Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38371801
PubMed Central
PMC10870307
DOI
10.1021/acsomega.3c08280
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Zobrazit více v PubMed
Lu Y.; Mai Z.; Cui L.; Zhao X. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration. Stem Cell Res. Ther 2023, 14 (1), 55.10.1186/s13287-023-03275-x. PubMed DOI PMC
Tang Q.; et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials 2022, 280, 121320.10.1016/j.biomaterials.2021.121320. PubMed DOI
Théry C. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles 2018, 7 (1), 1535750.10.1080/20013078.2018.1535750. PubMed DOI PMC
Dyball L. E.; Smales C. M. Exosomes: Biogenesis, targeting, characterization and their potential as ‘Plug & Play’ vaccine platforms. Biotechnol J. 2022, 17 (11), 2100646.10.1002/biot.202100646. PubMed DOI
Thakur A.; et al. Therapeutic Values of Exosomes in Cosmetics, Skin Care, Tissue Regeneration, and Dermatological Diseases. Cosmetics 2023, 10 (2), 65.10.3390/cosmetics10020065. DOI
Wang X.; Tian L.; Lu J.; Ng I. O.-L. Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022, 11 (1), 54.10.1038/s41389-022-00431-5. PubMed DOI PMC
Kalluri R.; LeBleu V. S. The biology, function, and biomedical applications of exosomes. Science (1979) 2020, 367 (6478), eaau6977.10.1126/science.aau6977. PubMed DOI PMC
Tricarico C.; Clancy J.; D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases 2017, 8 (4), 220–232. 10.1080/21541248.2016.1215283. PubMed DOI PMC
Doyle L.; Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8 (7), 727.10.3390/cells8070727. PubMed DOI PMC
Kakarla R.; Hur J.; Kim Y. J.; Kim J.; Chwae Y.-J. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol. Med. 2020, 52 (1), 1–6. 10.1038/s12276-019-0362-8. PubMed DOI PMC
Di Bella M. A. Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. Biology (Basel) 2022, 11 (6), 804.10.3390/biology11060804. PubMed DOI PMC
Dinescu S. Exosomes as Part of the Human Adipose-Derived Stem Cells Secretome- Opening New Perspectives for Cell-Free Regenerative Applications. Adv. Exp. Med. Biol . 2020, 1312, 139–163. 10.1007/5584_2020_588. PubMed DOI
Tenchov R.; Sasso J. M.; Wang X.; Liaw W.-S.; Chen C.-A.; Zhou Q. A. Exosomes—Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano 2022, 16 (11), 17802–17846. 10.1021/acsnano.2c08774. PubMed DOI PMC
Xie Y.; Guan Q.; Guo J.; Chen Y.; Yin Y.; Han X. Hydrogels for Exosome Delivery in Biomedical Applications. Gels 2022, 8 (6), 328.10.3390/gels8060328. PubMed DOI PMC
Deng H.; Wang J.; An R. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023, 14, 1.10.3389/fphar.2023.1131001. PubMed DOI PMC
Guo L.; et al. Chitosan hydrogel, as a biological macromolecule-based drug delivery system for exosomes and microvesicles in regenerative medicine: a mini review. Cellulose 2022, 29 (3), 1315–1330. 10.1007/s10570-021-04330-7. DOI
Ma S.; et al. Improved intracellular delivery of exosomes by surface modification with fluorinated peptide dendrimers for promoting angiogenesis and migration of HUVECs. RSC Adv. 2023, 13 (17), 11269–11277. 10.1039/D3RA00300K. PubMed DOI PMC
Colombo M.; Raposo G.; Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev Biol. 2014, 30 (1), 255–289. 10.1146/annurev-cellbio-101512-122326. PubMed DOI
Juan T.; Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018, 74, 66–77. 10.1016/j.semcdb.2017.08.022. PubMed DOI
Baietti M. F.; et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 2012, 14 (7), 677–685. 10.1038/ncb2502. PubMed DOI
Juan T.; Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018, 74, 66–77. 10.1016/j.semcdb.2017.08.022. PubMed DOI
Kalluri R.; LeBleu V. S. The biology, function, and biomedical applications of exosomes. Science (1979) 2020, 367 (6478), eaau6977.10.1126/science.aau6977. PubMed DOI PMC
Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin Cell Biol. 2011, 23 (4), 452–457. 10.1016/j.ceb.2011.04.008. PubMed DOI PMC
Perez-Hernandez D.; et al. The Intracellular Interactome of Tetraspanin-enriched Microdomains Reveals Their Function as Sorting Machineries toward Exosomes. J. Biol. Chem. 2013, 288 (17), 11649–11661. 10.1074/jbc.M112.445304. PubMed DOI PMC
Andreu Z.; Yanez-Mo M. Tetraspanins in Extracellular Vesicle Formation and Function. Front Immunol 2014, 5, 1.10.3389/fimmu.2014.00442. PubMed DOI PMC
Nazarenko I.; et al. Cell Surface Tetraspanin Tspan8 Contributes to Molecular Pathways of Exosome-Induced Endothelial Cell Activation. Cancer Res. 2010, 70 (4), 1668–1678. 10.1158/0008-5472.CAN-09-2470. PubMed DOI
Chairoungdua A.; Smith D. L.; Pochard P.; Hull M.; Caplan M. J. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 2010, 190 (6), 1079–1091. 10.1083/jcb.201002049. PubMed DOI PMC
Bissig C.; Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 2014, 24 (1), 19–25. 10.1016/j.tcb.2013.10.009. PubMed DOI
Géminard C.; de Gassart A.; Blanc L.; Vidal M. Degradation of AP2 During Reticulocyte Maturation Enhances Binding of Hsc70 and Alix to a Common Site on TfR for Sorting into Exosomes. Traffic 2004, 5 (3), 181–193. 10.1111/j.1600-0854.2004.0167.x. PubMed DOI
Raposo G.; Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200 (4), 373–383. 10.1083/jcb.201211138. PubMed DOI PMC
Curtaz C. J.; et al. Analysis of microRNAs in Exosomes of Breast Cancer Patients in Search of Molecular Prognostic Factors in Brain Metastases. Int. J. Mol. Sci. 2022, 23 (7), 3683.10.3390/ijms23073683. PubMed DOI PMC
Ju C.; Liu D. Exosomal microRNAs from Mesenchymal Stem Cells: Novel Therapeutic Effect in Wound Healing. Tissue Eng. Regen Med. 2023, 20 (5), 647–660. 10.1007/s13770-023-00542-z. PubMed DOI PMC
Villarroya-Beltri C.; et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 2013, 4 (1), 2980.10.1038/ncomms3980. PubMed DOI PMC
Katakowski M.; et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013, 335 (1), 201–204. 10.1016/j.canlet.2013.02.019. PubMed DOI PMC
Kosaka N.; Iguchi H.; Yoshioka Y.; Takeshita F.; Matsuki Y.; Ochiya T. Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells. J. Biol. Chem. 2010, 285 (23), 17442–17452. 10.1074/jbc.M110.107821. PubMed DOI PMC
Gibbings D. J.; Ciaudo C.; Erhardt M.; Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 2009, 11 (9), 1143–1149. 10.1038/ncb1929. PubMed DOI
O’Brien K.; Breyne K.; Ughetto S.; Laurent L. C.; Breakefield X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 2020, 21 (10), 585–606. 10.1038/s41580-020-0251-y. PubMed DOI PMC
Ashley J.; Cordy B.; Lucia D.; Fradkin L. G.; Budnik V.; Thomson T. Retrovirus-like Gag Protein Arc1 Binds RNA and Traffics across Synaptic Boutons. Cell 2018, 172 (1–2), 262–274. 10.1016/j.cell.2017.12.022. PubMed DOI PMC
Carnino J. M.; Ni K.; Jin Y. Post-translational Modification Regulates Formation and Cargo-Loading of Extracellular Vesicles. Front Immunol 2020, 11, 1.10.3389/fimmu.2020.00948. PubMed DOI PMC
Wei H.; et al. Regulation of exosome production and cargo sorting. Int. J. Biol. Sci. 2021, 17 (1), 163–177. 10.7150/ijbs.53671. PubMed DOI PMC
Villarroya-Beltri C.; et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 2016, 7 (1), 13588.10.1038/ncomms13588. PubMed DOI PMC
