Characterization of adaptation mechanisms in sorghum using a multireference back-cross nested association mapping design and envirotyping
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P500PB_203030
Swiss National Science Foundation - Switzerland
PubMed
38381593
PubMed Central
PMC10990433
DOI
10.1093/genetics/iyae003
PII: 7612043
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, envirotyping, genotype by environment interaction, multiparental populations, multireference BCNAM, quantitative trait loci,
- MeSH
- fenotyp MeSH
- jedlá semena genetika MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- Sorghum * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Identifying the genetic factors impacting the adaptation of crops to environmental conditions is of key interest for conservation and selection purposes. It can be achieved using population genomics, and evolutionary or quantitative genetics. Here we present a sorghum multireference back-cross nested association mapping population composed of 3,901 lines produced by crossing 24 diverse parents to 3 elite parents from West and Central Africa-back-cross nested association mapping. The population was phenotyped in environments characterized by differences in photoperiod, rainfall pattern, temperature levels, and soil fertility. To integrate the multiparental and multi-environmental dimension of our data we proposed a new approach for quantitative trait loci (QTL) detection and parental effect estimation. We extended our model to estimate QTL effect sensitivity to environmental covariates, which facilitated the integration of envirotyping data. Our models allowed spatial projections of the QTL effects in agro-ecologies of interest. We utilized this strategy to analyze the genetic architecture of flowering time and plant height, which represents key adaptation mechanisms in environments like West Africa. Our results allowed a better characterization of well-known genomic regions influencing flowering time concerning their response to photoperiod with Ma6 and Ma1 being photoperiod-sensitive and the region of possible candidate gene Elf3 being photoperiod-insensitive. We also accessed a better understanding of plant height genetic determinism with the combined effects of phenology-dependent (Ma6) and independent (qHT7.1 and Dw3) genomic regions. Therefore, we argue that the West and Central Africa-back-cross nested association mapping and the presented analytical approach constitute unique resources to better understand adaptation in sorghum with direct application to develop climate-smart varieties.
Agronomy Department University of Wisconsin Madison WI 53705 WI USA
CIRAD UMR AGAP Institut Montpellier F 34398 France
Institut d'Economie Rurale Bamako BP 262 Mali
Sorghum Program International Crops Research Institute for the Semi Arid Tropics Bamako BP 320 Mali
UMR AGAP Institut Univ Montpellier CIRAD INRAE Institut Agro Montpellier F 34398 France
Zobrazit více v PubMed
Altendorf KR, Larson SR, DeHaan LR, Crain J, Neyhart J, Dorn KM, Anderson JA. 2021. Nested association mapping reveals the genetic architecture of spike emergence and anthesis timing in intermediate wheatgrass. G3 (Bethesda). 11(3):jkab025. doi:10.1093/g3journal/jkab025. PubMed DOI PMC
Andrews DJ. 1973. Effects of date of sowing on photosensitive Nigerian sorghums. Exp Agric. 9(4):337–346. doi:10.1017/S0014479700010139. DOI
Annicchiarico P. 2002. Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Paper No. 174. Rome: FAO.
