quantitative trait loci Dotaz Zobrazit nápovědu
The porcine orthologues of human chromosome HSA9q22.31 genes osteoglycin (OGN) and asporin (ASPN) were mapped to porcine chromosome SSC3 using linkage analysis and a somatic cell hybrid panel. This mapping was refined to SSC3q11 using fluorescence in situ hybridization. These results confirm the existence of a small conserved synteny group between SSC3 and HSA9. Polymorphisms were revealed in both genes, including a pentanucleotide microsatellite (SCZ003) in OGN and two single nucleotide polymorphisms (AM181682.1:g.780G>T and AM181682.1:g.825T>C) in ASPN. The two genes were included in a set of markers for quantitative trait loci (QTL) mapping on SSC3 in the Hohenheim Meishan x Piétrain F2 family. Major QTL for growth and carcass traits were centred in the ASPN-SW902 region.
- MeSH
- financování organizované MeSH
- glykoproteiny genetika MeSH
- jednonukleotidový polymorfismus MeSH
- křížení genetické MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- mikrosatelitní repetice MeSH
- prasata genetika růst a vývoj MeSH
- proteoglykany genetika MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
Association mapping of the central part of porcine chromosome 2 harboring QTLs for carcass and meat quality traits was performed with 17 gene-tagged SNPs located between 44.0 and 77.5 Mb on a physical map (Sscrofa10.2) in Italian Large White pigs. For the analyzed animals records of estimated breeding values for average daily gain, back fat thickness, lean cuts, ham weight, feed conversion ratio, pH1, pHu, CIE L*, CIE a*, CIE b* and drip loss were available. A significant QTL for fat deposition (adjusted P=0.0081) and pH1 (adjusted P=0.0972) to MYOD1 at position 44.4 Mb and a QTL for growth and meatiness (adjusted P=0.0238-0.0601) to UBL5 at position 68.9 Mb were mapped. These results from association mapping are much more accurate than those from linkage mapping and facilitate further search for position candidate genes and causative mutations needed for application of markers through marker assisted selection.
- MeSH
- chov MeSH
- fenotyp MeSH
- jednonukleotidový polymorfismus MeSH
- koncentrace vodíkových iontů MeSH
- kvalita jídla * MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů metody MeSH
- maso analýza MeSH
- MyoD Protein genetika MeSH
- prasata genetika MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The chemotherapeutic efficacy in colorectal cancer (CRC) is limited due to the inter-individual variability in drug response and the development of tumour resistance. ATP-binding cassette (ABC) transporters are crucial in the development of resistance by the efflux of anticancer agents from cancer cells. In this study, we identified 14 single nucleotide polymorphisms (SNPs) in 11 ABC transporter genes acting as an expression of quantitative trait loci (eQTLs), i.e. whose variation influence the expression of many downstream genes. These SNPs were genotyped in a case-control study comprising 1098 cases and 1442 healthy controls and analysed in relation to CRC development risk and patient survival. Considering a strict correction for multiple tests, we did not observe any significant association between SNPs and CRC risk. The rs3819720 polymorphism in the ABCB3/TAP2 gene was statistically significantly associated with shorter overall survival (OS) in the codominant, and dominant models [GA vs. GG, hazard ratio (HR) = 1.48; P = 0.002; AA vs. GG, HR = 1.70; P = 0.004 and GA + AA vs. GG, HR = 1.52; P = 0.0006]. Additionally, GA carriers of the same SNP displayed worse OS after receiving 5-FU based chemotherapy. The variant allele of rs3819720 polymorphism statistically significantly affected the expression of 36 downstream genes. Screening for eQTL polymorphisms in relevant genes such as ABC transporters that can regulate the expression of several other genes may help to identify the genetic background involved in the individual response to the treatment of CRC patients.
- MeSH
- ABC transportéry krev genetika MeSH
- databáze genetické MeSH
- fluorouracil terapeutické užití MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory farmakoterapie genetika metabolismus mortalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- následné studie MeSH
- protokoly antitumorózní kombinované chemoterapie terapeutické užití MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hypertension in humans and experimental models has a strong hereditary basis, but identification of causative genes remains challenging. Quantitative trait loci (QTLs) for hypertension and salt sensitivity have been reported on rat chromosome 18. We set out to genetically isolate and prioritize genes within the salt-sensitivity and hypertension QTLs on the spontaneously hypertensive rat (SHR) chromosome 18 by developing and characterizing a series of congenic strains derived from the SHR and normotensive Brown Norway rat strains. The SHR.BN-D18Rat113/D18Rat82 congenic strain exhibits significantly lower blood pressure and is salt resistant compared with the SHR. Transplantation of kidneys from SHR.BN-D18Rat113/D18Rat82 donors into SHR recipients is sufficient to attenuate increased blood pressure but not salt sensitivity. Derivation of congenic sublines allowed for the separation of salt sensitivity from hypertension QTL regions. Renal expression studies with microarray and Solexa-based sequencing in parental and congenic strains identified 4 differentially expressed genes within the hypertension QTL region, one of which is an unannotated transcript encoding a previously undescribed, small, nonprotein coding RNA. Sequencing selected biological candidate genes within the minimal congenic interval revealed a nonsynonymous variant in SHR transcription factor 4. The minimal congenic interval is syntenic to a region of human chromosome 18 where significant linkage to hypertension was observed in family based linkage studies. These congenic lines provide reagents for identifying causative genes that underlie the chromosome 18 SHR QTLs for hypertension and salt sensitivity. Candidate genes identified in these studies merit further investigation as potentially causative hypertension genes in SHR and human hypertension.