Kunadt M.; et al. Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation. Acta Neuropathol 2015, 129 (5), 695–713. 10.1007/s00401-015-1408-1. PubMed DOI PMC
van Niel G.; D’Angelo G.; Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19 (4), 213–228. 10.1038/nrm.2017.125. PubMed DOI
Drobiova H.; Sindhu S.; Ahmad R.; Haddad D.; Al-Mulla F.; Al Madhoun A. Wharton’s jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol. 2023, 11, 1.10.3389/fcell.2023.1211217. PubMed DOI PMC
Harding C. V.; Heuser J. E.; Stahl P. D. Exosomes: Looking back three decades and into the future. J. Cell Biol. 2013, 200 (4), 367–371. 10.1083/jcb.201212113. PubMed DOI PMC
Zhang Y.; Liu Y.; Liu H.; Tang W. H. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019, 9 (1), 19.10.1186/s13578-019-0282-2. PubMed DOI PMC
Ma Y.; Brocchini S.; Williams G. R. Extracellular vesicle-embedded materials. J. Controlled Release 2023, 361, 280–296. 10.1016/j.jconrel.2023.07.059. PubMed DOI
Poon I. K. H. Moving beyond size and phosphatidylserine exposure: evidence for a diversity of apoptotic cell-derived extracellular vesicles in vitro. J. Extracell Vesicles 2019, 8 (1), 1608786.10.1080/20013078.2019.1608786. PubMed DOI PMC
Caruso S.; Poon I. K. H. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front Immunol 2018, 9, 1.10.3389/fimmu.2018.01486. PubMed DOI PMC
Hartmann R. C.; Conley C. L.; Poole E. L. STUDIES ON THE INITIATION OF BLOOD COAGULATION. III. THE CLOTTING PROPERTIES OF CANINE PLATELET FREE PLASMA. J. Clin. Invest. 1952, 31, 685.10.1172/JCI102650. PubMed DOI PMC
Wolf P. The Nature and Significance of Platelet Products in Human Plasma. Br. J. Hamaetol. 1967, 13 (3), 269–288. 10.1111/j.1365-2141.1967.tb08741.x. PubMed DOI
Dannies P. S.; Rudnick M. S.; Fishkes H.; Rudnick G. Spiperone: evidence for uptake into secretory granules. Proc. Natl. Acad. Sci. U. S. A. 1984, 81 (6), 1867–1870. 10.1073/pnas.81.6.1867. PubMed DOI PMC
Pan B. T.; Teng K.; Wu C.; Adam M.; Johnstone R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 1985, 101 (3), 942–948. 10.1083/jcb.101.3.942. PubMed DOI PMC
György B.; et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011, 68 (16), 2667–2688. 10.1007/s00018-011-0689-3. PubMed DOI PMC
Azmi A. S.; Bao B.; Sarkar F. H. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer and Metastasis Reviews 2013, 32 (3–4), 623–642. 10.1007/s10555-013-9441-9. PubMed DOI PMC
van Niel G.; Porto-Carreiro I.; Simoes S.; Raposo G. Exosomes: A Common Pathway for a Specialized Function. Journal of Biochemistry 2006, 140 (1), 13–21. 10.1093/jb/mvj128. PubMed DOI
Valadi H.; Ekström K.; Bossios A.; Sjöstrand M.; Lee J. J.; Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9 (6), 654–659. 10.1038/ncb1596. PubMed DOI
D’Asti E.; Garnier D.; Lee T. H.; Montermini L.; Meehan B.; Rak J. Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 2012, 3, 1.10.3389/fphys.2012.00294. PubMed DOI PMC
Mathivanan S.; Ji H.; Simpson R. J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics 2010, 73 (10), 1907–1920. 10.1016/j.jprot.2010.06.006. PubMed DOI
Poliakov A.; Spilman M.; Dokland T.; Amling C. L.; Mobley J. A. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 2009, 69 (2), 159–167. 10.1002/pros.20860. PubMed DOI
Minciacchi V. R.; Freeman M. R.; Di Vizio D. Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Semin Cell Dev Biol. 2015, 40, 41–51. 10.1016/j.semcdb.2015.02.010. PubMed DOI PMC
Chu Z.; Witte D. P.; Qi X. Saposin C-LBPA interaction in late-endosomes/lysosomes. Exp. Cell Res. 2005, 303 (2), 300–307. 10.1016/j.yexcr.2004.09.029. PubMed DOI
Vidal M.; Sainte-Marie J.; Philippot J. R.; Bienvenue A. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: Evidence precluding a role for ?aminophospholipid translocase?. J. Cell Physiol 1989, 140 (3), 455–462. 10.1002/jcp.1041400308. PubMed DOI
Bissig C.; et al. Viral Infection Controlled by a Calcium-Dependent Lipid-Binding Module in ALIX. Dev Cell 2013, 25 (4), 364–373. 10.1016/j.devcel.2013.04.003. PubMed DOI PMC
LAULAGNIER K.; MOTTA C.; HAMDI S.; ROY S.; FAUVELLE F.; PAGEAUX J.-F.; KOBAYASHI T.; SALLES J.-P.; PERRET B.; BONNEROT C.; RECORD M.; et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 2004, 380 (1), 161–171. 10.1042/bj20031594. PubMed DOI PMC
Huotari J.; Helenius A. Endosome maturation. EMBO J. 2011, 30 (17), 3481–3500. 10.1038/emboj.2011.286. PubMed DOI PMC
Simbari F. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. J. Extracell Vesicles 2016, 5 (1), 1.10.3402/jev.v5.30741. PubMed DOI PMC
LAULAGNIER K.; MOTTA C.; HAMDI S.; ROY S.; FAUVELLE F.; PAGEAUX J.-F.; KOBAYASHI T.; SALLES J.-P.; PERRET B.; BONNEROT C.; RECORD M.; et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 2004, 380 (1), 161–171. 10.1042/bj20031594. PubMed DOI PMC
Jalabert A.; et al. Profiling of ob/ob mice skeletal muscle exosome-like vesicles demonstrates combined action of miRNAs, proteins and lipids to modulate lipid homeostasis in recipient cells. Sci. Rep 2021, 11 (1), 21626.10.1038/s41598-021-00983-3. PubMed DOI PMC
Liu Y. Perivascular Adipose-Derived Exosomes Reduce Foam Cell Formation by Regulating Expression of Cholesterol Transporters. Front Cardiovasc Med. 2021, 8, 1.10.3389/fcvm.2021.697510. PubMed DOI PMC
Doyle L.; Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8 (7), 727.10.3390/cells8070727. PubMed DOI PMC
Akers J. C.; Gonda D.; Kim R.; Carter B. S.; Chen C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol 2013, 113 (1), 1–11. 10.1007/s11060-013-1084-8. PubMed DOI PMC
Muralidharan-Chari V.; et al. ARF6-Regulated Shedding of Tumor Cell-Derived Plasma Membrane Microvesicles. Curr. Biol. 2009, 19 (22), 1875–1885. 10.1016/j.cub.2009.09.059. PubMed DOI PMC
Zou X.; et al. Advances in biological functions and applications of apoptotic vesicles. Cell Communication and Signaling 2023, 21 (1), 260.10.1186/s12964-023-01251-9. PubMed DOI PMC
Davidson S. M.; et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc. Res. 2023, 119 (1), 45–63. 10.1093/cvr/cvac031. PubMed DOI PMC
Paolini L.; et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci. Rep 2016, 6 (1), 23550.10.1038/srep23550. PubMed DOI PMC
Böing A. N.; van der Pol E.; Grootemaat A. E.; Coumans F. A. W.; Sturk A.; Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell Vesicles 2014, 3 (1), 1.10.3402/jev.v3.23430. PubMed DOI PMC
Kang Y.-T.; Kim Y. J.; Bu J.; Cho Y.-H.; Han S.-W.; Moon B.-I. High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale 2017, 9 (36), 13495–13505. 10.1039/C7NR04557C. PubMed DOI
Théry C.; Amigorena S.; Raposo G.; Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr. Protoc Cell Biol. 2006, 30 (1), 1.10.1002/0471143030.cb0322s30. PubMed DOI
Arraud N.; et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. Journal of Thrombosis and Haemostasis 2014, 12 (5), 614–627. 10.1111/jth.12554. PubMed DOI
Ridolfi A.; et al. AFM-Based High-Throughput Nanomechanical Screening of Single Extracellular Vesicles. Anal. Chem. 2020, 92 (15), 10274–10282. 10.1021/acs.analchem.9b05716. PubMed DOI
Nolan J. P. Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects,. Curr. Protoc Cytom 2015, 73 (1), 13.14.1.10.1002/0471142956.cy1314s73. PubMed DOI
