Hein M. Y.; Geiger T.; Mann M.; Cox J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods 2016, 13 (9), 731–740. 10.1038/nmeth.3901. PubMed DOI

Huang D. W.; Sherman B. T.; Lempicki R. A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4 (1), 44–57. 10.1038/nprot.2008.211. PubMed DOI

Sherman B. T.; Hao M.; Qiu J.; Jiao X.; Baseler M. W.; Lane H. C.; Imamichi T.; Chang W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50 (W1), W216–W221. 10.1093/nar/gkac194. PubMed DOI PMC

Shannon P.; Markiel A.; Ozier O.; Baliga N. S.; Wang J. T.; Ramage D.; Amin N.; Schwikowski B.; Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13 (11), 2498–2504. 10.1101/gr.1239303. PubMed DOI PMC

Doncheva N. T.; Morris J. H.; Gorodkin J.; Jensen L. J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18 (2), 623–632. 10.1021/acs.jproteome.8b00702. PubMed DOI PMC

Mobini R.; Maschke H.; Waagstein F. New Insights into the Pathogenesis of Dilated Cardiomyopathy: Possible Underlying Autoimmune Mechanisms and Therapy. Autoimmun. Rev. 2004, 3 (4), 277–284. 10.1016/j.autrev.2003.10.005. PubMed DOI

Zwaka T. P.; Manolov D.; Özdemir C.; Marx N.; Kaya Z.; Kochs M.; Höher M.; Hombach V.; Torzewski J. Complement and Dilated Cardiomyopathy: A Role of Sublytic Terminal Complement Complex-Induced Tumor Necrosis Factor-α Synthesis in Cardiac Myocytes. Am. J. Pathol. 2002, 161 (2), 449–457. 10.1016/S0002-9440(10)64201-0. PubMed DOI PMC

Warraich R. S.; Noutsias M.; Kasac I.; Seeberg B.; Dunn M. J.; Schultheiss H.-P.; Yacoub M. H.; Kuhl U. Immunoglobulin G3 Cardiac Myosin Autoantibodies Correlate with Left Ventricular Dysfunction in Patients with Dilated Cardiomyopathy: Immunoglobulin G3 and Clinical Correlates. Am. Heart J. 2002, 143 (6), 1076–1084. 10.1067/mhj.2002.124406. PubMed DOI

Nakayama T.; Sugano Y.; Yokokawa T.; Nagai T.; Matsuyama T.; Ohta-Ogo K.; Ikeda Y.; Ishibashi-Ueda H.; Nakatani T.; Ohte N.; Yasuda S.; Anzai T. Clinical Impact of the Presence of Macrophages in Endomyocardial Biopsies of Patients with Dilated Cardiomyopathy. Eur. J. Heart Failure 2017, 19 (4), 490–498. 10.1002/ejhf.767. PubMed DOI

Zimmermann O.; Bienek-Ziolkowski M.; Wolf B.; Vetter M.; Baur R.; Mailänder V.; Hombach V.; Torzewski J. Myocardial Inflammation and Non-Ischaemic Heart Failure: Is There a Role for C-Reactive Protein?. Basic Res. Cardiol. 2009, 104 (5), 591–599. 10.1007/s00395-009-0026-2. PubMed DOI

Zhang J.; Cheng L.; Li Z.; Li H.; Liu Y.; Zhan H.; Xu H.; Huang Y.; Feng F.; Li Y. Immune cells and related cytokines in dilated cardiomyopathy. Biomed. Pharmacother. 2024, 171, 116159.10.1016/j.biopha.2024.116159. PubMed DOI

Kotby A. A.; Abdel Aziz M. M.; El Guindy W. M.; Moneer A. N. Can Serum Tenascin-C Be Used as a Marker of Inflammation in Patients with Dilated Cardiomyopathy?. Int. J. Pediatr. 2013, 2013, 608563.10.1155/2013/608563. PubMed DOI PMC

Sarli B.; Topsakal R.; Kaya E. G.; Akpek M.; Lam Y. Y.; Kaya M. G. Tenascin-C as Predictor of Left Ventricular Remodeling and Mortality in Patients with Dilated Cardiomyopathy. J. Invest. Med. 2013, 61 (4), 728–732. 10.2310/JIM.0b013e3182880c11. PubMed DOI

Yokokawa T.; Sugano Y.; Nakayama T.; Nagai T.; Matsuyama T.; Ohta-Ogo K.; Ikeda Y.; Ishibashi-Ueda H.; Nakatani T.; Yasuda S.; Takeishi Y.; Ogawa H.; Anzai T. Significance of Myocardial tenascin-C Expression in Left Ventricular Remodelling and Long-term Outcome in Patients with Dilated Cardiomyopathy. Eur. J. Heart Failure 2016, 18 (4), 375–385. 10.1002/ejhf.464. PubMed DOI PMC