Bardol N, Ventelon M, Mangin B, Jasson S, Loywick V, Couton F, Derue C, Blanchard P, Charcosset A, Moreau L. 2013. Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism. Theor Appl Genet. 126(11):2717–2736. doi:10.1007/s00122-013-2167-9. PubMed DOI
Bauer E, Falque M, Walter H, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Rincent R, Schipprack W, et al. 2013. Intraspecific variation of recombination rate in maize. Genome Biol. 14(9):R103. doi:10.1186/gb-2013-14-9-r103. PubMed DOI PMC
Bernardo R. 2016. Bandwagons I, too, have known. Theor Appl Genet. 129(12):2323–2332. doi:10.1007/s00122-016-2772-5. PubMed DOI
Bernardo R. 2021. Multiparental populations in line development: genetic gain, diversity, and practical limitations. Crop Sci. 61(6):4139–4150. doi:10.1002/csc2.20632. DOI
Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M, van Eeuwijk FA. 2007. A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics. 177(3):1801–1813. doi:10.1534/genetics.107.071068. PubMed DOI PMC
Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP. 2017. Increased power to dissect adaptive traits in global Sorghum diversity using a nested association mapping population. Genetics. 206(2):573–585. doi:10.1534/genetics.116.198499. PubMed DOI PMC
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23(19):2633–2635. doi:10.1093/bioinformatics/btm308. PubMed DOI
Broman KW. 2022. A generic hidden Markov model for multiparent populations. G3 (Bethesda). 12(2):jkab396. doi:10.1093/g3journal/jkab396. PubMed DOI PMC
Brown PJ, Rooney WL, Franks C, Kresovich S. 2008. Efficient mapping of plant height quantitative trait loci in a Sorghum association population with introgressed dwarfing genes. Genetics. 180(1):629–637. doi:10.1534/genetics.108.092239. PubMed DOI PMC
Browning BL, Zhou Y, Browning SR. 2018. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 103(3):338–348. doi:10.1016/j.ajhg.2018.07.015. PubMed DOI PMC
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, et al. 2009. The genetic architecture of maize flowering time. Science. 325(5941):714–718. doi:10.1126/science.1174276. PubMed DOI
Bustos-Korts D, Malosetti M, Chapman S, van Eeuwijk F. 2016. Modelling of genotype by environment interaction and prediction of complex traits across multiple environments as a synthesis of crop growth modelling, genetics and statistics. Crop Syst Biol. 55–82. doi:10.1186/s12918-016-0289-9 DOI
Campbell DR, Waser NM. 2001. Genotype‐by‐environment interaction and the fitness of plant hybrids in the wild. Evolution. 55(4):669–676. doi:10.1554/0014-3820(2001)055[0669:gbeiat]2.0.co;2. PubMed DOI
Cavanagh C, Morell M, Mackay I, Powell W. 2008. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol. 11(2):215–221. doi:10.1016/j.pbi.2008.01.002. PubMed DOI
CEDEAO-UEMOA-CILSS . 2016. Catalogue Régional des Espèces et Variétés Végétales CEDEAO-UEMOA-CILSS.
Chantereau J, Ag Hamada M, Bretaudeau A, Tembely S. 1998. Etude de Nouvelles Variétés de Sorgho en Milieu Paysan Dans la Zone Cotonnière Cmdt au Mali (1995–1996). Montpellier: CIRAD.
Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, DeValk CA, Krueger KW, Lawton SB, Spiegelberg BG, Schnell JM, et al. 2019. TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics. 213(3):1065–1078. doi:10.1534/genetics.119.302594. PubMed DOI PMC
Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE. 1997. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol. 113(2):611–619. doi:10.1104/pp.113.2.611. PubMed DOI PMC
Christopher M, Paccapelo V, Kelly A, Macdonald B, Hickey L, Richard C, Verbyla A, Chenu K, Borrell A, Amin A, et al. 2021. QTL identified for stay-green in a multi-reference nested association mapping population of wheat exhibit context dependent expression and parent-specific alleles. Field Crops Res. 270:108181. doi:10.1016/j.fcr.2021.108181. DOI
Clément JC, Leblanc JM. 1980. Prospection des mils pénicillaires, sorghos et graminées mineures en Afrique de l’Ouest. Campagne 1978. République du Mali. Orstom editions. Paris: International Board for Plant Genetic Resources.