Libregts S. F. W. M.; Arkesteijn G. J. A.; Németh A.; Nolte-’t Hoen E. N. M.; Wauben M. H. M. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest,. Journal of Thrombosis and Haemostasis 2018, 16 (7), 1423–1436. 10.1111/jth.14154. PubMed DOI
Welsh J. A. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell Vesicles 2020, 9 (1), 1.10.1080/20013078.2020.1713526. PubMed DOI PMC
Koganti S.; Eleftheriou D.; Gurung R.; Hong Y.; Brogan P.; Rakhit R. D. Persistent circulating platelet and endothelial derived microparticle signature may explain on-going pro-thrombogenicity after acute coronary syndrome. Thromb Res. 2021, 206, 60–65. 10.1016/j.thromres.2021.07.018. PubMed DOI
Kränkel N.; et al. Extracellular vesicle species differentially affect endothelial cell functions and differentially respond to exercise training in patients with chronic coronary syndromes. Eur. J. Prev Cardiol 2021, 28 (13), 1467–1474. 10.1177/2047487320919894. PubMed DOI
Amabile N.; et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Heart J. 2014, 35 (42), 2972–2979. 10.1093/eurheartj/ehu153. PubMed DOI PMC
Anselmo A.; et al. Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur. Heart J. 2021, 42 (28), 2780–2792. 10.1093/eurheartj/ehab247. PubMed DOI
Takov K.; et al. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Res. Cardiol 2020, 115 (3), 26.10.1007/s00395-020-0785-3. PubMed DOI PMC
Boyden S. THE, CHEMOTACTIC EFFECT OF MIXTURES OF ANTIBODY AND ANTIGEN ON POLYMORPHONUCLEAR LEUCOCYTES. J. Exp Med. 1962, 115 (3), 453–466. 10.1084/jem.115.3.453. PubMed DOI PMC
Liang C.-C.; Park A. Y.; Guan J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc 2007, 2 (2), 329–333. 10.1038/nprot.2007.30. PubMed DOI
Baker M.; et al. Use of the mouse aortic ring assay to study angiogenesis. Nat. Protoc 2012, 7 (1), 89–104. 10.1038/nprot.2011.435. PubMed DOI
Todorova D.; Simoncini S.; Lacroix R.; Sabatier F.; Dignat-George F. Extracellular Vesicles in Angiogenesis. Circ. Res. 2017, 120 (10), 1658–1673. 10.1161/CIRCRESAHA.117.309681. PubMed DOI PMC
Ribeiro-Rodrigues T. M.; et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovasc. Res. 2017, 113 (11), 1338–1350. 10.1093/cvr/cvx118. PubMed DOI
Gimona M.; et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 2021, 23 (5), 373–380. 10.1016/j.jcyt.2021.01.001. PubMed DOI
Ferguson S. W.; Nguyen J. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. J. Controlled Release 2016, 228, 179–190. 10.1016/j.jconrel.2016.02.037. PubMed DOI
Xiong H. Recent Progress in Detection and Profiling of Cancer Cell-Derived Exosomes. Small 2021, 17 (35), 2007971.10.1002/smll.202007971. PubMed DOI
Willis G. R.; Kourembanas S.; Mitsialis S. A. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front Cardiovasc Med. 2017, 4, 1.10.3389/fcvm.2017.00063. PubMed DOI PMC
Barrera-Ramirez J.; et al. Micro-RNA Profiling of Exosomes from Marrow-Derived Mesenchymal Stromal Cells in Patients with Acute Myeloid Leukemia: Implications in Leukemogenesis. Stem Cell Rev. Rep 2017, 13 (6), 817–825. 10.1007/s12015-017-9762-0. PubMed DOI PMC
Kim C. W.; Lee H. M.; Lee T. H.; Kang C.; Kleinman H. K.; Gho Y. S. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002, 62 (21), 6312–7. PubMed
Deo R. C. Machine Learning in Medicine. Circulation 2015, 132 (20), 1920–1930. 10.1161/CIRCULATIONAHA.115.001593. PubMed DOI PMC
Gulshan V.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316 (22), 2402.10.1001/jama.2016.17216. PubMed DOI
Ko J.; et al. Combining Machine Learning and Nanofluidic Technology To Diagnose Pancreatic Cancer Using Exosomes. ACS Nano 2017, 11 (11), 11182–11193. 10.1021/acsnano.7b05503. PubMed DOI
Kennel P. J.; et al. Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection. Journal of Heart and Lung Transplantation 2018, 37 (3), 409–417. 10.1016/j.healun.2017.07.012. PubMed DOI
Wu N.; Zhang X.-Y.; Xia J.; Li X.; Yang T.; Wang J.-H. Ratiometric 3D DNA Machine Combined with Machine Learning Algorithm for Ultrasensitive and High-Precision Screening of Early Urinary Diseases. ACS Nano 2021, 15 (12), 19522–19534. 10.1021/acsnano.1c06429. PubMed DOI
Park J.; et al. Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy Data for Lung Cancer Diagnosis. Anal. Chem. 2017, 89 (12), 6695–6701. 10.1021/acs.analchem.7b00911. PubMed DOI
Zlotogorski-Hurvitz A.; Dekel B. Z.; Malonek D.; Yahalom R.; Vered M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J. Cancer Res. Clin Oncol 2019, 145 (3), 685–694. 10.1007/s00432-018-02827-6. PubMed DOI PMC
Ho T.-C.; et al. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27 (9), 2902.10.3390/molecules27092902. PubMed DOI PMC
Dror M.; Elsabee M. Z.; Berry G. C. Interpenetrating Polymer Networks for Biological Applications. Biomater Med. Devices Artif Organs 1979, 7 (1), 31–39. 10.3109/10731197909119370. PubMed DOI
WICHTERLE O.; LÍM D. Hydrophilic Gels for Biological Use. Nature 1960, 185 (4706), 117–118. 10.1038/185117a0. DOI
Wanasekara N.; Chen M.; Chalivendra V.; Bhowmick S. Investigation of the Young’s Modulus of Fibers in an Electrospun PCL Scaffold Using AFM and its Correlation to cell Attachment. MEMS and Nanotechnology 2011, 2, 157–162. 10.1007/978-1-4419-8825-6_22. DOI
Peppas N. A.; Hilt J. Z.; Khademhosseini A.; Langer R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18 (11), 1345–1360. 10.1002/adma.200501612. DOI
Bellamkonda R.; Ranieri J. P.; Bouche N.; Aebischer P. Hydrogel-based three-dimensional matrix for neural cells. J. Biomed Mater. Res. 1995, 29 (5), 663–671. 10.1002/jbm.820290514. PubMed DOI
Madduma-Bandarage U. S. K.; Madihally S. V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2021, 138 (19), 50376.10.1002/app.50376. DOI
Choi H.; Choi Y.; Yim H. Y.; Mirzaaghasi A.; Yoo J.-K.; Choi C. Biodistribution of Exosomes and Engineering Strategies for Targeted Delivery of Therapeutic Exosomes. Tissue Eng. Regen Med. 2021, 18 (4), 499–511. 10.1007/s13770-021-00361-0. PubMed DOI PMC
Khayambashi P.; Iyer J.; Pillai S.; Upadhyay A.; Zhang Y.; Tran S. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021, 22 (2), 684.10.3390/ijms22020684. PubMed DOI PMC
Yerneni S. S.; et al. Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels. Biomacromolecules 2022, 23 (4), 1713–1722. 10.1021/acs.biomac.1c01636. PubMed DOI
Shi Q. GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model. Front Physiol 2017, 8, 1.10.3389/fphys.2017.00904. PubMed DOI PMC
Gbenebor O. P.; Adeosun S. O.; Lawal G. I.; Jun S.; Olaleye S. A. Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton. Engineering Science and Technology, an International Journal 2017, 20 (3), 1155–1165. 10.1016/j.jestch.2017.05.002. DOI
Peppas N. A.; Merrill E. W. Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. J. Biomed Mater. Res. 1977, 11 (3), 423–434. 10.1002/jbm.820110309. PubMed DOI
Zhang Y.; Liu Y.; Liu J.; Guo P.; Heng L. Super water absorbency OMMT/PAA hydrogel materials with excellent mechanical properties. RSC Adv. 2017, 7 (24), 14504–14510. 10.1039/C7RA00372B. DOI
Ezati M.; Safavipour H.; Houshmand B.; Faghihi S. Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration. Prog. Biomater 2018, 7 (3), 225–237. 10.1007/s40204-018-0098-x. PubMed DOI PMC
Ranjha N. M.; Mudassir J.; Akhtar N. Methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels for controlled drug delivery. J. Solgel Sci. Technol. 2008, 47 (1), 23–30. 10.1007/s10971-008-1750-z. DOI
Hahn S. K.; Park J. K.; Tomimatsu T.; Shimoboji T. Synthesis and degradation test of hyaluronic acid hydrogels. Int. J. Biol. Macromol. 2007, 40 (4), 374–380. 10.1016/j.ijbiomac.2006.09.019. PubMed DOI
Yean L.; Bunel C.; Vairon J.-P. Reversible immobilization of drugs on a hydrogel matrix, 2†. Diffusion of free chloramphenicol from poly(2-hydroxyethyl methacrylate) hydrogels. Makromol. Chem. 1990, 191 (5), 1119–1129. 10.1002/macp.1990.021910514. DOI
Song S. Z.; Cardinalx J. R.; Kim S. H.; Kim S. W. Progestin Permeation Through Polymer Membranes V: Progesterone Release from Monolithic Hydrogel Devices. J. Pharm. Sci. 1981, 70 (2), 216–219. 10.1002/jps.2600700226. PubMed DOI
Korsmeyer R. W.; Peppas N. A. Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J. Membr. Sci. 1981, 9 (3), 211–227. 10.1016/S0376-7388(00)80265-3. DOI
Soon-Shiong P.; et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994, 343 (8903), 950–951. 10.1016/S0140-6736(94)90067-1. PubMed DOI
Rowley J. A.; Madlambayan G.; Mooney D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20 (1), 45–53. 10.1016/S0142-9612(98)00107-0. PubMed DOI
Liu T. Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels. Front Bioeng Biotechnol 2021, 9, 1.10.3389/fbioe.2021.810155. PubMed DOI PMC
Lin C.-Y.; Battistoni C. M.; Liu J. C. Redox-Responsive Hydrogels with Decoupled Initial Stiffness and Degradation. Biomacromolecules 2021, 22 (12), 5270–5280. 10.1021/acs.biomac.1c01180. PubMed DOI
Miao L.; et al. Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm- co -HEMAPCL). Carbohydr. Polym. 2016, 137, 433–440. 10.1016/j.carbpol.2015.11.001. PubMed DOI
Kouchak M. In Situ Gelling Systems for Drug Delivery. Jundishapur J. Nat. Pharm. Prod 2014, 9 (3), e20126.10.17795/jjnpp-20126. PubMed DOI PMC
Wu W.-C.; et al. Theoretical and Experimental Studies on the Surface Structures of Conjugated Rod-Coil Block Copolymer Brushes. Langmuir 2007, 23 (5), 2805–2814. 10.1021/la0631769. PubMed DOI
Yan K.; et al. A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater Sci. 2020, 8 (11), 3193–3201. 10.1039/D0BM00425A. PubMed DOI
Haraguchi K.; Takehisa T. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002, 14 (16), 1120.10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9. DOI
Lu Z.-R.; Kopečková P.; Kopeček J. Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab′ Fragment. Macromol. Biosci 2003, 3 (6), 296–300. 10.1002/mabi.200390039. DOI
Wen X.; Zhang Y.; Chen D.; Zhao Q. Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy. ACS Appl. Mater. Interfaces 2022, 14 (35), 40344–40350. 10.1021/acsami.2c11693. PubMed DOI
Peppas N. A.; Stauffer S. R. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J. Controlled Release 1991, 16 (3), 305–310. 10.1016/0168-3659(91)90007-Z. DOI
Hu Y.; Han W.; Huang G.; Zhou W.; Yang Z.; Wang C. Highly Stretchable, Mechanically Strong, Tough, and Self-Recoverable Nanocomposite Hydrogels by Introducing Strong Ionic Coordination Interactions. Macromol. Chem. Phys. 2016, 217 (24), 2717–2725. 10.1002/macp.201600398. DOI
Wang X.; Wei C.; Cao B.; Jiang L.; Hou Y.; Chang J. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement. ACS Appl. Mater. Interfaces 2018, 10 (21), 18338–18350. 10.1021/acsami.8b04116. PubMed DOI
Wei Q.; Duan J.; Ma G.; Zhang W.; Wang Q.; Hu Z. Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing. J. Mater. Chem. B 2019, 7 (13), 2220–2225. 10.1039/C8TB03147A. PubMed DOI
Iwanaga S.; et al. Design and Fabrication of Mature Engineered Pre-Cardiac Tissue Utilizing 3D Bioprinting Technology and Enzymatically Crosslinking Hydrogel. Materials 2022, 15 (22), 7928.10.3390/ma15227928. PubMed DOI PMC
Shen S.; Shen J.; Shen H.; Wu C.; Chen P.; Wang Q. Dual-Enzyme Crosslinking and Post-polymerization for Printing of Polysaccharide-Polymer Hydrogel. Front Chem. 2020, 8, 1.10.3389/fchem.2020.00036. PubMed DOI PMC
Bashir S.; et al. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020, 12 (11), 2702.10.3390/polym12112702. PubMed DOI PMC
Zhang Y.; Huang Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front Chem. 2021, 8, 1.10.3389/fchem.2020.615665. PubMed DOI PMC
Benwood C.; et al. Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering 2021, 8 (2), 27.10.3390/bioengineering8020027. PubMed DOI PMC
Wan Ali W. N. S.; Ahmad Tarmidzi N. A. A Rare Case of Contact Allergy towards Impression Compound Material. Eur. J. Dent 2021, 15 (04), 798–801. 10.1055/s-0041-1731584. PubMed DOI PMC
Hashemi A.; Ezati M.; Mohammadnejad J.; Houshmand B.; Faghihi S. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. Int. J. Nanomedicine 2020, 15, 4471–4481. 10.2147/IJN.S248927. PubMed DOI PMC
Van Den Bulcke A. I.; Bogdanov B.; De Rooze N.; Schacht E. H.; Cornelissen M.; Berghmans H. Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules 2000, 1 (1), 31–38. 10.1021/bm990017d. PubMed DOI
Dienes J.; et al. Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function. ACS Biomater Sci. Eng. 2021, 7 (4), 1587–1599. 10.1021/acsbiomaterials.0c01751. PubMed DOI
Berkovitch Y.; Seliktar D. Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis. Int. J. Pharm. 2017, 523 (2), 545–555. 10.1016/j.ijpharm.2016.11.032. PubMed DOI
Park S.; Park K. Engineered Polymeric Hydrogels for 3D Tissue Models. Polymers (Basel) 2016, 8 (1), 23.10.3390/polym8010023. PubMed DOI PMC
Ho T.-C.; et al. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27 (9), 2902.10.3390/molecules27092902. PubMed DOI PMC
Iizawa T.; Taketa H.; Maruta M.; Ishido T.; Gotoh T.; Sakohara S. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J. Appl. Polym. Sci. 2007, 104 (2), 842–850. 10.1002/app.25605. DOI
Cui L.; Jia J.; Guo Y.; Liu Y.; Zhu P. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr. Polym. 2014, 99, 31–38. 10.1016/j.carbpol.2013.08.048. PubMed DOI
Liu Z.; Luo Y.; Zhang K. P(AAm-co-MAA) semi-IPN hybrid hydrogels in the presence of PANI and MWNTs-COOH: improved swelling behavior and mechanical properties. J. Biomater Sci. Polym. Ed 2008, 19 (11), 1503–1520. 10.1163/156856208786140373. PubMed DOI
Agrawal S. K.; Sanabria-DeLong N.; Tew G. N.; Bhatia S. R. Rheological characterization of biocompatible associative polymer hydrogels with crystalline and amorphous endblocks. J. Mater. Res. 2006, 21 (8), 2118–2125. 10.1557/jmr.2006.0261. DOI
Jin F.; et al. Impact of Entanglement on Folding of Semicrystalline Polymer during Crystallization. ACS Macro Lett. 2023, 12 (8), 1138–1143. 10.1021/acsmacrolett.3c00364. PubMed DOI
Shi S.; Xu T.; Wang D.; Oeser M. The Difference in Molecular Orientation and Interphase Structure of SiO2/Shape Memory Polyurethane in Original, Programmed and Recovered States during Shape Memory Process. Polymers (Basel) 2020, 12 (9), 1994.10.3390/polym12091994. PubMed DOI PMC
Zhang H.; Han D.; Yan Q.; Fortin D.; Xia H.; Zhao Y. Light-healable hard hydrogels through photothermally induced melting-crystallization phase transition. J. Mater. Chem. A 2014, 2 (33), 13373–13379. 10.1039/C4TA02463J. DOI
Kurt B.; Gulyuz U.; Demir D. D.; Okay O. High-strength semi-crystalline hydrogels with self-healing and shape memory functions. Eur. Polym. J. 2016, 81, 12–23. 10.1016/j.eurpolymj.2016.05.019. DOI
Wei D.; et al. Semicrystalline Hydrophobically Associated Hydrogels with Integrated High Performances. ACS Appl. Mater. Interfaces 2018, 10 (3), 2946–2956. 10.1021/acsami.7b15843. PubMed DOI
Bustamante-Torres M.; Romero-Fierro D.; Arcentales-Vera B.; Palomino K.; Magaña H.; Bucio E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7 (4), 182.10.3390/gels7040182. PubMed DOI PMC
Tang S.; Zhao L.; Yuan J.; Chen Y.; Leng Y.. Physical hydrogels based on natural polymers. In Hydrogels Based on Natural Polymers; Elsevier, 2020; pp 51–89.10.1016/B978-0-12-816421-1.00003-3. DOI
Kang H.-S.; Park S.-H.; Lee Y.-G.; Son T.-I. Polyelectrolyte complex hydrogel composed of chitosan and poly(γ-glutamic acid) for biological application: Preparation, physical properties, and cytocompatibility. J. Appl. Polym. Sci. 2007, 103 (1), 386–394. 10.1002/app.24623. DOI
Huglin M. B.; Rego J. M. Thermodynamic properties of copolymeric hydrogels based on 2-hydroxyethyl methacrylate and a zwitterionic methacrylate. Colloid Polym. Sci. 1992, 270 (3), 234–242. 10.1007/BF00655475. DOI
Nuhn L.; et al. Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules 2014, 15 (11), 4111–4121. 10.1021/bm501148y. PubMed DOI
Hiratani T.; Kose O.; Hamad W. Y.; MacLachlan M. J. Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure. Mater. Horiz 2018, 5 (6), 1076–1081. 10.1039/C8MH00586A. DOI
Hawes C. S.; et al. A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chem. Commun. 2017, 53 (44), 5989–5992. 10.1039/C7CC03482B. PubMed DOI
Selegård R.; Aronsson C.; Brommesson C.; Dånmark S.; Aili D. Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel. Sci. Rep 2017, 7 (1), 7013.10.1038/s41598-017-06457-9. PubMed DOI PMC
Li Y.; Zhou C.; Xu L.; Yao F.; Cen L.; Fu G. D. Stimuli-responsive hydrogels prepared by simultaneous ‘click chemistry’ and metal-ligand coordination. RSC Adv. 2015, 5 (24), 18242–18251. 10.1039/C4RA11946K. DOI
Chander S.; Kulkarni G. T.; Dhiman N.; Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem. 2021, 9, 1.10.3389/fchem.2021.573748. PubMed DOI PMC
Ju Y.; Hu Y.; Yang P.; Xie X.; Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio 2023, 18, 100522.10.1016/j.mtbio.2022.100522. PubMed DOI PMC
Gan J.; Sun L.; Chen G.; Ma W.; Zhao Y.; Sun L. Mesenchymal Stem Cell Exosomes Encapsulated Oral Microcapsules for Acute Colitis Treatment. Adv. Healthc Mater. 2022, 11 (17), 2201105.10.1002/adhm.202201105. PubMed DOI
Feng Q. Dynamic Nanocomposite Microgel Assembly with Microporosity, Injectability, Tissue-Adhesion, and Sustained Drug Release Promotes Articular Cartilage Repair and Regeneration. Adv. Healthc Mater. 2022, 11 (8), 2102395.10.1002/adhm.202102395. PubMed DOI
Hao Y.; Zhang W.; Qin J.; Tan L.; Luo Y.; Chen H. Biological Cardiac Patch Based on Extracellular Vesicles and Extracellular Matrix for Regulating Injury-Related Microenvironment and Promoting Cardiac Tissue Recovery. ACS Appl. Bio Mater. 2022, 5 (11), 5218–5230. 10.1021/acsabm.2c00659. PubMed DOI
Yang Y.; et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr. Polym. 2022, 283, 119161.10.1016/j.carbpol.2022.119161. PubMed DOI
Quan L.; Xin Y.; Wu X.; Ao Q. Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers (Basel) 2022, 14 (11), 2184.10.3390/polym14112184. PubMed DOI PMC
Yang P.; Ju Y.; Hu Y.; Xie X.; Fang B.; Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater Res. 2023, 27 (1), 1.10.1186/s40824-022-00338-7. PubMed DOI PMC
Chen J.; et al. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater 2022, 146, 119–130. 10.1016/j.actbio.2022.04.041. PubMed DOI
Ju Y.; Hu Y.; Yang P.; Xie X.; Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio 2023, 18, 100522.10.1016/j.mtbio.2022.100522. PubMed DOI PMC
Gil-Castell O.; Ontoria-Oviedo I.; Badia J. D.; Amaro-Prellezo E.; Sepúlveda P.; Ribes-Greus A. Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. React. Funct Polym. 2022, 170, 105064.10.1016/j.reactfunctpolym.2021.105064. DOI
Liu H.; et al. An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules 2023, 24 (1), 86–97. 10.1021/acs.biomac.2c00920. PubMed DOI
Yang Q.; et al. Exosomes-loaded electroconductive nerve dressing for nerve regeneration and pain relief against diabetic peripheral nerve injury. Bioact Mater. 2023, 26, 194–215. 10.1016/j.bioactmat.2023.02.024. PubMed DOI PMC
Uddin M. S.; Ju J. Effect of crosslinking agents on drug distribution in chitosan hydrogel for targeted drug delivery to treat cancer. Journal of Polymer Research 2020, 27 (3), 81.10.1007/s10965-020-02059-8. DOI
Osswald C. R.; Kang-Mieler J. J. Controlled and Extended In Vitro Release of Bioactive Anti-Vascular Endothelial Growth Factors from a Microsphere-Hydrogel Drug Delivery System. Curr. Eye Res. 2016, 41 (9), 1216–1222. 10.3109/02713683.2015.1101140. PubMed DOI
Liu J.; Tian B.; Liu Y.; Wan J.-B. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int. J. Mol. Sci. 2021, 22 (24), 13516.10.3390/ijms222413516. PubMed DOI PMC
Boffito M. Hybrid Injectable Sol-Gel Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying pH-Sensitive Mesoporous Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Front Bioeng Biotechnol 2020, 8, 1.10.3389/fbioe.2020.00384. PubMed DOI PMC
Jalababu R.; Rao K. S. V. K.; Rao B. S.; Reddy K. V. N. S. Dual responsive GG-g-PNPA/PIPAM based novel hydrogels for the controlled release of anti- cancer agent and their swelling and release kinetics. Journal of Polymer Research 2020, 27 (4), 83.10.1007/s10965-020-02061-0. DOI
Ovando-Medina V. M.; Reyes-Palacios G. A.; García-Montejano L. A.; Antonio-Carmona I. D.; Martínez-Gutiérrez H. Electroactive polyacrylamide/chitosan/polypyrrole hydrogel for captopril release controlled by electricity. J. Vinyl Addit. Technol. 2021, 27 (4), 679–690. 10.1002/vnl.21842. DOI
Pochan D. J.; Pakstis L.; Ozbas B.; Nowak A. P.; Deming T. J. SANS and Cryo-TEM Study of Self-Assembled Diblock Copolypeptide Hydrogels with Rich Nano- through Microscale Morphology. Macromolecules 2002, 35 (14), 5358–5360. 10.1021/ma025526d. DOI
Auriemma G.; Russo P.; Del Gaudio P.; García-González C. A.; Landín M.; Aquino R. P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25 (14), 3156.10.3390/molecules25143156. PubMed DOI PMC
Zhang Y. S.; Khademhosseini A. Advances in engineering hydrogels. Science (1979) 2017, 356 (6337), 3627.10.1126/science.aaf3627. PubMed DOI PMC
Annabi N.; et al. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Adv. Mater. 2014, 26 (1), 85–124. 10.1002/adma.201303233. PubMed DOI PMC
Vasanthan K. S.; Srinivasan V.; Pandita D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regenerative Med. 2021, 16 (8), 775–802. 10.2217/rme-2021-0021. PubMed DOI
Wang R.; Wang Y.; Yang H.; Zhao C.; Pan J. Research progress of self-assembling peptide hydrogels in repairing cartilage defects. Front Mater. 2022, 9, 1.10.3389/fmats.2022.1022386. DOI
Liu X. Three-dimensional-printed collagen/chitosan/secretome derived from HUCMSCs scaffolds for efficient neural network reconstruction in canines with traumatic brain injury. Regen Biomater 2022, 9, rbac043.10.1093/rb/rbac043. PubMed DOI PMC
Ning L.; et al. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 2018, 10 (3), 035014.10.1088/1758-5090/aacd30. PubMed DOI
Nguyen L. T. B.; Hsu C.-C.; Ye H.; Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration. Biomedical Materials 2020, 15 (5), 055005.10.1088/1748-605X/ab8c43. PubMed DOI
Li J.; et al. Dual-enzymatically cross-linked gelatin hydrogel promotes neural differentiation and neurotrophin secretion of bone marrow-derived mesenchymal stem cells for treatment of moderate traumatic brain injury. Int. J. Biol. Macromol. 2021, 187, 200–213. 10.1016/j.ijbiomac.2021.07.111. PubMed DOI
Finklea F. B.; Tian Y.; Kerscher P.; Seeto W. J.; Ellis M. E.; Lipke E. A. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 2021, 274, 120818.10.1016/j.biomaterials.2021.120818. PubMed DOI
Long G.; et al. Engineering of injectable hydrogels associate with Adipose-Derived stem cells delivery for anti-cardiac hypertrophy agents. Drug Deliv 2021, 28 (1), 1334–1341. 10.1080/10717544.2021.1943060. PubMed DOI PMC
Kim K. S.; et al. Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction. Biofabrication 2021, 13 (4), 045014.10.1088/1758-5090/ac1e78. PubMed DOI
Hu Y.-F.; et al. Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats. Nat. Biomed Eng. 2022, 6 (4), 421–434. 10.1038/s41551-021-00812-y. PubMed DOI
Ravi S.; Chokkakula L. P. P.; Giri P. S.; Korra G.; Dey S. R.; Rath S. N. 3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces 2023, 15 (16), 19921–19936. 10.1021/acsami.3c00389. PubMed DOI
Yan J.; et al. Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res. Ther 2021, 12 (1), 572.10.1186/s13287-021-02638-6. PubMed DOI PMC
Bordini E. A. F.; et al. Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments. ACS Appl. Bio Mater. 2021, 4 (9), 6993–7006. 10.1021/acsabm.1c00620. PubMed DOI
Liu C.; et al. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. Int. J. Nanomedicine 2021, 16, 8417–8432. 10.2147/IJN.S339500. PubMed DOI PMC
Zhang H. 3D Printing Hydrogel Scaffolds with Nanohydroxyapatite Gradient to Effectively Repair Osteochondral Defects in Rats. Adv. Funct Mater. 2021, 31 (1), 2006697.10.1002/adfm.202006697. DOI
Ding X.; et al. 3D-Printed Porous Scaffolds of Hydrogels Modified with TGF-β1 Binding Peptides to Promote In Vivo Cartilage Regeneration and Animal Gait Restoration. ACS Appl. Mater. Interfaces 2022, 14 (14), 15982–15995. 10.1021/acsami.2c00761. PubMed DOI
Riau A. K.; Ong H. S.; Yam G. H. F.; Mehta J. S. Sustained Delivery System for Stem Cell-Derived Exosomes. Front Pharmacol 2019, 10, 1.10.3389/fphar.2019.01368. PubMed DOI PMC
Khayambashi P.; Iyer J.; Pillai S.; Upadhyay A.; Zhang Y.; Tran S. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021, 22 (2), 684.10.3390/ijms22020684. PubMed DOI PMC
Khayambashi P.; Iyer J.; Pillai S.; Upadhyay A.; Zhang Y.; Tran S. Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. Int. J. Mol. Sci. 2021, 22 (2), 684.10.3390/ijms22020684. PubMed DOI PMC
Thomas V.; Yallapu M. M.; Sreedhar B.; Bajpai S. K. Breathing-in/breathing-out approach to preparing nanosilver-loaded hydrogels: Highly efficient antibacterial nanocomposites. J. Appl. Polym. Sci. 2009, 111 (2), 934–944. 10.1002/app.29018. DOI
Fan L. Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Advanced Science 2022, 9 (13), 2105586.10.1002/advs.202105586. PubMed DOI PMC
Gerlach J. Q.; Griffin M. D. Getting to know the extracellular vesicle glycome. Mol. Biosyst 2016, 12 (4), 1071–1081. 10.1039/C5MB00835B. PubMed DOI
Li M.; Ke Q.-F.; Tao S.-C.; Guo S.-C.; Rui B.-Y.; Guo Y.-P. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126–3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J. Mater. Chem. B 2016, 4 (42), 6830–6841. 10.1039/C6TB01560C. PubMed DOI
Henriques-Antunes H.; et al. The Kinetics of Small Extracellular Vesicle Delivery Impacts Skin Tissue Regeneration. ACS Nano 2019, 13 (8), 8694–8707. 10.1021/acsnano.9b00376. PubMed DOI
Vasco C.; et al. The Role of Adhesion Molecules and Extracellular Vesicles in an In Vitro Model of the Blood-Brain Barrier for Metastatic Disease. Cancers (Basel) 2023, 15 (11), 3045.10.3390/cancers15113045. PubMed DOI PMC
Hao D.; et al. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022, 12 (13), 6021–6037. 10.7150/thno.70448. PubMed DOI PMC
Li J.; Mooney D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1 (12), 16071.10.1038/natrevmats.2016.71. PubMed DOI PMC
Siepmann J.; Siepmann F. Modeling of diffusion controlled drug delivery. J. Controlled Release 2012, 161 (2), 351–362. 10.1016/j.jconrel.2011.10.006. PubMed DOI
Xu L.; Liu Y.; Tang L.; Xiao H.; Yang Z.; Wang S. Preparation of Recombinant Human Collagen III Protein Hydrogels with Sustained Release of Extracellular Vesicles for Skin Wound Healing. Int. J. Mol. Sci. 2022, 23 (11), 6289.10.3390/ijms23116289. PubMed DOI PMC
Amsden B. Solute Diffusion within Hydrogels. Mechanisms and Models. Macromolecules 1998, 31 (23), 8382–8395. 10.1021/ma980765f. DOI
Huang C.-C.; et al. 3D Encapsulation and tethering of functionally engineered extracellular vesicles to hydrogels. Acta Biomater 2021, 126, 199–210. 10.1016/j.actbio.2021.03.030. PubMed DOI PMC
Ma Y.; Brocchini S.; Williams G. R. Extracellular vesicle-embedded materials. J. Controlled Release 2023, 361, 280–296. 10.1016/j.jconrel.2023.07.059. PubMed DOI
Henise J.; Yao B.; Ashley G. W.; Santi D. V. Autoclave sterilization of tetra-polyethylene glycol hydrogel biomaterials with β-eliminative crosslinks. Engineering Reports 2020, 2 (1), e12091.10.1002/eng2.12091. DOI
Wei C.; Song J.; Tan H. A paintable ophthalmic adhesive with customizable properties based on symmetrical/asymmetrical cross-linking. Biomater Sci. 2021, 9 (22), 7522–7533. 10.1039/D1BM01197A. PubMed DOI
Man K.; et al. Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repair. Int. J. Mol. Sci. 2022, 23 (2), 832.10.3390/ijms23020832. PubMed DOI PMC
Yang S.; et al. MSC-derived sEV-loaded hyaluronan hydrogel promotes scarless skin healing by immunomodulation in a large skin wound model. Biomedical Materials 2022, 17 (3), 034104.10.1088/1748-605X/ac68bc. PubMed DOI
Toth M.; Fridman R.. Assessment of Gelatinases (MMP-2 and MMP-9) by Gelatin Zymography,. In Metastasis Research Protocols; Humana Press; pp 163–174.10.1385/1-59259-136-1:163. PubMed DOI PMC
Tang J. Injection-Free Delivery of MSC-Derived Extracellular Vesicles for Myocardial Infarction Therapeutics. Adv. Healthc Mater. 2022, 11 (5), 2100312.10.1002/adhm.202100312. PubMed DOI
Wang C.; et al. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics 2019, 9 (1), 65–76. 10.7150/thno.29766. PubMed DOI PMC
Henriques-Antunes H.; et al. The Kinetics of Small Extracellular Vesicle Delivery Impacts Skin Tissue Regeneration. ACS Nano 2019, 13 (8), 8694–8707. 10.1021/acsnano.9b00376. PubMed DOI
Zhang Y.; et al. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS Appl. Mater. Interfaces 2021, 13 (16), 18472–18487. 10.1021/acsami.0c22671. PubMed DOI
