Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration

. 2024 Feb 13 ; 9 (6) : 6184-6218. [epub] 20240131

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38371801

Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.

Zobrazit více v PubMed

Lu Y.; Mai Z.; Cui L.; Zhao X. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration. Stem Cell Res. Ther 2023, 14 (1), 55.10.1186/s13287-023-03275-x. PubMed DOI PMC

Tang Q.; et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials 2022, 280, 121320.10.1016/j.biomaterials.2021.121320. PubMed DOI

Théry C. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles 2018, 7 (1), 1535750.10.1080/20013078.2018.1535750. PubMed DOI PMC

Dyball L. E.; Smales C. M. Exosomes: Biogenesis, targeting, characterization and their potential as ‘Plug & Play’ vaccine platforms. Biotechnol J. 2022, 17 (11), 2100646.10.1002/biot.202100646. PubMed DOI

Thakur A.; et al. Therapeutic Values of Exosomes in Cosmetics, Skin Care, Tissue Regeneration, and Dermatological Diseases. Cosmetics 2023, 10 (2), 65.10.3390/cosmetics10020065. DOI

Wang X.; Tian L.; Lu J.; Ng I. O.-L. Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022, 11 (1), 54.10.1038/s41389-022-00431-5. PubMed DOI PMC

Kalluri R.; LeBleu V. S. The biology, function, and biomedical applications of exosomes. Science (1979) 2020, 367 (6478), eaau6977.10.1126/science.aau6977. PubMed DOI PMC

Tricarico C.; Clancy J.; D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases 2017, 8 (4), 220–232. 10.1080/21541248.2016.1215283. PubMed DOI PMC

Doyle L.; Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8 (7), 727.10.3390/cells8070727. PubMed DOI PMC

Kakarla R.; Hur J.; Kim Y. J.; Kim J.; Chwae Y.-J. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol. Med. 2020, 52 (1), 1–6. 10.1038/s12276-019-0362-8. PubMed DOI PMC

Di Bella M. A. Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. Biology (Basel) 2022, 11 (6), 804.10.3390/biology11060804. PubMed DOI PMC

Dinescu S. Exosomes as Part of the Human Adipose-Derived Stem Cells Secretome- Opening New Perspectives for Cell-Free Regenerative Applications. Adv. Exp. Med. Biol . 2020, 1312, 139–163. 10.1007/5584_2020_588. PubMed DOI

Tenchov R.; Sasso J. M.; Wang X.; Liaw W.-S.; Chen C.-A.; Zhou Q. A. Exosomes—Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano 2022, 16 (11), 17802–17846. 10.1021/acsnano.2c08774. PubMed DOI PMC

Xie Y.; Guan Q.; Guo J.; Chen Y.; Yin Y.; Han X. Hydrogels for Exosome Delivery in Biomedical Applications. Gels 2022, 8 (6), 328.10.3390/gels8060328. PubMed DOI PMC

Deng H.; Wang J.; An R. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023, 14, 1.10.3389/fphar.2023.1131001. PubMed DOI PMC

Guo L.; et al. Chitosan hydrogel, as a biological macromolecule-based drug delivery system for exosomes and microvesicles in regenerative medicine: a mini review. Cellulose 2022, 29 (3), 1315–1330. 10.1007/s10570-021-04330-7. DOI

Ma S.; et al. Improved intracellular delivery of exosomes by surface modification with fluorinated peptide dendrimers for promoting angiogenesis and migration of HUVECs. RSC Adv. 2023, 13 (17), 11269–11277. 10.1039/D3RA00300K. PubMed DOI PMC

Colombo M.; Raposo G.; Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev Biol. 2014, 30 (1), 255–289. 10.1146/annurev-cellbio-101512-122326. PubMed DOI

Juan T.; Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018, 74, 66–77. 10.1016/j.semcdb.2017.08.022. PubMed DOI

Baietti M. F.; et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 2012, 14 (7), 677–685. 10.1038/ncb2502. PubMed DOI

Juan T.; Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018, 74, 66–77. 10.1016/j.semcdb.2017.08.022. PubMed DOI

Kalluri R.; LeBleu V. S. The biology, function, and biomedical applications of exosomes. Science (1979) 2020, 367 (6478), eaau6977.10.1126/science.aau6977. PubMed DOI PMC

Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin Cell Biol. 2011, 23 (4), 452–457. 10.1016/j.ceb.2011.04.008. PubMed DOI PMC

Perez-Hernandez D.; et al. The Intracellular Interactome of Tetraspanin-enriched Microdomains Reveals Their Function as Sorting Machineries toward Exosomes. J. Biol. Chem. 2013, 288 (17), 11649–11661. 10.1074/jbc.M112.445304. PubMed DOI PMC

Andreu Z.; Yanez-Mo M. Tetraspanins in Extracellular Vesicle Formation and Function. Front Immunol 2014, 5, 1.10.3389/fimmu.2014.00442. PubMed DOI PMC

Nazarenko I.; et al. Cell Surface Tetraspanin Tspan8 Contributes to Molecular Pathways of Exosome-Induced Endothelial Cell Activation. Cancer Res. 2010, 70 (4), 1668–1678. 10.1158/0008-5472.CAN-09-2470. PubMed DOI

Chairoungdua A.; Smith D. L.; Pochard P.; Hull M.; Caplan M. J. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 2010, 190 (6), 1079–1091. 10.1083/jcb.201002049. PubMed DOI PMC

Bissig C.; Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 2014, 24 (1), 19–25. 10.1016/j.tcb.2013.10.009. PubMed DOI

Géminard C.; de Gassart A.; Blanc L.; Vidal M. Degradation of AP2 During Reticulocyte Maturation Enhances Binding of Hsc70 and Alix to a Common Site on TfR for Sorting into Exosomes. Traffic 2004, 5 (3), 181–193. 10.1111/j.1600-0854.2004.0167.x. PubMed DOI

Raposo G.; Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200 (4), 373–383. 10.1083/jcb.201211138. PubMed DOI PMC

Curtaz C. J.; et al. Analysis of microRNAs in Exosomes of Breast Cancer Patients in Search of Molecular Prognostic Factors in Brain Metastases. Int. J. Mol. Sci. 2022, 23 (7), 3683.10.3390/ijms23073683. PubMed DOI PMC

Ju C.; Liu D. Exosomal microRNAs from Mesenchymal Stem Cells: Novel Therapeutic Effect in Wound Healing. Tissue Eng. Regen Med. 2023, 20 (5), 647–660. 10.1007/s13770-023-00542-z. PubMed DOI PMC

Villarroya-Beltri C.; et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 2013, 4 (1), 2980.10.1038/ncomms3980. PubMed DOI PMC

Katakowski M.; et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013, 335 (1), 201–204. 10.1016/j.canlet.2013.02.019. PubMed DOI PMC

Kosaka N.; Iguchi H.; Yoshioka Y.; Takeshita F.; Matsuki Y.; Ochiya T. Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells. J. Biol. Chem. 2010, 285 (23), 17442–17452. 10.1074/jbc.M110.107821. PubMed DOI PMC

Gibbings D. J.; Ciaudo C.; Erhardt M.; Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 2009, 11 (9), 1143–1149. 10.1038/ncb1929. PubMed DOI

O’Brien K.; Breyne K.; Ughetto S.; Laurent L. C.; Breakefield X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 2020, 21 (10), 585–606. 10.1038/s41580-020-0251-y. PubMed DOI PMC

Ashley J.; Cordy B.; Lucia D.; Fradkin L. G.; Budnik V.; Thomson T. Retrovirus-like Gag Protein Arc1 Binds RNA and Traffics across Synaptic Boutons. Cell 2018, 172 (1–2), 262–274. 10.1016/j.cell.2017.12.022. PubMed DOI PMC

Carnino J. M.; Ni K.; Jin Y. Post-translational Modification Regulates Formation and Cargo-Loading of Extracellular Vesicles. Front Immunol 2020, 11, 1.10.3389/fimmu.2020.00948. PubMed DOI PMC

Wei H.; et al. Regulation of exosome production and cargo sorting. Int. J. Biol. Sci. 2021, 17 (1), 163–177. 10.7150/ijbs.53671. PubMed DOI PMC

Villarroya-Beltri C.; et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 2016, 7 (1), 13588.10.1038/ncomms13588. PubMed DOI PMC

Kunadt M.; et al. Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation. Acta Neuropathol 2015, 129 (5), 695–713. 10.1007/s00401-015-1408-1. PubMed DOI PMC

van Niel G.; D’Angelo G.; Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19 (4), 213–228. 10.1038/nrm.2017.125. PubMed DOI