Cobb JN, Biswas PS, Platten JD. 2019. Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet. 132(3):647–667. doi:10.1007/s00122-018-3266-4. PubMed DOI PMC
Costa-Neto G, Galli G, Carvalho HF, Crossa J, Fritsche-Neto R. 2021. EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. G3 (Bethesda). 11(4):jkab040. doi:10.1093/g3journal/jkab040. PubMed DOI PMC
Crouse WL, Kelada SNP, Valdar W. 2020. Inferring the allelic series at QTL in multiparental populations. Genetics. 216(4):957–983. doi:10.1534/genetics.120.303393. PubMed DOI PMC
Des Marais DL, Hernandez KM, Juenger TE. 2013. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst. 44(1):5–29. doi:10.1146/annurev-ecolsys-110512-135806. DOI
De Walsche A, Vergne A, Rincent R, Roux F, Nicolas SD, Welcker C, Mezmouk S, Charcosset A, Mary-Huard T. 2023. metaGE: Investigating Genotype-by-Environment interactions through meta-analysis. bioRxiv 530237. 10.1101/2023.03.01.530237, preprint: not peer reviewed. DOI
Diallo C, Rattunde HFW, Gracen V, Touré A, Nebié B, Leiser W, Dzidzienyo DK, Sissoko I, Danquah EY, Diallo AG, et al. 2019. Genetic diversification and selection strategies for improving Sorghum grain yield under phosphorous-deficient conditions in West Africa. Agronomy. 9(11):742. doi:10.3390/agronomy9110742. DOI
Diouf I, Derivot L, Koussevitzky S, Carretero Y, Bitton F, Moreau L, Causse M. 2020. Genetic basis of phenotypic plasticity and genotype× environment interactions in a multi-parental tomato population. J Exp Bot. 71(18):5365–5376. doi:10.1093/jxb/eraa265. PubMed DOI PMC
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity Species. PLoS One. 6(5):e19379. doi:10.1371/journal.pone.0019379. PubMed DOI PMC
Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics. India: Pearson Education.
FAO . 2008. Catalogue ouest africain des espèces et variétés végétales. Rome. Available from http://www.insah.org/doc/pdf/catalogue_french.pdf.
FAO . 2023. Global Information System. FAO. 10.18730/NMYBY. DOI
Folkertsma RT, Rattunde HFW, Chandra S, Raju GS, Hash CT. 2005. The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet. 111(3):399–409. doi:10.1007/s00122-005-1949-0. PubMed DOI
Folliard A, Traoré PCS, Vaksmann M, Kouressy M. 2004. Modeling of sorghum response to photoperiod: a threshold–hyperbolic approach. Field Crops Res. 89(1):59–70. doi:10.1016/j.fcr.2004.01.006. DOI
Fragoso CA, Moreno M, Wang Z, Heffelfinger C, Arbelaez LJ, Aguirre JA, Franco N, Romero LE, Labadie K, Zhao H, et al. 2017. Genetic architecture of a rice nested association mapping population. G3 (Bethesda). 7(6):1913–1926. doi:10.1534/g3.117.041608. PubMed DOI PMC
Gage JL, Monier B, Giri A, Buckler ES. 2020. Ten years of the maize nested association mapping population: impact, limitations, and future directions. Plant Cell. 32(7):2083–2093. doi:10.1105/tpc.19.00951. PubMed DOI PMC
Garin V, Malosetti M, van Eeuwijk F. 2020. Multi-parent multi-environment QTL analysis: an illustration with the EU-NAM flint population. Theor Appl Genet. 133(9):2627–2638. doi:10.1007/s00122-020-03621-0. PubMed DOI PMC
Garin V, Wimmer V, Borchardt D, Malosetti M, van Eeuwijk F. 2021. The influence of QTL allelic diversity on QTL detection in multi-parent populations: a simulation study in sugar beet. BMC Genomic Data. 22(1):4. doi:10.1186/s12863-021-00960-9. PubMed DOI PMC
Garin V, Wimmer V, Borchardt D, Van Eeuwijk FA, Malosetti M. 2018. mppR: multi-parent population QTL analysis. Available from https://CRAN.R-project.org/package=mppR. R package version 1.3.0.
Garin V, Wimmer V, Mezmouk S, Malosetti M, van Eeuwijk F. 2017. How do the type of QTL effect and the form of the residual term influence QTL detection in multi-parent populations? A case study in the maize EU-NAM population. Theor Appl Genet. 130(8):1753–1764. doi:10.1007/s00122-017-2923-3. PubMed DOI PMC
Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, et al. 2014. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics. 198(4):1717–1734. doi:10.1534/genetics.114.169367. PubMed DOI PMC
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES. 2014. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 9(2):e90346. doi:10.1371/journal.pone.0090346. PubMed DOI PMC
Goma L, Mani H, Tanimu B, Aliyu L, Garba L, Jantar H. 2012. Growth parameters of sorghum (Sorghum bicolor (L.) Moench) varieties as influenced by planting pattern and nitrogen rates. Agric Soc Niger. 609–618.