Han W. J.; Lee J. H.; Lee J.-K.; Choi H. J. Remote-controllable, tough, ultrastretchable, and magneto-sensitive nanocomposite hydrogels with homogeneous nanoparticle dispersion as biomedical actuators, and their tuned structure, properties, and performances. Compos B Eng. 2022, 236, 109802.10.1016/j.compositesb.2022.109802. DOI
Kubota T.; Kurashina Y.; Zhao J.; Ando K.; Onoe H. Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Mater. Des 2021, 203, 109580.10.1016/j.matdes.2021.109580. DOI
Kasiński A.; et al. Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems—Synthesis and Characterization. Int. J. Mol. Sci. 2023, 24 (8), 6906.10.3390/ijms24086906. PubMed DOI PMC
Zhou Y.; Liu G.; Guo S. Advances in ultrasound-responsive hydrogels for biomedical applications. J. Mater. Chem. B 2022, 10 (21), 3947–3958. 10.1039/D2TB00541G. PubMed DOI
Huebsch N.; et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (27), 9762–9767. 10.1073/pnas.1405469111. PubMed DOI PMC
Zhou Y.; et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res. Ther 2022, 13 (1), 407.10.1186/s13287-022-02980-3. PubMed DOI PMC
Wang Y.; et al. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater 2022, 147, 342–355. 10.1016/j.actbio.2022.05.018. PubMed DOI
Xu Y.; et al. miR-126–3p-loaded small extracellular vesicles secreted by urine-derived stem cells released from a phototriggered imine crosslink hydrogel could enhance vaginal epithelization after vaginoplasty. Stem Cell Res. Ther 2022, 13 (1), 331.10.1186/s13287-022-03003-x. PubMed DOI PMC
Razzauti A.; Lobo T.; Laurent P. Cilia-Derived Extracellular Vesicles in Caenorhabditis Elegans: In Vivo Imaging and Quantification of Extracellular Vesicle Release and Capture. Methods Mol. Biol. 2023, 2668, 277–299. 10.1007/978-1-0716-3203-1_19. PubMed DOI
Fan X.; et al. ‘Y’-shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polym. Chem. 2017, 8 (36), 5611–5620. 10.1039/C7PY00999B. DOI
Suwardi A. Machine Learning-Driven Biomaterials Evolution. Adv. Mater. 2022, 34 (1), 2102703.10.1002/adma.202102703. PubMed DOI
Li F.; et al. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (23), 11259–11264. 10.1073/pnas.1903376116. PubMed DOI PMC
Mei Y.; et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 2010, 9 (9), 768–778. 10.1038/nmat2812. PubMed DOI PMC
Yang J.; et al. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays. Biomaterials 2010, 31 (34), 8827–8838. 10.1016/j.biomaterials.2010.08.028. PubMed DOI PMC
Kwaria R. J.; Mondarte E. A. Q.; Tahara H.; Chang R.; Hayashi T. Data-Driven Prediction of Protein Adsorption on Self-Assembled Monolayers toward Material Screening and Design. ACS Biomater Sci. Eng. 2020, 6 (9), 4949–4956. 10.1021/acsbiomaterials.0c01008. PubMed DOI
Gubskaya A. V.; et al. Logical Analysis of Data in Structure-Activity Investigation of Polymeric Gene Delivery. Macromol. Theory Simul 2011, 20 (4), 275–285. 10.1002/mats.201000087. PubMed DOI PMC
Rostam H. M.; et al. Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo. Matter 2020, 2 (6), 1564–1581. 10.1016/j.matt.2020.03.018. DOI
Lee J.; Oh S. J.; An S. H.; Kim W.-D.; Kim S.-H. Machine learning-based design strategy for 3D printable bioink: elastic modulus and yield stress determine printability. Biofabrication 2020, 12 (3), 035018.10.1088/1758-5090/ab8707. PubMed DOI
Ruberu K.; et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl. Mater. Today 2021, 22, 100914.10.1016/j.apmt.2020.100914. DOI
Paxton N.; Smolan W.; Böck T.; Melchels F.; Groll J.; Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 2017, 9 (4), 044107.10.1088/1758-5090/aa8dd8. PubMed DOI
Mas-Bargues C.; et al. Extracellular Vesicles from Healthy Cells Improves Cell Function and Stemness in Premature Senescent Stem Cells by miR-302b and HIF-1α Activation. Biomolecules 2020, 10 (6), 957.10.3390/biom10060957. PubMed DOI PMC
Bellmunt À. M.; López-Puerto L.; Lorente J.; Closa D. Involvement of extracellular vesicles in the macrophage-tumor cell communication in head and neck squamous cell carcinoma. PLoS One 2019, 14 (11), e022471010.1371/journal.pone.0224710. PubMed DOI PMC
Li L.; et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J. Nanobiotechnology 2022, 20 (1), 50.10.1186/s12951-022-01264-5. PubMed DOI PMC
Li Q.; et al. Genetically Engineered Artificial Exosome-Constructed Hydrogel for Ovarian Cancer Therapy. ACS Nano 2023, 17 (11), 10376–10392. 10.1021/acsnano.3c00804. PubMed DOI
Hu M. S.-M.; et al. The Role of Stem Cells During Scarless Skin Wound Healing. Adv. Wound Care (New Rochelle) 2014, 3 (4), 304–314. 10.1089/wound.2013.0471. PubMed DOI PMC
Jeon Y. K.; Jang Y. H.; Yoo D. R.; Kim S. N.; Lee S. K.; Nam M. J. Mesenchymal stem cells’ interaction with skin: Wound-healing effect on fibroblast cells and skin tissue. Wound Repair and Regeneration 2010, 18 (6), 655–661. 10.1111/j.1524-475X.2010.00636.x. PubMed DOI
Liang X.; Ding Y.; Zhang Y.; Tse H.-F.; Lian Q. Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives. Cell Transplant 2014, 23 (9), 1045–1059. 10.3727/096368913X667709. PubMed DOI
Shafei S.; et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. J. Biomed Mater. Res. A 2020, 108 (3), 545–556. 10.1002/jbm.a.36835. PubMed DOI
Maxson S.; Lopez E. A.; Yoo D.; Danilkovitch-Miagkova A.; LeRoux M. A. Concise Review: Role of Mesenchymal Stem Cells in Wound Repair. Stem Cells Transl Med. 2012, 1 (2), 142–149. 10.5966/sctm.2011-0018. PubMed DOI PMC
Ojeh N.; Pastar I.; Tomic-Canic M.; Stojadinovic O. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. Int. J. Mol. Sci. 2015, 16 (10), 25476–25501. 10.3390/ijms161025476. PubMed DOI PMC
Sinno H.; Prakash S. Complements and the Wound Healing Cascade: An Updated Review. Plast Surg Int. 2013, 2013, 1–7. 10.1155/2013/146764. PubMed DOI PMC
Schwab A. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol 2015, 6, 1.10.3389/fmicb.2015.01132. PubMed DOI PMC
Fang S.; et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med. 2016, 5 (10), 1425–1439. 10.5966/sctm.2015-0367. PubMed DOI PMC
Liang X.; Zhang L.; Wang S.; Han Q.; Zhao R. C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci. 2016, 129 (11), 2182–2189. 10.1242/jcs.170373. PubMed DOI
Jiang T.; Wang Z.; Sun J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Res. Ther 2020, 11 (1), 198.10.1186/s13287-020-01723-6. PubMed DOI PMC
Hoang D. H. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front Mol. Biosci 2020, 7, 1.10.3389/fmolb.2020.00119. PubMed DOI PMC
Zhang Y.; et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater. 2023, 26, 323–336. 10.1016/j.bioactmat.2023.01.020. PubMed DOI PMC
Li Q.; et al. MiR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct Target Ther 2023, 8 (1), 62.10.1038/s41392-022-01263-w. PubMed DOI PMC
Jimi E.; Hirata S.; Osawa K.; Terashita M.; Kitamura C.; Fukushima H. The Current and Future Therapies of Bone Regeneration to Repair Bone Defects. Int. J. Dent 2012, 2012, 1–7. 10.1155/2012/148261. PubMed DOI PMC
Sun J.; et al. Engineering preparation and sustained delivery of bone functional exosomes-laden biodegradable hydrogel for in situ bone regeneration. Compos B Eng. 2023, 261, 110803.10.1016/j.compositesb.2023.110803. DOI
Zhang Y.; et al. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS Appl. Mater. Interfaces 2021, 13 (16), 18472–18487. 10.1021/acsami.0c22671. PubMed DOI
Zhu Y.; Jia Y.; Wang Y.; Xu J.; Chai Y. Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes. Stem Cells Transl Med. 2019, 8 (6), 593–605. 10.1002/sctm.18-0199. PubMed DOI PMC
Khazaei F.; Rezakhani L.; Alizadeh M.; Mahdavian E.; Khazaei M. Exosomes and exosome-loaded scaffolds: Characterization and application in modern regenerative medicine. Tissue Cell 2023, 80, 102007.10.1016/j.tice.2022.102007. PubMed DOI
Taylor D. A.; Sampaio L. C.; Gobin A. Building New Hearts: A Review of Trends in Cardiac Tissue Engineering. American Journal of Transplantation 2014, 14 (11), 2448–2459. 10.1111/ajt.12939. PubMed DOI
Liu B.; et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat. Biomed Eng. 2018, 2 (5), 293–303. 10.1038/s41551-018-0229-7. PubMed DOI PMC
Zou Y.; et al. Restoring Cardiac Functions after Myocardial Infarction-Ischemia/Reperfusion via an Exosome Anchoring Conductive Hydrogel. ACS Appl. Mater. Interfaces 2021, 13 (48), 56892–56908. 10.1021/acsami.1c16481. PubMed DOI
Wang L. L.; et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed Eng. 2017, 1 (12), 983–992. 10.1038/s41551-017-0157-y. PubMed DOI PMC
Luo H.; et al. microRNA-423–3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning. Cardiovasc. Res. 2019, 115 (7), 1189–1204. 10.1093/cvr/cvy231. PubMed DOI
Wen Z.; et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res. Ther 2020, 11 (1), 36.10.1186/s13287-020-1563-8. PubMed DOI PMC
Zheng H.; et al. Hemin enhances the cardioprotective effects of mesenchymal stem cell-derived exosomes against infarction via amelioration of cardiomyocyte senescence. J. Nanobiotechnology 2021, 19 (1), 332.10.1186/s12951-021-01077-y. PubMed DOI PMC
Santoso M. R. Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Promote Autophagy for Myocardial Repair. J. Am. Heart Assoc 2020, 9 (6), 1.10.1161/JAHA.119.014345. PubMed DOI PMC
Heris R. M.; et al. The potential use of mesenchymal stem cells and their exosomes in Parkinson’s disease treatment. Stem Cell Res. Ther 2022, 13 (1), 371.10.1186/s13287-022-03050-4. PubMed DOI PMC
Yang C.; et al. Silk Fibroin Hydrogels Could Be Therapeutic Biomaterials for Neurological Diseases. Oxid Med. Cell Longev 2022, 2022, 1–12. 10.1155/2022/2076680. PubMed DOI PMC
Deng Y.; et al. Exosomes derived from microRNA-138–5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J. Biol. Eng. 2019, 13 (1), 71.10.1186/s13036-019-0193-0. PubMed DOI PMC
Xin H.; et al. MicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke 2017, 48 (3), 747–753. 10.1161/STROKEAHA.116.015204. PubMed DOI PMC
Liu X. Hypoxia-pretreated mesenchymal stem cell-derived exosomes-loaded low-temperature extrusion 3D-printed implants for neural regeneration after traumatic brain injury in canines. Front Bioeng Biotechnol 2022, 10, 1.10.3389/fbioe.2022.1025138. PubMed DOI PMC
Zhang Z.-W.; et al. Intravenous infusion of the exosomes derived from human umbilical cord mesenchymal stem cells enhance neurological recovery after traumatic brain injury via suppressing the NF-κB pathway. Open Life Sci. 2022, 17 (1), 189–201. 10.1515/biol-2022-0022. PubMed DOI PMC
Park J. Electrically Conductive Hydrogel Nerve Guidance Conduits for Peripheral Nerve Regeneration. Adv. Funct Mater. 2020, 30 (39), 1.10.1002/adfm.202003759. DOI
Cao J.-Y.; et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics 2021, 11 (11), 5248–5266. 10.7150/thno.54550. PubMed DOI PMC
Cao J.; et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res. Ther 2020, 11 (1), 206.10.1186/s13287-020-01719-2. PubMed DOI PMC
Huang J. Mesenchymal Stem Cells-Derived Exosomes Ameliorate Ischemia/Reperfusion Induced Acute Kidney Injury in a Porcine Model. Front Cell Dev Biol. 2022, 10, 1.10.3389/fcell.2022.899869. PubMed DOI PMC
Yang Z.; et al. 3D-Bioprinted Difunctional Scaffold for In Situ Cartilage Regeneration Based on Aptamer-Directed Cell Recruitment and Growth Factor-Enhanced Cell Chondrogenesis. ACS Appl. Mater. Interfaces 2021, 13 (20), 23369–23383. 10.1021/acsami.1c01844. PubMed DOI
Ma K.; et al. Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J. Nanobiotechnology 2020, 18 (1), 163.10.1186/s12951-020-00708-0. PubMed DOI PMC
DiStefano T. J.; et al. Hydrogel-Embedded Poly(Lactic- co -Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair. Cartilage 2022, 13 (3), 194760352211139.10.1177/19476035221113959. PubMed DOI PMC
Lyu Y.; et al. Injectable Hyaluronic Acid Hydrogel Loaded with Functionalized Human Mesenchymal Stem Cell Aggregates for Repairing Infarcted Myocardium,. ACS Biomater Sci. Eng. 2020, 6 (12), 6926–6937. 10.1021/acsbiomaterials.0c01344. PubMed DOI
Heirani-Tabasi A.; et al. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Biomedical Materials 2021, 16 (5), 055003.10.1088/1748-605X/ac0cbf. PubMed DOI
Sang X.; et al. Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Eng. Regen Med. 2022, 19 (3), 629–642. 10.1007/s13770-022-00437-5. PubMed DOI PMC
Wu X.; Crawford R.; Xiao Y.; Mao X.; Prasadam I. Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration. Cells 2021, 10 (2), 251.10.3390/cells10020251. PubMed DOI PMC
Fan W.-J. Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol. 2022, 10, 1.10.3389/fcell.2022.949690. PubMed DOI PMC
Zhou Y.; et al. Exosomes derived from miR-126–3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Discov 2021, 7 (1), 37.10.1038/s41420-021-00418-y. PubMed DOI PMC
Pishavar E.; et al. Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration. Int. J. Mol. Sci. 2021, 22 (12), 6203.10.3390/ijms22126203. PubMed DOI PMC
Chen M.; Luo D. A CRISPR Path to Cutting-Edge Materials. New England Journal of Medicine 2020, 382 (1), 85–88. 10.1056/NEJMcibr1911506. PubMed DOI
Montoya C.; Du Y.; Gianforcaro A. L.; Orrego S.; Yang M.; Lelkes P. I. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res. 2021, 9 (1), 12.10.1038/s41413-020-00131-z. PubMed DOI PMC
Huang J.; Xiong J.; Yang L.; Zhang J.; Sun S.; Liang Y. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale 2021, 13 (19), 8740–8750. 10.1039/D1NR01314A. PubMed DOI
Xu J.; et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials 2019, 210, 51–61. 10.1016/j.biomaterials.2019.04.031. PubMed DOI
Qiu H.; Liu S.; Wu K.; Zhao R.; Cao L.; Wang H. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review. J. Cosmet Dermatol 2020, 19 (3), 574–581. 10.1111/jocd.13215. PubMed DOI
Safari B.; Aghazadeh M.; Davaran S.; Roshangar L. Exosome-loaded hydrogels: A new cell-free therapeutic approach for skin regeneration. Eur. J. Pharm. Biopharm. 2022, 171, 50–59. 10.1016/j.ejpb.2021.11.002. PubMed DOI
Zhang J.; et al. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics Proteomics Bioinformatics 2015, 13 (1), 17–24. 10.1016/j.gpb.2015.02.001. PubMed DOI PMC
Bari E.; et al. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells 2018, 7 (11), 190.10.3390/cells7110190. PubMed DOI PMC
Bruno S.; Chiabotto G.; Camussi G. Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. Int. J. Mol. Sci. 2020, 21 (12), 4255.10.3390/ijms21124255. PubMed DOI PMC