Ahmed S.; Ahmed A.; Rådegran G. Plasma Tumour and Metabolism Related Biomarkers AMBP, LPL and Glyoxalase I Differentiate Heart Failure with Preserved Ejection Fraction with Pulmonary Hypertension from Pulmonary Arterial Hypertension. Int. J. Cardiol. 2021, 345, 68–76. 10.1016/j.ijcard.2021.10.136. PubMed DOI

Mazzone M.; La Sala M.; Portale G.; Ursella S.; Forte P.; Carbone L.; Testa A.; Pignataro G.; Covino M.; Gentiloni Silveri N. Review of Dilated Cardiomyopathies. Dilated Cardiomyopathies and Altered Prothrombotic State: A Point of View of the Literature. Panminerva Med. 2005, 47 (3), 157–167. PubMed

Turhan H.; Aksoy Y.; Senen K.; Yetkin E. Activation of Coagulation System in Dilated Cardiomyopathy: Comparison of Patients with and without Left Ventricular Thrombus. Coron. Artery Dis. 2004, 15 (5), 265.10.1097/01.mca.0000135596.54871.6f. PubMed DOI

Bergman D.; Halje M.; Nordin M.; Engström W. Insulin-Like Growth Factor 2 in Development and Disease: A Mini-Review. Gerontology 2013, 59 (3), 240–249. 10.1159/000343995. PubMed DOI

Zaina S.; Pettersson L.; Thomsen A. B.; Chai C.-M.; Qi Z.; Thyberg J.; Nilsson J. Shortened Life Span, Bradycardia, and Hypotension in Mice with Targeted Expression of an Igf2 Transgene in Smooth Muscle Cells. Endocrinology 2003, 144 (6), 2695–2703. 10.1210/en.2002-220944. PubMed DOI

Santiago C. F.; Huttner I. G.; Fatkin D. Titin-Related Cardiomyopathy: Is It a Distinct Disease?. Curr. Cardiol. Rep. 2022, 24 (9), 1069–1075. 10.1007/s11886-022-01726-0. PubMed DOI

Herman D. S.; Lam L.; Taylor M. R. G.; Wang L.; Teekakirikul P.; Christodoulou D.; Conner L.; DePalma S. R.; McDonough B.; Sparks E.; Teodorescu D. L.; Cirino A. L.; Banner N. R.; Pennell D. J.; Graw S.; Merlo M.; Di Lenarda A.; Sinagra G.; Bos J. M.; Ackerman M. J.; Mitchell R. N.; Murry C. E.; Lakdawala N. K.; Ho C. Y.; Barton P. J. R.; Cook S. A.; Mestroni L.; Seidman J. G.; Seidman C. E. Truncations of Titin Causing Dilated Cardiomyopathy. N. Engl. J. Med. 2012, 366 (7), 619–628. 10.1056/NEJMoa1110186. PubMed DOI PMC

Rehulkova H.; Rehulka P.; Myslivcova Fucikova A.; Stulik J.; Pudil R. Identification of Novel Biomarker Candidates for Hypertrophic Cardiomyopathy and Other Cardiovascular Diseases Leading to Heart Failure. Physiol. Res. 2016, 65 (5), 751–762. 10.33549/physiolres.933253. PubMed DOI

Huang Y.; Xia J.; Zheng J.; Geng B.; Liu P.; Yu F.; Liu B.; Zhang H.; Xu M.; Ye P.; Zhu Y.; Xu Q.; Wang X.; Kong W. Deficiency of Cartilage Oligomeric Matrix Protein Causes Dilated Cardiomyopathy. Basic Res. Cardiol. 2013, 108 (5), 374.10.1007/s00395-013-0374-9. PubMed DOI

Argun M.; Baykan A.; Narin F.; Özyurt A.; Pamukçu O. ¨.; Elmalı F.; Üzüm K.; Narin N. Plasma Gelsolin as a Biomarker of Acute Rheumatic Carditis. Cardiol. Young 2015, 25 (7), 1276–1280. 10.1017/S1047951114002327. PubMed DOI

Li H.; Zhang F.; Zhang D.; Tian X. Changes of Serum Ficolin-3 and C5b-9 in Patients with Heart Failure. Pak. J. Med. Sci. 2021, 37 (7), 1860–1864. 10.12669/pjms.37.7.4151. PubMed DOI PMC

Wang L.; Du A.; Lu Y.; Zhao Y.; Qiu M.; Su Z.; Shu H.; Shen H.; Sun W.; Kong X. Peptidase Inhibitor 16 Attenuates Left Ventricular Injury and Remodeling After Myocardial Infarction by Inhibiting the HDAC1-Wnt3a-β-Catenin Signaling Axis. J. Am. Heart Assoc. 2023, 12 (10), e02886610.1161/JAHA.122.028866. PubMed DOI PMC