Drobiova H.; Sindhu S.; Ahmad R.; Haddad D.; Al-Mulla F.; Al Madhoun A. Wharton’s jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol. 2023, 11, 1.10.3389/fcell.2023.1211217. PubMed DOI PMC

Harding C. V.; Heuser J. E.; Stahl P. D. Exosomes: Looking back three decades and into the future. J. Cell Biol. 2013, 200 (4), 367–371. 10.1083/jcb.201212113. PubMed DOI PMC

Zhang Y.; Liu Y.; Liu H.; Tang W. H. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019, 9 (1), 19.10.1186/s13578-019-0282-2. PubMed DOI PMC

Ma Y.; Brocchini S.; Williams G. R. Extracellular vesicle-embedded materials. J. Controlled Release 2023, 361, 280–296. 10.1016/j.jconrel.2023.07.059. PubMed DOI

Poon I. K. H. Moving beyond size and phosphatidylserine exposure: evidence for a diversity of apoptotic cell-derived extracellular vesicles in vitro. J. Extracell Vesicles 2019, 8 (1), 1608786.10.1080/20013078.2019.1608786. PubMed DOI PMC

Caruso S.; Poon I. K. H. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front Immunol 2018, 9, 1.10.3389/fimmu.2018.01486. PubMed DOI PMC

Hartmann R. C.; Conley C. L.; Poole E. L. STUDIES ON THE INITIATION OF BLOOD COAGULATION. III. THE CLOTTING PROPERTIES OF CANINE PLATELET FREE PLASMA. J. Clin. Invest. 1952, 31, 685.10.1172/JCI102650. PubMed DOI PMC

Wolf P. The Nature and Significance of Platelet Products in Human Plasma. Br. J. Hamaetol. 1967, 13 (3), 269–288. 10.1111/j.1365-2141.1967.tb08741.x. PubMed DOI

Dannies P. S.; Rudnick M. S.; Fishkes H.; Rudnick G. Spiperone: evidence for uptake into secretory granules. Proc. Natl. Acad. Sci. U. S. A. 1984, 81 (6), 1867–1870. 10.1073/pnas.81.6.1867. PubMed DOI PMC

Pan B. T.; Teng K.; Wu C.; Adam M.; Johnstone R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 1985, 101 (3), 942–948. 10.1083/jcb.101.3.942. PubMed DOI PMC

György B.; et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011, 68 (16), 2667–2688. 10.1007/s00018-011-0689-3. PubMed DOI PMC

Azmi A. S.; Bao B.; Sarkar F. H. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer and Metastasis Reviews 2013, 32 (3–4), 623–642. 10.1007/s10555-013-9441-9. PubMed DOI PMC

van Niel G.; Porto-Carreiro I.; Simoes S.; Raposo G. Exosomes: A Common Pathway for a Specialized Function. Journal of Biochemistry 2006, 140 (1), 13–21. 10.1093/jb/mvj128. PubMed DOI

Valadi H.; Ekström K.; Bossios A.; Sjöstrand M.; Lee J. J.; Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9 (6), 654–659. 10.1038/ncb1596. PubMed DOI

D’Asti E.; Garnier D.; Lee T. H.; Montermini L.; Meehan B.; Rak J. Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 2012, 3, 1.10.3389/fphys.2012.00294. PubMed DOI PMC

Mathivanan S.; Ji H.; Simpson R. J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics 2010, 73 (10), 1907–1920. 10.1016/j.jprot.2010.06.006. PubMed DOI

Poliakov A.; Spilman M.; Dokland T.; Amling C. L.; Mobley J. A. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 2009, 69 (2), 159–167. 10.1002/pros.20860. PubMed DOI

Minciacchi V. R.; Freeman M. R.; Di Vizio D. Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Semin Cell Dev Biol. 2015, 40, 41–51. 10.1016/j.semcdb.2015.02.010. PubMed DOI PMC

Chu Z.; Witte D. P.; Qi X. Saposin C-LBPA interaction in late-endosomes/lysosomes. Exp. Cell Res. 2005, 303 (2), 300–307. 10.1016/j.yexcr.2004.09.029. PubMed DOI

Vidal M.; Sainte-Marie J.; Philippot J. R.; Bienvenue A. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: Evidence precluding a role for ?aminophospholipid translocase?. J. Cell Physiol 1989, 140 (3), 455–462. 10.1002/jcp.1041400308. PubMed DOI

Bissig C.; et al. Viral Infection Controlled by a Calcium-Dependent Lipid-Binding Module in ALIX. Dev Cell 2013, 25 (4), 364–373. 10.1016/j.devcel.2013.04.003. PubMed DOI PMC

LAULAGNIER K.; MOTTA C.; HAMDI S.; ROY S.; FAUVELLE F.; PAGEAUX J.-F.; KOBAYASHI T.; SALLES J.-P.; PERRET B.; BONNEROT C.; RECORD M.; et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 2004, 380 (1), 161–171. 10.1042/bj20031594. PubMed DOI PMC

Huotari J.; Helenius A. Endosome maturation. EMBO J. 2011, 30 (17), 3481–3500. 10.1038/emboj.2011.286. PubMed DOI PMC

Simbari F. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. J. Extracell Vesicles 2016, 5 (1), 1.10.3402/jev.v5.30741. PubMed DOI PMC

LAULAGNIER K.; MOTTA C.; HAMDI S.; ROY S.; FAUVELLE F.; PAGEAUX J.-F.; KOBAYASHI T.; SALLES J.-P.; PERRET B.; BONNEROT C.; RECORD M.; et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 2004, 380 (1), 161–171. 10.1042/bj20031594. PubMed DOI PMC

Jalabert A.; et al. Profiling of ob/ob mice skeletal muscle exosome-like vesicles demonstrates combined action of miRNAs, proteins and lipids to modulate lipid homeostasis in recipient cells. Sci. Rep 2021, 11 (1), 21626.10.1038/s41598-021-00983-3. PubMed DOI PMC

Liu Y. Perivascular Adipose-Derived Exosomes Reduce Foam Cell Formation by Regulating Expression of Cholesterol Transporters. Front Cardiovasc Med. 2021, 8, 1.10.3389/fcvm.2021.697510. PubMed DOI PMC

Doyle L.; Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8 (7), 727.10.3390/cells8070727. PubMed DOI PMC

Akers J. C.; Gonda D.; Kim R.; Carter B. S.; Chen C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol 2013, 113 (1), 1–11. 10.1007/s11060-013-1084-8. PubMed DOI PMC

Muralidharan-Chari V.; et al. ARF6-Regulated Shedding of Tumor Cell-Derived Plasma Membrane Microvesicles. Curr. Biol. 2009, 19 (22), 1875–1885. 10.1016/j.cub.2009.09.059. PubMed DOI PMC

Zou X.; et al. Advances in biological functions and applications of apoptotic vesicles. Cell Communication and Signaling 2023, 21 (1), 260.10.1186/s12964-023-01251-9. PubMed DOI PMC

Davidson S. M.; et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc. Res. 2023, 119 (1), 45–63. 10.1093/cvr/cvac031. PubMed DOI PMC

Paolini L.; et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci. Rep 2016, 6 (1), 23550.10.1038/srep23550. PubMed DOI PMC

Böing A. N.; van der Pol E.; Grootemaat A. E.; Coumans F. A. W.; Sturk A.; Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell Vesicles 2014, 3 (1), 1.10.3402/jev.v3.23430. PubMed DOI PMC

Kang Y.-T.; Kim Y. J.; Bu J.; Cho Y.-H.; Han S.-W.; Moon B.-I. High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale 2017, 9 (36), 13495–13505. 10.1039/C7NR04557C. PubMed DOI

Théry C.; Amigorena S.; Raposo G.; Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr. Protoc Cell Biol. 2006, 30 (1), 1.10.1002/0471143030.cb0322s30. PubMed DOI

Arraud N.; et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. Journal of Thrombosis and Haemostasis 2014, 12 (5), 614–627. 10.1111/jth.12554. PubMed DOI

Ridolfi A.; et al. AFM-Based High-Throughput Nanomechanical Screening of Single Extracellular Vesicles. Anal. Chem. 2020, 92 (15), 10274–10282. 10.1021/acs.analchem.9b05716. PubMed DOI

Nolan J. P. Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects,. Curr. Protoc Cytom 2015, 73 (1), 13.14.1.10.1002/0471142956.cy1314s73. PubMed DOI

Libregts S. F. W. M.; Arkesteijn G. J. A.; Németh A.; Nolte-’t Hoen E. N. M.; Wauben M. H. M. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest,. Journal of Thrombosis and Haemostasis 2018, 16 (7), 1423–1436. 10.1111/jth.14154. PubMed DOI

Welsh J. A. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell Vesicles 2020, 9 (1), 1.10.1080/20013078.2020.1713526. PubMed DOI PMC

Koganti S.; Eleftheriou D.; Gurung R.; Hong Y.; Brogan P.; Rakhit R. D. Persistent circulating platelet and endothelial derived microparticle signature may explain on-going pro-thrombogenicity after acute coronary syndrome. Thromb Res. 2021, 206, 60–65. 10.1016/j.thromres.2021.07.018. PubMed DOI

Kränkel N.; et al. Extracellular vesicle species differentially affect endothelial cell functions and differentially respond to exercise training in patients with chronic coronary syndromes. Eur. J. Prev Cardiol 2021, 28 (13), 1467–1474. 10.1177/2047487320919894. PubMed DOI

Amabile N.; et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Heart J. 2014, 35 (42), 2972–2979. 10.1093/eurheartj/ehu153. PubMed DOI PMC

Anselmo A.; et al. Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur. Heart J. 2021, 42 (28), 2780–2792. 10.1093/eurheartj/ehab247. PubMed DOI

Takov K.; et al. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Res. Cardiol 2020, 115 (3), 26.10.1007/s00395-020-0785-3. PubMed DOI PMC

Boyden S. THE, CHEMOTACTIC EFFECT OF MIXTURES OF ANTIBODY AND ANTIGEN ON POLYMORPHONUCLEAR LEUCOCYTES. J. Exp Med. 1962, 115 (3), 453–466. 10.1084/jem.115.3.453. PubMed DOI PMC

Liang C.-C.; Park A. Y.; Guan J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc 2007, 2 (2), 329–333. 10.1038/nprot.2007.30. PubMed DOI

Baker M.; et al. Use of the mouse aortic ring assay to study angiogenesis. Nat. Protoc 2012, 7 (1), 89–104. 10.1038/nprot.2011.435. PubMed DOI

Todorova D.; Simoncini S.; Lacroix R.; Sabatier F.; Dignat-George F. Extracellular Vesicles in Angiogenesis. Circ. Res. 2017, 120 (10), 1658–1673. 10.1161/CIRCRESAHA.117.309681. PubMed DOI PMC

Ribeiro-Rodrigues T. M.; et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovasc. Res. 2017, 113 (11), 1338–1350. 10.1093/cvr/cvx118. PubMed DOI

Gimona M.; et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 2021, 23 (5), 373–380. 10.1016/j.jcyt.2021.01.001. PubMed DOI

Ferguson S. W.; Nguyen J. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. J. Controlled Release 2016, 228, 179–190. 10.1016/j.jconrel.2016.02.037. PubMed DOI

Xiong H. Recent Progress in Detection and Profiling of Cancer Cell-Derived Exosomes. Small 2021, 17 (35), 2007971.10.1002/smll.202007971. PubMed DOI

Willis G. R.; Kourembanas S.; Mitsialis S. A. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front Cardiovasc Med. 2017, 4, 1.10.3389/fcvm.2017.00063. PubMed DOI PMC

Barrera-Ramirez J.; et al. Micro-RNA Profiling of Exosomes from Marrow-Derived Mesenchymal Stromal Cells in Patients with Acute Myeloid Leukemia: Implications in Leukemogenesis. Stem Cell Rev. Rep 2017, 13 (6), 817–825. 10.1007/s12015-017-9762-0. PubMed DOI PMC

Kim C. W.; Lee H. M.; Lee T. H.; Kang C.; Kleinman H. K.; Gho Y. S. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002, 62 (21), 6312–7. PubMed

Deo R. C. Machine Learning in Medicine. Circulation 2015, 132 (20), 1920–1930. 10.1161/CIRCULATIONAHA.115.001593. PubMed DOI PMC

Gulshan V.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316 (22), 2402.10.1001/jama.2016.17216. PubMed DOI

Ko J.; et al. Combining Machine Learning and Nanofluidic Technology To Diagnose Pancreatic Cancer Using Exosomes. ACS Nano 2017, 11 (11), 11182–11193. 10.1021/acsnano.7b05503. PubMed DOI

Kennel P. J.; et al. Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection. Journal of Heart and Lung Transplantation 2018, 37 (3), 409–417. 10.1016/j.healun.2017.07.012. PubMed DOI

Wu N.; Zhang X.-Y.; Xia J.; Li X.; Yang T.; Wang J.-H. Ratiometric 3D DNA Machine Combined with Machine Learning Algorithm for Ultrasensitive and High-Precision Screening of Early Urinary Diseases. ACS Nano 2021, 15 (12), 19522–19534. 10.1021/acsnano.1c06429. PubMed DOI

Park J.; et al. Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy Data for Lung Cancer Diagnosis. Anal. Chem. 2017, 89 (12), 6695–6701. 10.1021/acs.analchem.7b00911. PubMed DOI

Zlotogorski-Hurvitz A.; Dekel B. Z.; Malonek D.; Yahalom R.; Vered M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J. Cancer Res. Clin Oncol 2019, 145 (3), 685–694. 10.1007/s00432-018-02827-6. PubMed DOI PMC

Ho T.-C.; et al. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27 (9), 2902.10.3390/molecules27092902. PubMed DOI PMC

Dror M.; Elsabee M. Z.; Berry G. C. Interpenetrating Polymer Networks for Biological Applications. Biomater Med. Devices Artif Organs 1979, 7 (1), 31–39. 10.3109/10731197909119370. PubMed DOI

WICHTERLE O.; LÍM D. Hydrophilic Gels for Biological Use. Nature 1960, 185 (4706), 117–118. 10.1038/185117a0. DOI

Wanasekara N.; Chen M.; Chalivendra V.; Bhowmick S. Investigation of the Young’s Modulus of Fibers in an Electrospun PCL Scaffold Using AFM and its Correlation to cell Attachment. MEMS and Nanotechnology 2011, 2, 157–162. 10.1007/978-1-4419-8825-6_22. DOI

Peppas N. A.; Hilt J. Z.; Khademhosseini A.; Langer R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18 (11), 1345–1360. 10.1002/adma.200501612. DOI

Bellamkonda R.; Ranieri J. P.; Bouche N.; Aebischer P. Hydrogel-based three-dimensional matrix for neural cells. J. Biomed Mater. Res. 1995, 29 (5), 663–671. 10.1002/jbm.820290514. PubMed DOI

Madduma-Bandarage U. S. K.; Madihally S. V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2021, 138 (19), 50376.10.1002/app.50376. DOI

Choi H.; Choi Y.; Yim H. Y.; Mirzaaghasi A.; Yoo J.-K.; Choi C. Biodistribution of Exosomes and Engineering Strategies for Targeted Delivery of Therapeutic Exosomes. Tissue Eng. Regen Med. 2021, 18 (4), 499–511. 10.1007/s13770-021-00361-0. PubMed DOI PMC

Khayambashi P.; Iyer J.; Pillai S.; Upadhyay A.; Zhang Y.; Tran S. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021, 22 (2), 684.10.3390/ijms22020684. PubMed DOI PMC

Yerneni S. S.; et al. Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels. Biomacromolecules 2022, 23 (4), 1713–1722. 10.1021/acs.biomac.1c01636. PubMed DOI

Shi Q. GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model. Front Physiol 2017, 8, 1.10.3389/fphys.2017.00904. PubMed DOI PMC

Gbenebor O. P.; Adeosun S. O.; Lawal G. I.; Jun S.; Olaleye S. A. Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton. Engineering Science and Technology, an International Journal 2017, 20 (3), 1155–1165. 10.1016/j.jestch.2017.05.002. DOI

Peppas N. A.; Merrill E. W. Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. J. Biomed Mater. Res. 1977, 11 (3), 423–434. 10.1002/jbm.820110309. PubMed DOI

Zhang Y.; Liu Y.; Liu J.; Guo P.; Heng L. Super water absorbency OMMT/PAA hydrogel materials with excellent mechanical properties. RSC Adv. 2017, 7 (24), 14504–14510. 10.1039/C7RA00372B. DOI

Ezati M.; Safavipour H.; Houshmand B.; Faghihi S. Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration. Prog. Biomater 2018, 7 (3), 225–237. 10.1007/s40204-018-0098-x. PubMed DOI PMC

Ranjha N. M.; Mudassir J.; Akhtar N. Methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels for controlled drug delivery. J. Solgel Sci. Technol. 2008, 47 (1), 23–30. 10.1007/s10971-008-1750-z. DOI

Hahn S. K.; Park J. K.; Tomimatsu T.; Shimoboji T. Synthesis and degradation test of hyaluronic acid hydrogels. Int. J. Biol. Macromol. 2007, 40 (4), 374–380. 10.1016/j.ijbiomac.2006.09.019. PubMed DOI

Yean L.; Bunel C.; Vairon J.-P. Reversible immobilization of drugs on a hydrogel matrix, 2†. Diffusion of free chloramphenicol from poly(2-hydroxyethyl methacrylate) hydrogels. Makromol. Chem. 1990, 191 (5), 1119–1129. 10.1002/macp.1990.021910514. DOI

Song S. Z.; Cardinalx J. R.; Kim S. H.; Kim S. W. Progestin Permeation Through Polymer Membranes V: Progesterone Release from Monolithic Hydrogel Devices. J. Pharm. Sci. 1981, 70 (2), 216–219. 10.1002/jps.2600700226. PubMed DOI

Korsmeyer R. W.; Peppas N. A. Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J. Membr. Sci. 1981, 9 (3), 211–227. 10.1016/S0376-7388(00)80265-3. DOI

Soon-Shiong P.; et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994, 343 (8903), 950–951. 10.1016/S0140-6736(94)90067-1. PubMed DOI

Rowley J. A.; Madlambayan G.; Mooney D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20 (1), 45–53. 10.1016/S0142-9612(98)00107-0. PubMed DOI

Liu T. Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels. Front Bioeng Biotechnol 2021, 9, 1.10.3389/fbioe.2021.810155. PubMed DOI PMC

Lin C.-Y.; Battistoni C. M.; Liu J. C. Redox-Responsive Hydrogels with Decoupled Initial Stiffness and Degradation. Biomacromolecules 2021, 22 (12), 5270–5280. 10.1021/acs.biomac.1c01180. PubMed DOI

Miao L.; et al. Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm- co -HEMAPCL). Carbohydr. Polym. 2016, 137, 433–440. 10.1016/j.carbpol.2015.11.001. PubMed DOI

Kouchak M. In Situ Gelling Systems for Drug Delivery. Jundishapur J. Nat. Pharm. Prod 2014, 9 (3), e20126.10.17795/jjnpp-20126. PubMed DOI PMC

Wu W.-C.; et al. Theoretical and Experimental Studies on the Surface Structures of Conjugated Rod-Coil Block Copolymer Brushes. Langmuir 2007, 23 (5), 2805–2814. 10.1021/la0631769. PubMed DOI

Yan K.; et al. A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater Sci. 2020, 8 (11), 3193–3201. 10.1039/D0BM00425A. PubMed DOI

Haraguchi K.; Takehisa T. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002, 14 (16), 1120.10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9. DOI

Lu Z.-R.; Kopečková P.; Kopeček J. Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab′ Fragment. Macromol. Biosci 2003, 3 (6), 296–300. 10.1002/mabi.200390039. DOI

Wen X.; Zhang Y.; Chen D.; Zhao Q. Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy. ACS Appl. Mater. Interfaces 2022, 14 (35), 40344–40350. 10.1021/acsami.2c11693. PubMed DOI

Peppas N. A.; Stauffer S. R. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J. Controlled Release 1991, 16 (3), 305–310. 10.1016/0168-3659(91)90007-Z. DOI

Hu Y.; Han W.; Huang G.; Zhou W.; Yang Z.; Wang C. Highly Stretchable, Mechanically Strong, Tough, and Self-Recoverable Nanocomposite Hydrogels by Introducing Strong Ionic Coordination Interactions. Macromol. Chem. Phys. 2016, 217 (24), 2717–2725. 10.1002/macp.201600398. DOI

Wang X.; Wei C.; Cao B.; Jiang L.; Hou Y.; Chang J. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement. ACS Appl. Mater. Interfaces 2018, 10 (21), 18338–18350. 10.1021/acsami.8b04116. PubMed DOI

Wei Q.; Duan J.; Ma G.; Zhang W.; Wang Q.; Hu Z. Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing. J. Mater. Chem. B 2019, 7 (13), 2220–2225. 10.1039/C8TB03147A. PubMed DOI

Iwanaga S.; et al. Design and Fabrication of Mature Engineered Pre-Cardiac Tissue Utilizing 3D Bioprinting Technology and Enzymatically Crosslinking Hydrogel. Materials 2022, 15 (22), 7928.10.3390/ma15227928. PubMed DOI PMC

Shen S.; Shen J.; Shen H.; Wu C.; Chen P.; Wang Q. Dual-Enzyme Crosslinking and Post-polymerization for Printing of Polysaccharide-Polymer Hydrogel. Front Chem. 2020, 8, 1.10.3389/fchem.2020.00036. PubMed DOI PMC

Bashir S.; et al. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020, 12 (11), 2702.10.3390/polym12112702. PubMed DOI PMC

Zhang Y.; Huang Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front Chem. 2021, 8, 1.10.3389/fchem.2020.615665. PubMed DOI PMC

Benwood C.; et al. Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering 2021, 8 (2), 27.10.3390/bioengineering8020027. PubMed DOI PMC

Wan Ali W. N. S.; Ahmad Tarmidzi N. A. A Rare Case of Contact Allergy towards Impression Compound Material. Eur. J. Dent 2021, 15 (04), 798–801. 10.1055/s-0041-1731584. PubMed DOI PMC

Hashemi A.; Ezati M.; Mohammadnejad J.; Houshmand B.; Faghihi S. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. Int. J. Nanomedicine 2020, 15, 4471–4481. 10.2147/IJN.S248927. PubMed DOI PMC

Van Den Bulcke A. I.; Bogdanov B.; De Rooze N.; Schacht E. H.; Cornelissen M.; Berghmans H. Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules 2000, 1 (1), 31–38. 10.1021/bm990017d. PubMed DOI

Dienes J.; et al. Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function. ACS Biomater Sci. Eng. 2021, 7 (4), 1587–1599. 10.1021/acsbiomaterials.0c01751. PubMed DOI

Berkovitch Y.; Seliktar D. Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis. Int. J. Pharm. 2017, 523 (2), 545–555. 10.1016/j.ijpharm.2016.11.032. PubMed DOI

Park S.; Park K. Engineered Polymeric Hydrogels for 3D Tissue Models. Polymers (Basel) 2016, 8 (1), 23.10.3390/polym8010023. PubMed DOI PMC

Ho T.-C.; et al. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27 (9), 2902.10.3390/molecules27092902. PubMed DOI PMC

Iizawa T.; Taketa H.; Maruta M.; Ishido T.; Gotoh T.; Sakohara S. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J. Appl. Polym. Sci. 2007, 104 (2), 842–850. 10.1002/app.25605. DOI

Cui L.; Jia J.; Guo Y.; Liu Y.; Zhu P. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr. Polym. 2014, 99, 31–38. 10.1016/j.carbpol.2013.08.048. PubMed DOI

Liu Z.; Luo Y.; Zhang K. P(AAm-co-MAA) semi-IPN hybrid hydrogels in the presence of PANI and MWNTs-COOH: improved swelling behavior and mechanical properties. J. Biomater Sci. Polym. Ed 2008, 19 (11), 1503–1520. 10.1163/156856208786140373. PubMed DOI

Agrawal S. K.; Sanabria-DeLong N.; Tew G. N.; Bhatia S. R. Rheological characterization of biocompatible associative polymer hydrogels with crystalline and amorphous endblocks. J. Mater. Res. 2006, 21 (8), 2118–2125. 10.1557/jmr.2006.0261. DOI

Jin F.; et al. Impact of Entanglement on Folding of Semicrystalline Polymer during Crystallization. ACS Macro Lett. 2023, 12 (8), 1138–1143. 10.1021/acsmacrolett.3c00364. PubMed DOI

Shi S.; Xu T.; Wang D.; Oeser M. The Difference in Molecular Orientation and Interphase Structure of SiO2/Shape Memory Polyurethane in Original, Programmed and Recovered States during Shape Memory Process. Polymers (Basel) 2020, 12 (9), 1994.10.3390/polym12091994. PubMed DOI PMC

Zhang H.; Han D.; Yan Q.; Fortin D.; Xia H.; Zhao Y. Light-healable hard hydrogels through photothermally induced melting-crystallization phase transition. J. Mater. Chem. A 2014, 2 (33), 13373–13379. 10.1039/C4TA02463J. DOI

Kurt B.; Gulyuz U.; Demir D. D.; Okay O. High-strength semi-crystalline hydrogels with self-healing and shape memory functions. Eur. Polym. J. 2016, 81, 12–23. 10.1016/j.eurpolymj.2016.05.019. DOI

Wei D.; et al. Semicrystalline Hydrophobically Associated Hydrogels with Integrated High Performances. ACS Appl. Mater. Interfaces 2018, 10 (3), 2946–2956. 10.1021/acsami.7b15843. PubMed DOI

Bustamante-Torres M.; Romero-Fierro D.; Arcentales-Vera B.; Palomino K.; Magaña H.; Bucio E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7 (4), 182.10.3390/gels7040182. PubMed DOI PMC

Tang S.; Zhao L.; Yuan J.; Chen Y.; Leng Y.. Physical hydrogels based on natural polymers. In Hydrogels Based on Natural Polymers; Elsevier, 2020; pp 51–89.10.1016/B978-0-12-816421-1.00003-3. DOI

Kang H.-S.; Park S.-H.; Lee Y.-G.; Son T.-I. Polyelectrolyte complex hydrogel composed of chitosan and poly(γ-glutamic acid) for biological application: Preparation, physical properties, and cytocompatibility. J. Appl. Polym. Sci. 2007, 103 (1), 386–394. 10.1002/app.24623. DOI

Huglin M. B.; Rego J. M. Thermodynamic properties of copolymeric hydrogels based on 2-hydroxyethyl methacrylate and a zwitterionic methacrylate. Colloid Polym. Sci. 1992, 270 (3), 234–242. 10.1007/BF00655475. DOI

Nuhn L.; et al. Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules 2014, 15 (11), 4111–4121. 10.1021/bm501148y. PubMed DOI

Hiratani T.; Kose O.; Hamad W. Y.; MacLachlan M. J. Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure. Mater. Horiz 2018, 5 (6), 1076–1081. 10.1039/C8MH00586A. DOI

Hawes C. S.; et al. A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chem. Commun. 2017, 53 (44), 5989–5992. 10.1039/C7CC03482B. PubMed DOI

Selegård R.; Aronsson C.; Brommesson C.; Dånmark S.; Aili D. Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel. Sci. Rep 2017, 7 (1), 7013.10.1038/s41598-017-06457-9. PubMed DOI PMC

Li Y.; Zhou C.; Xu L.; Yao F.; Cen L.; Fu G. D. Stimuli-responsive hydrogels prepared by simultaneous ‘click chemistry’ and metal-ligand coordination. RSC Adv. 2015, 5 (24), 18242–18251. 10.1039/C4RA11946K. DOI

Chander S.; Kulkarni G. T.; Dhiman N.; Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem. 2021, 9, 1.10.3389/fchem.2021.573748. PubMed DOI PMC

Ju Y.; Hu Y.; Yang P.; Xie X.; Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio 2023, 18, 100522.10.1016/j.mtbio.2022.100522. PubMed DOI PMC

Gan J.; Sun L.; Chen G.; Ma W.; Zhao Y.; Sun L. Mesenchymal Stem Cell Exosomes Encapsulated Oral Microcapsules for Acute Colitis Treatment. Adv. Healthc Mater. 2022, 11 (17), 2201105.10.1002/adhm.202201105. PubMed DOI

Feng Q. Dynamic Nanocomposite Microgel Assembly with Microporosity, Injectability, Tissue-Adhesion, and Sustained Drug Release Promotes Articular Cartilage Repair and Regeneration. Adv. Healthc Mater. 2022, 11 (8), 2102395.10.1002/adhm.202102395. PubMed DOI

Hao Y.; Zhang W.; Qin J.; Tan L.; Luo Y.; Chen H. Biological Cardiac Patch Based on Extracellular Vesicles and Extracellular Matrix for Regulating Injury-Related Microenvironment and Promoting Cardiac Tissue Recovery. ACS Appl. Bio Mater. 2022, 5 (11), 5218–5230. 10.1021/acsabm.2c00659. PubMed DOI

Yang Y.; et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr. Polym. 2022, 283, 119161.10.1016/j.carbpol.2022.119161. PubMed DOI

Quan L.; Xin Y.; Wu X.; Ao Q. Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers (Basel) 2022, 14 (11), 2184.10.3390/polym14112184. PubMed DOI PMC

Yang P.; Ju Y.; Hu Y.; Xie X.; Fang B.; Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater Res. 2023, 27 (1), 1.10.1186/s40824-022-00338-7. PubMed DOI PMC

Chen J.; et al. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater 2022, 146, 119–130. 10.1016/j.actbio.2022.04.041. PubMed DOI

Ju Y.; Hu Y.; Yang P.; Xie X.; Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio 2023, 18, 100522.10.1016/j.mtbio.2022.100522. PubMed DOI PMC

Gil-Castell O.; Ontoria-Oviedo I.; Badia J. D.; Amaro-Prellezo E.; Sepúlveda P.; Ribes-Greus A. Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. React. Funct Polym. 2022, 170, 105064.10.1016/j.reactfunctpolym.2021.105064. DOI

Liu H.; et al. An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules 2023, 24 (1), 86–97. 10.1021/acs.biomac.2c00920. PubMed DOI

Yang Q.; et al. Exosomes-loaded electroconductive nerve dressing for nerve regeneration and pain relief against diabetic peripheral nerve injury. Bioact Mater. 2023, 26, 194–215. 10.1016/j.bioactmat.2023.02.024. PubMed DOI PMC

Uddin M. S.; Ju J. Effect of crosslinking agents on drug distribution in chitosan hydrogel for targeted drug delivery to treat cancer. Journal of Polymer Research 2020, 27 (3), 81.10.1007/s10965-020-02059-8. DOI

Osswald C. R.; Kang-Mieler J. J. Controlled and Extended In Vitro Release of Bioactive Anti-Vascular Endothelial Growth Factors from a Microsphere-Hydrogel Drug Delivery System. Curr. Eye Res. 2016, 41 (9), 1216–1222. 10.3109/02713683.2015.1101140. PubMed DOI

Liu J.; Tian B.; Liu Y.; Wan J.-B. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int. J. Mol. Sci. 2021, 22 (24), 13516.10.3390/ijms222413516. PubMed DOI PMC

Boffito M. Hybrid Injectable Sol-Gel Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying pH-Sensitive Mesoporous Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Front Bioeng Biotechnol 2020, 8, 1.10.3389/fbioe.2020.00384. PubMed DOI PMC

Jalababu R.; Rao K. S. V. K.; Rao B. S.; Reddy K. V. N. S. Dual responsive GG-g-PNPA/PIPAM based novel hydrogels for the controlled release of anti- cancer agent and their swelling and release kinetics. Journal of Polymer Research 2020, 27 (4), 83.10.1007/s10965-020-02061-0. DOI

Ovando-Medina V. M.; Reyes-Palacios G. A.; García-Montejano L. A.; Antonio-Carmona I. D.; Martínez-Gutiérrez H. Electroactive polyacrylamide/chitosan/polypyrrole hydrogel for captopril release controlled by electricity. J. Vinyl Addit. Technol. 2021, 27 (4), 679–690. 10.1002/vnl.21842. DOI

Pochan D. J.; Pakstis L.; Ozbas B.; Nowak A. P.; Deming T. J. SANS and Cryo-TEM Study of Self-Assembled Diblock Copolypeptide Hydrogels with Rich Nano- through Microscale Morphology. Macromolecules 2002, 35 (14), 5358–5360. 10.1021/ma025526d. DOI

Auriemma G.; Russo P.; Del Gaudio P.; García-González C. A.; Landín M.; Aquino R. P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25 (14), 3156.10.3390/molecules25143156. PubMed DOI PMC

Zhang Y. S.; Khademhosseini A. Advances in engineering hydrogels. Science (1979) 2017, 356 (6337), 3627.10.1126/science.aaf3627. PubMed DOI PMC

Annabi N.; et al. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Adv. Mater. 2014, 26 (1), 85–124. 10.1002/adma.201303233. PubMed DOI PMC

Vasanthan K. S.; Srinivasan V.; Pandita D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regenerative Med. 2021, 16 (8), 775–802. 10.2217/rme-2021-0021. PubMed DOI

Wang R.; Wang Y.; Yang H.; Zhao C.; Pan J. Research progress of self-assembling peptide hydrogels in repairing cartilage defects. Front Mater. 2022, 9, 1.10.3389/fmats.2022.1022386. DOI

Liu X. Three-dimensional-printed collagen/chitosan/secretome derived from HUCMSCs scaffolds for efficient neural network reconstruction in canines with traumatic brain injury. Regen Biomater 2022, 9, rbac043.10.1093/rb/rbac043. PubMed DOI PMC

Ning L.; et al. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 2018, 10 (3), 035014.10.1088/1758-5090/aacd30. PubMed DOI

Nguyen L. T. B.; Hsu C.-C.; Ye H.; Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration. Biomedical Materials 2020, 15 (5), 055005.10.1088/1748-605X/ab8c43. PubMed DOI

Li J.; et al. Dual-enzymatically cross-linked gelatin hydrogel promotes neural differentiation and neurotrophin secretion of bone marrow-derived mesenchymal stem cells for treatment of moderate traumatic brain injury. Int. J. Biol. Macromol. 2021, 187, 200–213. 10.1016/j.ijbiomac.2021.07.111. PubMed DOI

Finklea F. B.; Tian Y.; Kerscher P.; Seeto W. J.; Ellis M. E.; Lipke E. A. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 2021, 274, 120818.10.1016/j.biomaterials.2021.120818. PubMed DOI

Long G.; et al. Engineering of injectable hydrogels associate with Adipose-Derived stem cells delivery for anti-cardiac hypertrophy agents. Drug Deliv 2021, 28 (1), 1334–1341. 10.1080/10717544.2021.1943060. PubMed DOI PMC

Kim K. S.; et al. Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction. Biofabrication 2021, 13 (4), 045014.10.1088/1758-5090/ac1e78. PubMed DOI

Hu Y.-F.; et al. Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats. Nat. Biomed Eng. 2022, 6 (4), 421–434. 10.1038/s41551-021-00812-y. PubMed DOI

Ravi S.; Chokkakula L. P. P.; Giri P. S.; Korra G.; Dey S. R.; Rath S. N. 3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces 2023, 15 (16), 19921–19936. 10.1021/acsami.3c00389. PubMed DOI

Yan J.; et al. Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res. Ther 2021, 12 (1), 572.10.1186/s13287-021-02638-6. PubMed DOI PMC

Bordini E. A. F.; et al. Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments. ACS Appl. Bio Mater. 2021, 4 (9), 6993–7006. 10.1021/acsabm.1c00620. PubMed DOI

Liu C.; et al. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. Int. J. Nanomedicine 2021, 16, 8417–8432. 10.2147/IJN.S339500. PubMed DOI PMC

Zhang H. 3D Printing Hydrogel Scaffolds with Nanohydroxyapatite Gradient to Effectively Repair Osteochondral Defects in Rats. Adv. Funct Mater. 2021, 31 (1), 2006697.10.1002/adfm.202006697. DOI

Ding X.; et al. 3D-Printed Porous Scaffolds of Hydrogels Modified with TGF-β1 Binding Peptides to Promote In Vivo Cartilage Regeneration and Animal Gait Restoration. ACS Appl. Mater. Interfaces 2022, 14 (14), 15982–15995. 10.1021/acsami.2c00761. PubMed DOI

Riau A. K.; Ong H. S.; Yam G. H. F.; Mehta J. S. Sustained Delivery System for Stem Cell-Derived Exosomes. Front Pharmacol 2019, 10, 1.10.3389/fphar.2019.01368. PubMed DOI PMC

Khayambashi P.; Iyer J.; Pillai S.; Upadhyay A.; Zhang Y.; Tran S. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021, 22 (2), 684.10.3390/ijms22020684. PubMed DOI PMC

Khayambashi P.; Iyer J.; Pillai S.; Upadhyay A.; Zhang Y.; Tran S. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021, 22 (2), 684.10.3390/ijms22020684. PubMed DOI PMC

Thomas V.; Yallapu M. M.; Sreedhar B.; Bajpai S. K. Breathing-in/breathing-out approach to preparing nanosilver-loaded hydrogels: Highly efficient antibacterial nanocomposites. J. Appl. Polym. Sci. 2009, 111 (2), 934–944. 10.1002/app.29018. DOI

Fan L. Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Advanced Science 2022, 9 (13), 2105586.10.1002/advs.202105586. PubMed DOI PMC

Gerlach J. Q.; Griffin M. D. Getting to know the extracellular vesicle glycome. Mol. Biosyst 2016, 12 (4), 1071–1081. 10.1039/C5MB00835B. PubMed DOI

Li M.; Ke Q.-F.; Tao S.-C.; Guo S.-C.; Rui B.-Y.; Guo Y.-P. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126–3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J. Mater. Chem. B 2016, 4 (42), 6830–6841. 10.1039/C6TB01560C. PubMed DOI

Henriques-Antunes H.; et al. The Kinetics of Small Extracellular Vesicle Delivery Impacts Skin Tissue Regeneration. ACS Nano 2019, 13 (8), 8694–8707. 10.1021/acsnano.9b00376. PubMed DOI

Vasco C.; et al. The Role of Adhesion Molecules and Extracellular Vesicles in an In Vitro Model of the Blood-Brain Barrier for Metastatic Disease. Cancers (Basel) 2023, 15 (11), 3045.10.3390/cancers15113045. PubMed DOI PMC

Hao D.; et al. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022, 12 (13), 6021–6037. 10.7150/thno.70448. PubMed DOI PMC

Li J.; Mooney D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1 (12), 16071.10.1038/natrevmats.2016.71. PubMed DOI PMC

Siepmann J.; Siepmann F. Modeling of diffusion controlled drug delivery. J. Controlled Release 2012, 161 (2), 351–362. 10.1016/j.jconrel.2011.10.006. PubMed DOI

Xu L.; Liu Y.; Tang L.; Xiao H.; Yang Z.; Wang S. Preparation of Recombinant Human Collagen III Protein Hydrogels with Sustained Release of Extracellular Vesicles for Skin Wound Healing. Int. J. Mol. Sci. 2022, 23 (11), 6289.10.3390/ijms23116289. PubMed DOI PMC

Amsden B. Solute Diffusion within Hydrogels. Mechanisms and Models. Macromolecules 1998, 31 (23), 8382–8395. 10.1021/ma980765f. DOI

Huang C.-C.; et al. 3D Encapsulation and tethering of functionally engineered extracellular vesicles to hydrogels. Acta Biomater 2021, 126, 199–210. 10.1016/j.actbio.2021.03.030. PubMed DOI PMC

Ma Y.; Brocchini S.; Williams G. R. Extracellular vesicle-embedded materials. J. Controlled Release 2023, 361, 280–296. 10.1016/j.jconrel.2023.07.059. PubMed DOI

Henise J.; Yao B.; Ashley G. W.; Santi D. V. Autoclave sterilization of tetra-polyethylene glycol hydrogel biomaterials with β-eliminative crosslinks. Engineering Reports 2020, 2 (1), e12091.10.1002/eng2.12091. DOI

Wei C.; Song J.; Tan H. A paintable ophthalmic adhesive with customizable properties based on symmetrical/asymmetrical cross-linking. Biomater Sci. 2021, 9 (22), 7522–7533. 10.1039/D1BM01197A. PubMed DOI

Man K.; et al. Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repair. Int. J. Mol. Sci. 2022, 23 (2), 832.10.3390/ijms23020832. PubMed DOI PMC

Yang S.; et al. MSC-derived sEV-loaded hyaluronan hydrogel promotes scarless skin healing by immunomodulation in a large skin wound model. Biomedical Materials 2022, 17 (3), 034104.10.1088/1748-605X/ac68bc. PubMed DOI

Toth M.; Fridman R.. Assessment of Gelatinases (MMP-2 and MMP-9) by Gelatin Zymography,. In Metastasis Research Protocols; Humana Press; pp 163–174.10.1385/1-59259-136-1:163. PubMed DOI PMC

Tang J. Injection-Free Delivery of MSC-Derived Extracellular Vesicles for Myocardial Infarction Therapeutics. Adv. Healthc Mater. 2022, 11 (5), 2100312.10.1002/adhm.202100312. PubMed DOI

Wang C.; et al. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics 2019, 9 (1), 65–76. 10.7150/thno.29766. PubMed DOI PMC

Henriques-Antunes H.; et al. The Kinetics of Small Extracellular Vesicle Delivery Impacts Skin Tissue Regeneration. ACS Nano 2019, 13 (8), 8694–8707. 10.1021/acsnano.9b00376. PubMed DOI