Gu J, Yin X, Zhang C, Wang H, Struik PC. 2014. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress. Ann Bot. 114(3):499–511. doi:10.1093/aob/mcu127. PubMed DOI PMC
Guindo D, Teme N, Vaksmann M, Doumbia M, Vilmus I, Guitton B, Sissoko A, Mestres C, Davrieux F, Fliedel G, et al. 2019. Quantitative trait loci for sorghum grain morphology and quality traits: toward breeding for a traditional food preparation of West-Africa. J Cereal Sci. 85:256–272. doi:10.1016/j.jcs.2018.11.012. DOI
Guitton B, Théra K, Tékété ML, Pot D, Kouressy M, Témé N, Rami J-F, Vaksmann M. 2018. Integrating genetic analysis and crop modeling: a major QTL can finely adjust photoperiod-sensitive sorghum flowering. Field Crops Res. 221:7–18. doi:10.1016/j.fcr.2018.02.007. DOI
Haussmann B, Hess D, Reddy B, Mukuru S, Kayentao M, Welz H, Geiger H. 2001. Pattern analysis of genotype× environment interaction for striga resistance and grain yield in African sorghum trials. Euphytica. 122(2):297–308. doi:10.1023/A:1012909719137. DOI
Hemshrot A, Poets AM, Tyagi P, Lei L, Carter CK, Hirsch CN, Li L, Brown-Guedira G, Morrell PL, Muehlbauer GJ, et al. 2019. Development of a multiparent population for genetic mapping and allele discovery in six-row barley. Genetics. 213(2):595–613. doi:10.1534/genetics.119.302046. PubMed DOI PMC
Higgins RH, Thurber CS, Assaranurak I, Brown PJ. 2014. Multiparental mapping of plant height and flowering time QTL in partially isogenic Sorghum families. G3 (Bethesda). 4(9):1593–1602. doi:10.1534/g3.114.013318. PubMed DOI PMC
Holland JB. 2007. Genetic architecture of complex traits in plants. Curr Opin Plant Biol. 10(2):156–161. doi:10.1016/j.pbi.2007.01.003. PubMed DOI
Hopkins WG. 2008. Introduction to Plant Physiology. Hoboken (NJ): John Wiley & Sons.
Hung HY, Browne C, Guill K, Coles N, Eller M, Garcia A, Lepak N, Melia-Hancock S, Oropeza-Rosas M, Salvo S, et al. 2012. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Heredity (Edinb). 108(5):490–499. doi:10.1038/hdy.2011.103. PubMed DOI PMC
Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG. 2011. Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci. 51(4):1444–1457. doi:10.2135/cropsci2010.06.0326. DOI
Kadam NN, Jagadish SVK, Struik PC, van der Linden CG, Yin X. 2019. Incorporating genome-wide association into eco-physiological simulation to identify markers for improving rice yields. J Exp Bot. 70(9):2575–2586. doi:10.1093/jxb/erz120. PubMed DOI PMC
Kante M, Rattunde F, Leiser W, Nebié B, Diallo B, Diallo A, Touré A, Weltzien E, Haussmann B. 2017. Can tall Guinea-race Sorghum hybrids deliver yield advantage to smallholder farmers in West and Central Africa? Crop Sci. 57(2):833–842. doi:10.2135/cropsci2016.09.0765. DOI
Kante M, Rattunde F, Nebié B, Sissoko I, Diallo B, Diallo A, Toure A, Weltzien E, Haussmann B, Leiser W. 2019. Sorghum hybrids for low-input farming systems in West Africa: quantitative genetic parameters to guide hybrid breeding. Crop Sci. 59(6):2544–2561. doi:10.2135/cropsci2019.03.0172. DOI
Kassam AH, Andrews DJ. 1975. Effects of sowing date on growth, development and yield of photosensitive sorghum at Samaru, Northern Nigeria. Exp Agric. 11(3):227–240. doi:10.1017/S0014479700006761. DOI
Kempton RA. 1984. The design and analysis of unreplicated trials. Vortage fur Pflanzenzuchtung. 7:219–242.
Kidane YG, Gesesse CA, Hailemariam BN, Desta EA, Mengistu DK, Fadda C, Pè ME, Dell’Acqua M. 2019. A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. Plant Biotechnol J. 17(7):1380–1393. doi:10.1111/pbi.13062. PubMed DOI PMC
Klasen J, Piepho H, Stich B. 2012. QTL detection power of multi-parental RIL populations in Arabidopsis thaliana. Heredity (Edinb). 108(6):626–632. doi:10.1038/hdy.2011.133. PubMed DOI PMC
Klein R, Rodriguez-Herrera R, Schlueter J, Klein P, Yu Z, Rooney W. 2001. Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet. 102:307–319. doi:10.1007/s001220051647. DOI
Kouressy M, Dingkuhn M, Vaksmann M, Heinemann AB. 2008. Adaptation to diverse semi-arid environments of sorghum genotypes having different plant type and sensitivity to photoperiod. Agric For Meteorol. 148(3):357–371. doi:10.1016/j.agrformet.2007.09.009. DOI
Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R, Keurentjes JJB, van Eeuwijk FA. 2015. Marker-Based estimation of heritability in immortal populations. Genetics. 199(2):379–398. doi:10.1534/genetics.114.167916. PubMed DOI PMC
Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C, Campo L, Flament P, Melchinger AE, Menz M, Meyer N, et al. 2014. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genetics. 198(1):3–16. doi:10.1534/genetics.114.161943. PubMed DOI PMC
Leroy T, Coumaré O, Kouressy M, Trouche G, Sidibé A, Sissoko S, Touré AO, Guindo T, Sogoba B, Dembélé F. 2014. Inscription d’une variété de sorgho obtenue par sélection participative au Mali dans des projets multiacteurs.
Li H, Bradbury P, Ersoz E, Buckler ES, Wang J. 2011. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One. 6(3):e17573. doi:10.1371/journal.pone.0017573. PubMed DOI PMC
Li J, Ji L. 2005. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb). 95(3):221–227. doi:10.1038/sj.hdy.6800717. PubMed DOI
Li W, Boer MP, Zheng C, Joosen RV, Van Eeuwijk FA. 2021. An IBD-based mixed model approach for QTL mapping in multiparental populations. Theor Appl Genet. 134(11):3643–3660. doi:10.1007/s00122-021-03919-7. PubMed DOI PMC
Li X, Guo T, Mu Q, Li X, Yu J. 2018. Genomic and environmental determinants and their interplay underlying phenotypic plasticity. Proc Natl Acad Sci U S A. 115(26):6679–6684. doi:10.1073/pnas.1718326115. PubMed DOI PMC
Li X, Li X, Fridman E, Tesso TT, Yu J. 2015. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc Natl Acad Sci U S A. 112(38):11823–11828. doi:10.1073/pnas.1509229112. PubMed DOI PMC
Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D. 2019. The Sorghum QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet. 132(3):751–756. doi:10.1007/s00122-018-3212-5. PubMed DOI
Mace ES, Cruickshank AW, Tao Y, Hunt CH, Jordan DR. 2021. A global resource for exploring and exploiting genetic variation in sorghum crop wild relatives. Crop Sci. 61(1):150–162. doi:10.1002/csc2.20332. DOI
Mace ES, Hunt CH, Jordan DR. 2013. Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet. 126(5):1377–1395. doi:10.1007/s00122-013-2059-z. PubMed DOI
Mace ES, Jordan DR. 2010. Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet. 121(7):1339–1356. doi:10.1007/s00122-010-1392-8. PubMed DOI
Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV. 2004. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics. 167(4):1905–1914. doi:10.1534/genetics.103.023580. PubMed DOI PMC
Mahalakshmi V, Bidinger F. 2002. Evaluation of stay-green sorghum germplasm lines at ICRISAT. Crop Sci. 42:965. doi:10.2135/cropsci2002.0965. DOI
Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA. 2004. Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica. 137(1):139–145. doi:10.1023/B:EUPH.0000040511.46388.ef. DOI
Marla SR, Burow G, Chopra R, Hayes C, Olatoye MO, Felderhoff T, Hu Z, Raymundo R, Perumal R, Morris GP. 2019. Genetic architecture of chilling tolerance in sorghum dissected with a nested association mapping population. G3 (Bethesda). 9(12):4045–4057. doi:10.1534/g3.119.400353. PubMed DOI PMC
Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K. 2015. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics. 16(1):290. doi:10.1186/s12864-015-1459-7. PubMed DOI PMC
McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, et al. 2009. Genetic properties of the maize nested association mapping population. Science. 325(5941):737–740. doi:10.1126/science.1174320. PubMed DOI
Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR. 2009. Global patterns in plant height. J Ecol. 97(5):923–932. doi:10.1111/j.1365-2745.2009.01526.x. DOI
Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. 2003. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science. 302(5642):81–84. doi:10.1126/science.1086072. PubMed DOI
Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE. 2011. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA. 108(39):16469–16474. doi:10.1073/pnas.1106212108. PubMed DOI PMC
Murphy RL, Morishige DT, Brady JA, Rooney WL, Yang S, Klein PE, Mullet JE. 2014. Ghd7 (Ma6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome. 7(2). doi:10.3835/plantgenome2013.11.0040. DOI
Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES. 2009. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 21(8):2194–2202. doi:10.1105/tpc.109.068437. PubMed DOI PMC
Nakamichi N. 2015. Adaptation to the local environment by modifications of the photoperiod response in crops. Plant Cell Physiol. 56(4):594–604. doi:10.1093/pcp/pcu181. PubMed DOI PMC
Paccapelo MV, Kelly AM, Christopher JT, Verbyla AP. 2022. WGNAM: whole-genome nested association mapping. Theor Appl Genet. 135(7):2213–2232. doi:10.1007/s00122-022-04107-x. PubMed DOI PMC
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature. 457(7229):551–556. doi:10.1038/nature07723. PubMed DOI
Piepho H-P, Pillen K. 2004. Mixed modelling for QTL× environment interaction analysis. Euphytica. 137(1):147–153. doi:10.1023/B:EUPH.0000040512.84025.16. DOI
Rama Reddy NR, Ragimasalawada M, Sabbavarapu MM, Nadoor S, Patil JV. 2014. Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics. 15(1):909. doi:10.1186/1471-2164-15-909. PubMed DOI PMC
Ratnadass A, Chantereau J, Coulibaly M, Cilas C. 2002. Inheritance of resistance to the panicle-feeding bug eurystylus oldi and the sorghum midge stenodiplosis sorghicola in sorghum. Euphytica. 123(1):131–138. doi:10.1023/A:1014451103520. DOI
Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F. 2003. Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol. 131(2):664–675. doi:10.1104/pp.013839. PubMed DOI PMC
Rodríguez-Álvarez MX, Boer MP, van Eeuwijk FA, Eilers PH. 2018. Correcting for spatial heterogeneity in plant breeding experiments with P-splines. Spat Stat. 23:52–71. doi:10.1016/j.spasta.2017.10.003. DOI
Rooney WL, Aydin S. 1999. Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci. 39(2):397–400. doi:10.2135/cropsci1999.0011183X0039000200016x. DOI
Sagnard F, Deu M, Dembélé D, Leblois R, Touré L, Diakité M, Calatalyud C, Vaksmann M, Bouchet S, Mallé Y, et al. 2011. Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild-weedy-crop complex in a western African region. Theor Appl Genet. 123(7):1231–1246. doi:10.1007/s00122-011-1662-0. PubMed DOI
Scott MF, Ladejobi O, Amer S, Bentley AR, Biernaskie J, Boden SA, Clark M, Dell’Acqua M, Dixon LE, Filippi CV, et al. 2020. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity (Edinb). 125(6):396–416. doi:10.1038/s41437-020-0336-6. PubMed DOI PMC
Soumaré M, Kouressy M, Vaksmann M, Maikano I, Bazile D, Traoré PS, Traoré S, Dingkuhn M, Touré A, Vom Brocke K. 2008. Prévision de l’aire de diffusion des sorghos photopériodiques en Afrique de l’Ouest. Cah Agric. 17(2):160–164. doi:10.1684/agr.2008.0183. DOI
Sparks AH. 2018. Nasapower: a NASA POWER global meteorology, surface solar energy and climatology data client for R. J Open Source Software. 3(30):1035. doi:10.21105/joss.01035. DOI
Takai T, Yonemaru J, Kaidai H, Kasuga S. 2012. Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum. Euphytica. 187:411–420. doi:10.1007/s10681-012-0727-8. DOI
Tardieu F. 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci. 8(1):9–14. doi:10.1016/S1360-1385(02)00008-0. PubMed DOI
Thera K. 2017. Analyse des déterminants génétiques contrôlant la production et la composition de la tige chez le sorgho (Sorghum bicolor [L.] Moench). Intégration des approches bi-et multi-parentales. Thèse de doctorat: Sciences agronomiques et écologie. Montpellier: Montpellier SupAgro.