Zhang Y.; Zhou X.; Krepinsky J. C.; Wang C.; Segbo J.; Zheng F. Association Study between Fibronectin and Coronary Heart Disease. Clin. Chem. Lab. Med. 2006, 44 (1), 37–42. 10.1515/CCLM.2006.008. PubMed DOI

Franz M.; Berndt A.; Neri D.; Galler K.; Grün K.; Porrmann C.; Reinbothe F.; Mall G.; Schlattmann P.; Renner A.; Figulla H. R.; Jung C.; Küthe F. Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, B+ Tenascin-C and ED-A+ Fibronectin in Dilated Cardiomyopathy: Potential Impact on Disease Progression and Patients’ Prognosis. Int. J. Cardiol. 2013, 168 (6), 5344–5351. 10.1016/j.ijcard.2013.08.005. PubMed DOI

Ji J.; Qian L.; Zhu Y.; Jiang Y.; Guo J.; Wu Y.; Yang Z.; Yao Y.; Ma G. Kallistatin/Serpina3c Inhibits Cardiac Fibrosis after Myocardial Infarction by Regulating Glycolysis via Nr4a1 Activation. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868 (9), 166441.10.1016/j.bbadis.2022.166441. PubMed DOI

Sweet M. E.; Cocciolo A.; Slavov D.; Jones K. L.; Sweet J. R.; Graw S. L.; Reece T. B.; Ambardekar A. V.; Bristow M. R.; Mestroni L.; Taylor M. R. G. Transcriptome Analysis of Human Heart Failure Reveals Dysregulated Cell Adhesion in Dilated Cardiomyopathy and Activated Immune Pathways in Ischemic Heart Failure. BMC Genom. 2018, 19 (1), 812.10.1186/s12864-018-5213-9. PubMed DOI PMC

Wang Z.; Xia Q.; Su W.; Cao M.; Sun Y.; Zhang M.; Chen W.; Jiang T. Exploring the Communal Pathogenesis, Ferroptosis Mechanism, and Potential Therapeutic Targets of Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy via a Microarray Data Analysis. Front. Cardiovasc. Med. 2022, 9, 824756.10.3389/fcvm.2022.824756. PubMed DOI PMC

Rueda F.; Borràs E.; García-García C.; Iborra-Egea O.; Revuelta-López E.; Harjola V.-P.; Cediel G.; Lassus J.; Tarvasmäki T.; Mebazaa A.; Sabidó E.; Bayés-Genís A. Protein-Based Cardiogenic Shock Patient Classifier. Eur. Heart J. 2019, 40 (32), 2684–2694. 10.1093/eurheartj/ehz294. PubMed DOI

van Deursen V. M.; Damman K.; Hillege H. L.; van Beek A. P.; van Veldhuisen D. J.; Voors A. A. Abnormal Liver Function in Relation to Hemodynamic Profile in Heart Failure Patients. J. Card. Failure 2010, 16 (1), 84–90. 10.1016/j.cardfail.2009.08.002. PubMed DOI

van Deursen V. M.; Edwards C.; Cotter G.; Davison B. A.; Damman K.; Teerlink J. R.; Metra M.; Felker G. M.; Ponikowski P.; Unemori E.; Severin T.; Voors A. A. Liver Function, In-Hospital, and Post-Discharge Clinical Outcome in Patients With Acute Heart Failure—Results From the Relaxin for the Treatment of Patients With Acute Heart Failure Study. J. Card. Failure 2014, 20 (6), 407–413. 10.1016/j.cardfail.2014.03.003. PubMed DOI

Niazy N.; Mrozek L.; Barth M.; Immohr M. B.; Kalampokas N.; Saeed D.; Aubin H.; Sugimura Y.; Westenfeld R.; Boeken U.; Lichtenberg A.; Akhyari P. Altered mRNA Expression of Interleukin-1 Receptors in Myocardial Tissue of Patients with Left Ventricular Assist Device Support. J. Clin. Med. 2021, 10 (21), 4856.10.3390/jcm10214856. PubMed DOI PMC

Zhao Y.; Pan B.; Lv X.; Chen C.; Li K.; Wang Y.; Liu J. Ferroptosis: Roles and Molecular Mechanisms in Diabetic Cardiomyopathy. Front. Endocrinol. 2023, 14, 1140644.10.3389/fendo.2023.1140644. PubMed DOI PMC

Roberts L. M.; Buford T. W. Lipopolysaccharide Binding Protein Is Associated with CVD Risk in Older Adults. Aging Clin. Exp. Res. 2021, 33 (6), 1651–1658. 10.1007/s40520-020-01684-z. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...