Zhang Y.; et al. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS Appl. Mater. Interfaces 2021, 13 (16), 18472–18487. 10.1021/acsami.0c22671. PubMed DOI

Han W. J.; Lee J. H.; Lee J.-K.; Choi H. J. Remote-controllable, tough, ultrastretchable, and magneto-sensitive nanocomposite hydrogels with homogeneous nanoparticle dispersion as biomedical actuators, and their tuned structure, properties, and performances. Compos B Eng. 2022, 236, 109802.10.1016/j.compositesb.2022.109802. DOI

Kubota T.; Kurashina Y.; Zhao J.; Ando K.; Onoe H. Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Mater. Des 2021, 203, 109580.10.1016/j.matdes.2021.109580. DOI

Kasiński A.; et al. Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems—Synthesis and Characterization. Int. J. Mol. Sci. 2023, 24 (8), 6906.10.3390/ijms24086906. PubMed DOI PMC

Zhou Y.; Liu G.; Guo S. Advances in ultrasound-responsive hydrogels for biomedical applications. J. Mater. Chem. B 2022, 10 (21), 3947–3958. 10.1039/D2TB00541G. PubMed DOI

Huebsch N.; et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (27), 9762–9767. 10.1073/pnas.1405469111. PubMed DOI PMC

Zhou Y.; et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res. Ther 2022, 13 (1), 407.10.1186/s13287-022-02980-3. PubMed DOI PMC

Wang Y.; et al. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater 2022, 147, 342–355. 10.1016/j.actbio.2022.05.018. PubMed DOI

Xu Y.; et al. miR-126–3p-loaded small extracellular vesicles secreted by urine-derived stem cells released from a phototriggered imine crosslink hydrogel could enhance vaginal epithelization after vaginoplasty. Stem Cell Res. Ther 2022, 13 (1), 331.10.1186/s13287-022-03003-x. PubMed DOI PMC

Razzauti A.; Lobo T.; Laurent P. Cilia-Derived Extracellular Vesicles in Caenorhabditis Elegans: In Vivo Imaging and Quantification of Extracellular Vesicle Release and Capture. Methods Mol. Biol. 2023, 2668, 277–299. 10.1007/978-1-0716-3203-1_19. PubMed DOI

Fan X.; et al. ‘Y’-shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polym. Chem. 2017, 8 (36), 5611–5620. 10.1039/C7PY00999B. DOI

Suwardi A. Machine Learning-Driven Biomaterials Evolution. Adv. Mater. 2022, 34 (1), 2102703.10.1002/adma.202102703. PubMed DOI

Li F.; et al. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (23), 11259–11264. 10.1073/pnas.1903376116. PubMed DOI PMC

Mei Y.; et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 2010, 9 (9), 768–778. 10.1038/nmat2812. PubMed DOI PMC

Yang J.; et al. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays. Biomaterials 2010, 31 (34), 8827–8838. 10.1016/j.biomaterials.2010.08.028. PubMed DOI PMC

Kwaria R. J.; Mondarte E. A. Q.; Tahara H.; Chang R.; Hayashi T. Data-Driven Prediction of Protein Adsorption on Self-Assembled Monolayers toward Material Screening and Design. ACS Biomater Sci. Eng. 2020, 6 (9), 4949–4956. 10.1021/acsbiomaterials.0c01008. PubMed DOI

Gubskaya A. V.; et al. Logical Analysis of Data in Structure-Activity Investigation of Polymeric Gene Delivery. Macromol. Theory Simul 2011, 20 (4), 275–285. 10.1002/mats.201000087. PubMed DOI PMC

Rostam H. M.; et al. Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo. Matter 2020, 2 (6), 1564–1581. 10.1016/j.matt.2020.03.018. DOI

Lee J.; Oh S. J.; An S. H.; Kim W.-D.; Kim S.-H. Machine learning-based design strategy for 3D printable bioink: elastic modulus and yield stress determine printability. Biofabrication 2020, 12 (3), 035018.10.1088/1758-5090/ab8707. PubMed DOI

Ruberu K.; et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl. Mater. Today 2021, 22, 100914.10.1016/j.apmt.2020.100914. DOI

Paxton N.; Smolan W.; Böck T.; Melchels F.; Groll J.; Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 2017, 9 (4), 044107.10.1088/1758-5090/aa8dd8. PubMed DOI

Mas-Bargues C.; et al. Extracellular Vesicles from Healthy Cells Improves Cell Function and Stemness in Premature Senescent Stem Cells by miR-302b and HIF-1α Activation. Biomolecules 2020, 10 (6), 957.10.3390/biom10060957. PubMed DOI PMC

Bellmunt À. M.; López-Puerto L.; Lorente J.; Closa D. Involvement of extracellular vesicles in the macrophage-tumor cell communication in head and neck squamous cell carcinoma. PLoS One 2019, 14 (11), e022471010.1371/journal.pone.0224710. PubMed DOI PMC

Li L.; et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J. Nanobiotechnology 2022, 20 (1), 50.10.1186/s12951-022-01264-5. PubMed DOI PMC

Li Q.; et al. Genetically Engineered Artificial Exosome-Constructed Hydrogel for Ovarian Cancer Therapy. ACS Nano 2023, 17 (11), 10376–10392. 10.1021/acsnano.3c00804. PubMed DOI

Hu M. S.-M.; et al. The Role of Stem Cells During Scarless Skin Wound Healing. Adv. Wound Care (New Rochelle) 2014, 3 (4), 304–314. 10.1089/wound.2013.0471. PubMed DOI PMC

Jeon Y. K.; Jang Y. H.; Yoo D. R.; Kim S. N.; Lee S. K.; Nam M. J. Mesenchymal stem cells’ interaction with skin: Wound-healing effect on fibroblast cells and skin tissue. Wound Repair and Regeneration 2010, 18 (6), 655–661. 10.1111/j.1524-475X.2010.00636.x. PubMed DOI

Liang X.; Ding Y.; Zhang Y.; Tse H.-F.; Lian Q. Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives. Cell Transplant 2014, 23 (9), 1045–1059. 10.3727/096368913X667709. PubMed DOI

Shafei S.; et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. J. Biomed Mater. Res. A 2020, 108 (3), 545–556. 10.1002/jbm.a.36835. PubMed DOI

Maxson S.; Lopez E. A.; Yoo D.; Danilkovitch-Miagkova A.; LeRoux M. A. Concise Review: Role of Mesenchymal Stem Cells in Wound Repair. Stem Cells Transl Med. 2012, 1 (2), 142–149. 10.5966/sctm.2011-0018. PubMed DOI PMC

Ojeh N.; Pastar I.; Tomic-Canic M.; Stojadinovic O. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. Int. J. Mol. Sci. 2015, 16 (10), 25476–25501. 10.3390/ijms161025476. PubMed DOI PMC

Sinno H.; Prakash S. Complements and the Wound Healing Cascade: An Updated Review. Plast Surg Int. 2013, 2013, 1–7. 10.1155/2013/146764. PubMed DOI PMC

Schwab A. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol 2015, 6, 1.10.3389/fmicb.2015.01132. PubMed DOI PMC

Fang S.; et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med. 2016, 5 (10), 1425–1439. 10.5966/sctm.2015-0367. PubMed DOI PMC

Liang X.; Zhang L.; Wang S.; Han Q.; Zhao R. C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci. 2016, 129 (11), 2182–2189. 10.1242/jcs.170373. PubMed DOI

Jiang T.; Wang Z.; Sun J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Res. Ther 2020, 11 (1), 198.10.1186/s13287-020-01723-6. PubMed DOI PMC

Hoang D. H. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front Mol. Biosci 2020, 7, 1.10.3389/fmolb.2020.00119. PubMed DOI PMC

Zhang Y.; et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater. 2023, 26, 323–336. 10.1016/j.bioactmat.2023.01.020. PubMed DOI PMC

Li Q.; et al. MiR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct Target Ther 2023, 8 (1), 62.10.1038/s41392-022-01263-w. PubMed DOI PMC

Jimi E.; Hirata S.; Osawa K.; Terashita M.; Kitamura C.; Fukushima H. The Current and Future Therapies of Bone Regeneration to Repair Bone Defects. Int. J. Dent 2012, 2012, 1–7. 10.1155/2012/148261. PubMed DOI PMC

Sun J.; et al. Engineering preparation and sustained delivery of bone functional exosomes-laden biodegradable hydrogel for in situ bone regeneration. Compos B Eng. 2023, 261, 110803.10.1016/j.compositesb.2023.110803. DOI

Zhang Y.; et al. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS Appl. Mater. Interfaces 2021, 13 (16), 18472–18487. 10.1021/acsami.0c22671. PubMed DOI

Zhu Y.; Jia Y.; Wang Y.; Xu J.; Chai Y. Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes. Stem Cells Transl Med. 2019, 8 (6), 593–605. 10.1002/sctm.18-0199. PubMed DOI PMC

Khazaei F.; Rezakhani L.; Alizadeh M.; Mahdavian E.; Khazaei M. Exosomes and exosome-loaded scaffolds: Characterization and application in modern regenerative medicine. Tissue Cell 2023, 80, 102007.10.1016/j.tice.2022.102007. PubMed DOI

Taylor D. A.; Sampaio L. C.; Gobin A. Building New Hearts: A Review of Trends in Cardiac Tissue Engineering. American Journal of Transplantation 2014, 14 (11), 2448–2459. 10.1111/ajt.12939. PubMed DOI

Liu B.; et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat. Biomed Eng. 2018, 2 (5), 293–303. 10.1038/s41551-018-0229-7. PubMed DOI PMC

Zou Y.; et al. Restoring Cardiac Functions after Myocardial Infarction-Ischemia/Reperfusion via an Exosome Anchoring Conductive Hydrogel. ACS Appl. Mater. Interfaces 2021, 13 (48), 56892–56908. 10.1021/acsami.1c16481. PubMed DOI

Wang L. L.; et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed Eng. 2017, 1 (12), 983–992. 10.1038/s41551-017-0157-y. PubMed DOI PMC

Luo H.; et al. microRNA-423–3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning. Cardiovasc. Res. 2019, 115 (7), 1189–1204. 10.1093/cvr/cvy231. PubMed DOI

Wen Z.; et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res. Ther 2020, 11 (1), 36.10.1186/s13287-020-1563-8. PubMed DOI PMC

Zheng H.; et al. Hemin enhances the cardioprotective effects of mesenchymal stem cell-derived exosomes against infarction via amelioration of cardiomyocyte senescence. J. Nanobiotechnology 2021, 19 (1), 332.10.1186/s12951-021-01077-y. PubMed DOI PMC

Santoso M. R. Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Promote Autophagy for Myocardial Repair. J. Am. Heart Assoc 2020, 9 (6), 1.10.1161/JAHA.119.014345. PubMed DOI PMC

Heris R. M.; et al. The potential use of mesenchymal stem cells and their exosomes in Parkinson’s disease treatment. Stem Cell Res. Ther 2022, 13 (1), 371.10.1186/s13287-022-03050-4. PubMed DOI PMC

Yang C.; et al. Silk Fibroin Hydrogels Could Be Therapeutic Biomaterials for Neurological Diseases. Oxid Med. Cell Longev 2022, 2022, 1–12. 10.1155/2022/2076680. PubMed DOI PMC

Deng Y.; et al. Exosomes derived from microRNA-138–5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J. Biol. Eng. 2019, 13 (1), 71.10.1186/s13036-019-0193-0. PubMed DOI PMC

Xin H.; et al. MicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke 2017, 48 (3), 747–753. 10.1161/STROKEAHA.116.015204. PubMed DOI PMC

Liu X. Hypoxia-pretreated mesenchymal stem cell-derived exosomes-loaded low-temperature extrusion 3D-printed implants for neural regeneration after traumatic brain injury in canines. Front Bioeng Biotechnol 2022, 10, 1.10.3389/fbioe.2022.1025138. PubMed DOI PMC

Zhang Z.-W.; et al. Intravenous infusion of the exosomes derived from human umbilical cord mesenchymal stem cells enhance neurological recovery after traumatic brain injury via suppressing the NF-κB pathway. Open Life Sci. 2022, 17 (1), 189–201. 10.1515/biol-2022-0022. PubMed DOI PMC

Park J. Electrically Conductive Hydrogel Nerve Guidance Conduits for Peripheral Nerve Regeneration. Adv. Funct Mater. 2020, 30 (39), 1.10.1002/adfm.202003759. DOI

Cao J.-Y.; et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics 2021, 11 (11), 5248–5266. 10.7150/thno.54550. PubMed DOI PMC

Cao J.; et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res. Ther 2020, 11 (1), 206.10.1186/s13287-020-01719-2. PubMed DOI PMC

Huang J. Mesenchymal Stem Cells-Derived Exosomes Ameliorate Ischemia/Reperfusion Induced Acute Kidney Injury in a Porcine Model. Front Cell Dev Biol. 2022, 10, 1.10.3389/fcell.2022.899869. PubMed DOI PMC

Yang Z.; et al. 3D-Bioprinted Difunctional Scaffold for In Situ Cartilage Regeneration Based on Aptamer-Directed Cell Recruitment and Growth Factor-Enhanced Cell Chondrogenesis. ACS Appl. Mater. Interfaces 2021, 13 (20), 23369–23383. 10.1021/acsami.1c01844. PubMed DOI

Ma K.; et al. Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J. Nanobiotechnology 2020, 18 (1), 163.10.1186/s12951-020-00708-0. PubMed DOI PMC

DiStefano T. J.; et al. Hydrogel-Embedded Poly(Lactic- co -Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair. Cartilage 2022, 13 (3), 194760352211139.10.1177/19476035221113959. PubMed DOI PMC

Lyu Y.; et al. Injectable Hyaluronic Acid Hydrogel Loaded with Functionalized Human Mesenchymal Stem Cell Aggregates for Repairing Infarcted Myocardium,. ACS Biomater Sci. Eng. 2020, 6 (12), 6926–6937. 10.1021/acsbiomaterials.0c01344. PubMed DOI

Heirani-Tabasi A.; et al. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Biomedical Materials 2021, 16 (5), 055003.10.1088/1748-605X/ac0cbf. PubMed DOI

Sang X.; et al. Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Eng. Regen Med. 2022, 19 (3), 629–642. 10.1007/s13770-022-00437-5. PubMed DOI PMC

Wu X.; Crawford R.; Xiao Y.; Mao X.; Prasadam I. Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration. Cells 2021, 10 (2), 251.10.3390/cells10020251. PubMed DOI PMC

Fan W.-J. Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol. 2022, 10, 1.10.3389/fcell.2022.949690. PubMed DOI PMC

Zhou Y.; et al. Exosomes derived from miR-126–3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Discov 2021, 7 (1), 37.10.1038/s41420-021-00418-y. PubMed DOI PMC

Pishavar E.; et al. Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration. Int. J. Mol. Sci. 2021, 22 (12), 6203.10.3390/ijms22126203. PubMed DOI PMC

Chen M.; Luo D. A CRISPR Path to Cutting-Edge Materials. New England Journal of Medicine 2020, 382 (1), 85–88. 10.1056/NEJMcibr1911506. PubMed DOI

Montoya C.; Du Y.; Gianforcaro A. L.; Orrego S.; Yang M.; Lelkes P. I. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res. 2021, 9 (1), 12.10.1038/s41413-020-00131-z. PubMed DOI PMC

Huang J.; Xiong J.; Yang L.; Zhang J.; Sun S.; Liang Y. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale 2021, 13 (19), 8740–8750. 10.1039/D1NR01314A. PubMed DOI

Xu J.; et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials 2019, 210, 51–61. 10.1016/j.biomaterials.2019.04.031. PubMed DOI

Qiu H.; Liu S.; Wu K.; Zhao R.; Cao L.; Wang H. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review. J. Cosmet Dermatol 2020, 19 (3), 574–581. 10.1111/jocd.13215. PubMed DOI

Safari B.; Aghazadeh M.; Davaran S.; Roshangar L. Exosome-loaded hydrogels: A new cell-free therapeutic approach for skin regeneration. Eur. J. Pharm. Biopharm. 2022, 171, 50–59. 10.1016/j.ejpb.2021.11.002. PubMed DOI

Zhang J.; et al. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics Proteomics Bioinformatics 2015, 13 (1), 17–24. 10.1016/j.gpb.2015.02.001. PubMed DOI PMC

Bari E.; et al. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells 2018, 7 (11), 190.10.3390/cells7110190. PubMed DOI PMC

Bruno S.; Chiabotto G.; Camussi G. Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. Int. J. Mol. Sci. 2020, 21 (12), 4255.10.3390/ijms21124255. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

In Vitro Assessment of Chitosan-PEG Hydrogels Enriched with MSCs-Exosomes for Enhancing Wound Healing

. 2025 May ; 25 (5) : e2400609. [epub] 20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...