van Eeuwijk FA, Bink MC, Chenu K, Chapman SC. 2010. Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol. 13(2):193–205. doi:10.1016/j.pbi.2010.01.001. PubMed DOI
Van Oosterom E, Carberry P, Hargreaves J, O’leary G. 2001. Simulating growth, development, and yield of tillering pearl millet: II. Simulation of canopy development. Field Crops Res. 72(1):67–91. doi:10.1016/S0378-4290(01)00165-4. DOI
Verbeke G, Molenberghs G, Verbeke G. 1997. Linear Mixed Models for Longitudinal Data. New York (NY): Springer.
Verbyla AP, Cavanagh CR, Verbyla KL. 2014. Whole-Genome analysis of multienvironment or multitrait QTL in MAGIC. G3 (Bethesda). 4(9):1569–1584. doi:10.1534/g3.114.012971. PubMed DOI PMC
Vom Brocke K, Trouche G, Weltzien E, Kondombo-Barro CP, Sidibé A, Zougmoré R, Gozé E. 2014. Helping farmers adapt to climate and cropping system change through increased access to sorghum genetic resources adapted to prevalent sorghum cropping systems in Burkina Faso. Exp Agric. 50(2):284–305. doi:10.1017/S0014479713000616. DOI
VSN International . 2022. Genstat for Windows 22nd Edition. Hemel Hempstead, UK: VSN International.
Wei J, Xu S. 2016. A random-model approach to QTL mapping in multiparent advanced generation intercross (MAGIC) populations. Genetics. 202(2):471–486. doi:10.1534/genetics.115.179945. PubMed DOI PMC
Wolabu TW, Tadege M. 2016. Photoperiod response and floral transition in sorghum. Plant Signal Behav. 11(12):e1261232. doi:10.1080/15592324.2016.1261232. PubMed DOI PMC
Wu X-L, Jannink J-L. 2004. Optimal sampling of a population to determine QTL location, variance, and allelic number. Theor Appl Genet. 108(7):1434–1442. doi:10.1007/s00122-003-1569-5. PubMed DOI
Xavier A, Xu S, Muir WM, Rainey KM. 2015. NAM: association studies in multiple populations. Bioinformatics. 31(23):3862–3864. doi:10.1093/bioinformatics/btv448. PubMed DOI
Xu S. 1998. Mapping quantitative trait loci using multiple families of line crosses. Genetics. 148(1):517–524. doi:10.1093/genetics/148.1.517. PubMed DOI PMC
Xu Y. 2016. Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet. 129(4):653–673. doi:10.1007/s00122-016-2691-5. PubMed DOI PMC
Yang S, Murphy RL, Morishige DT, Klein PE, Rooney WL, Mullet JE. 2014. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS One. 9(8):e105352. doi:10.1371/journal.pone.0105352. PubMed DOI PMC
Yu J, Holland JB, McMullen MD, Buckler ES. 2008. Genetic design and statistical power of nested association mapping in maize. Genetics. 178(1):539–551. doi:10.1534/genetics.107.074245. PubMed DOI PMC
Zhang Z, Wang W, Valdar W. 2014. Bayesian modeling of haplotype effects in multiparent populations. Genetics. 198(1):139–156. doi:10.1534/genetics.114.166249. PubMed DOI PMC
Zhang J, Zhang D, Fan Y, Li C, Xu P, Li W, Sun Q, Huang X, Zhang C, Wu L, et al. 2021. The identification of grain size genes by RapMap reveals directional selection during rice domestication. Nat Commun. 12:5673. doi:10.1038/s41467-021-25961-1. PubMed DOI PMC
Zheng C, Boer MP, van Eeuwijk FA. 2015. Reconstruction of genome ancestry blocks in multiparental populations. Genetics. 200(4):1073–1087. doi:10.1534/genetics.115.177873. PubMed DOI PMC