- MeSH
- genetická predispozice k nemoci genetika MeSH
- hypertenze etiologie genetika patofyziologie MeSH
- jednonukleotidový polymorfismus MeSH
- krevní tlak fyziologie genetika MeSH
- krysa rodu rattus MeSH
- kuchyňská sůl škodlivé účinky MeSH
- ledviny metabolismus MeSH
- lokus kvantitativního znaku genetika MeSH
- mapování chromozomů MeSH
- northern blotting MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteiny regulující apoptózu genetika MeSH
- receptor melanokortinový typ 2 genetika MeSH
- receptor melanokortinový typ 4 genetika MeSH
- receptory melanokortinové genetika MeSH
- savčí chromozomy genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stanovení celkové genové exprese MeSH
- transplantace ledvin metody MeSH
- tyrosinfosfatasa nereceptorového typu 2 genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Ribosomal DNA (rDNA) loci encoding 5S and 45S (18S-5.8S-28S) rRNAs are important components of eukaryotic chromosomes. Here, we set up the animal rDNA database containing cytogenetic information about these loci in 1343 animal species (264 families) collected from 542 publications. The data are based on in situ hybridisation studies (both radioactive and fluorescent) carried out in major groups of vertebrates (fish, reptiles, amphibians, birds, and mammals) and invertebrates (mostly insects and mollusks). The database is accessible online at www.animalrdnadatabase.com . The median number of 45S and 5S sites was close to two per diploid chromosome set for both rDNAs despite large variation (1-74 for 5S and 1-54 for 45S sites). No significant correlation between the number of 5S and 45S rDNA loci was observed, suggesting that their distribution and amplification across the chromosomes follow independent evolutionary trajectories. Each group, irrespective of taxonomic classification, contained rDNA sites at any chromosome location. However, the distal and pericentromeric positions were the most prevalent (> 75% karyotypes) for 45S loci, while the position of 5S loci was more variable. We also examined potential relationships between molecular attributes of rDNA (homogenisation and expression) and cytogenetic parameters such as rDNA positions, chromosome number, and morphology.
Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.
- MeSH
- banánovník genetika MeSH
- fenotyp MeSH
- genetická variace * MeSH
- genom rostlinný MeSH
- genomika MeSH
- genotyp MeSH
- lokus kvantitativního znaku genetika MeSH
- mikrosatelitní repetice genetika MeSH
- populační genetika * MeSH
- selekce (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika MeSH
Cyprinids are the most highly produced group of fishes globally, with common carp being one of the most valuable species of the group. Koi herpesvirus (KHV) infections can result in high levels of mortality, causing major economic losses, and is listed as a notifiable disease by the World Organization for Animal Health. Selective breeding for host resistance has the potential to reduce morbidity and losses due to KHV. Therefore, improving knowledge about host resistance and methods of incorporating genomic data into breeding for resistance may contribute to a decrease in economic losses in carp farming. In the current study, a population of 1,425 carp juveniles, originating from a factorial cross between 40 sires and 20 dams was challenged with KHV. Mortalities and survivors were recorded and sampled for genotyping by sequencing using Restriction Site-Associated DNA sequencing (RADseq). Genome-wide association analyses were performed to investigate the genetic architecture of resistance to KHV. A genome-wide significant QTL affecting resistance to KHV was identified on linkage group 44, explaining approximately 7% of the additive genetic variance. Pooled whole genome resequencing of a subset of resistant (n = 60) and susceptible animals (n = 60) was performed to characterize QTL regions, including identification of putative candidate genes and functional annotation of associated polymorphisms. The TRIM25 gene was identified as a promising positional and functional candidate within the QTL region of LG 44, and a putative premature stop mutation in this gene was discovered.
- MeSH
- celogenomová asociační studie MeSH
- Herpesviridae MeSH
- herpetické infekce genetika veterinární MeSH
- jednonukleotidový polymorfismus MeSH
- kapři genetika MeSH
- lokus kvantitativního znaku MeSH
- nemoci ryb genetika MeSH
- odolnost vůči nemocem genetika MeSH
- rybí proteiny genetika MeSH
- TRIM protein genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the HXB and BXH recombinant inbred strains derived from the spontaneously hypertensive rat and the normotensive Brown Norway rat, we determined the strain distribution patterns of 500 genetic markers to scan the rodent genome for quantitative trait loci regulating cardiac mass and blood pressure. The markers spanned approximately 1,139 cM of the genome and were tested for correlations with left ventricular mass adjusted for body weight, and with systolic, diastolic, and mean arterial pressures. The marker for the dopamine 1A receptor (Drd1a) on chromosome 17 showed the strongest correlation with left ventricular heart weight (P = .00038, r = -0.59) and the relationship to heart weight was independent of blood pressure. The markers showing the strongest correlations with systolic, diastolic, and mean arterial pressure were D19Mit7 on chromosome 19 (P = .0012, r = .55), D2N35 on chromosome 2 (P = .0008, r = .56), and Il6 on chromosome 4 (P = .0018, r = .53), respectively. These studies demonstrate that the HXB and BXH strains can be effectively used for genome scanning studies of complex traits and have revealed several chromosome regions that may be involved in the genetic control of blood pressure and cardiac mass in the rat.
- MeSH
- hypertenze * genetika MeSH
- krevní tlak * MeSH
- krysa rodu rattus MeSH
- mapování chromozomů * MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- rekombinace genetická MeSH
- srdce * anatomie a histologie MeSH
- velikost orgánu MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH