Static 3D Osteoblast Cell Culture on 3D Printed Titanium Scaffolds

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38393588

In vitro cell cultures are a very useful tool for the validation of biomaterial cytocompatibility, especially for bone tissue engineering scaffolds and bone implants. In this chapter, a protocol for a static three-dimensional osteoblast cell culture on titanium scaffolds and subsequent analysis of osteogenic capacity is presented. The protocol is explained for additively manufactured titanium scaffolds, but it can be extrapolated to other scaffolds with similar size and structure, while differing in composition or manufactured technology. Additionally, the protocol can be used for culture of other adherent cell types beyond osteoblast cells such as mesenchymal stem cells.

Zobrazit více v PubMed

Takizawa T, Nakayama N, Haniu H et al (2018) Titanium fiber plates for bone tissue repair. Adv Mater 30:1–11. https://doi.org/10.1002/adma.201703608 DOI

Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670. https://doi.org/10.1016/j.biomaterials.2005.12.002 PubMed DOI

Han Q, Wang C, Chen H et al (2019) Porous tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng 5:5798–5824. https://doi.org/10.1021/acsbiomaterials.9b00493 PubMed DOI

Stamp R, Fox P, O’Neill W et al (2009) The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Sci Mater Med 20:1839–1848. https://doi.org/10.1007/s10856-009-3763-8 PubMed DOI

Sing SL, Yeong WY, Wiria FE et al (2016) Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method. Exp Mech 56:735–748. https://doi.org/10.1007/s11340-015-0117-y DOI

Eldesouky I, Harrysson O, West H et al (2017) Electron beam melted scaffolds for orthopedic applications. Addit Manuf 17:169–175. https://doi.org/10.1016/j.addma.2017.08.005 DOI

Heinl P, Müller L, Körner C et al (2008) Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4:1536–1544. https://doi.org/10.1016/j.actbio.2008.03.013 PubMed DOI

Balla VK, DeVasConCellos PD, Xue W et al (2009) Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Acta Biomater 5:1831–1837. https://doi.org/10.1016/j.actbio.2009.01.011 PubMed DOI

Chioibasu D, Achim A, Popescu C et al (2019) Prototype orthopedic bone plates 3D printed by laser melting deposition. Materials 12:906. https://doi.org/10.3390/ma12060906 PubMed DOI PMC

Li JP, De Wijn JR, Van Blitterswijk CA et al (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235. https://doi.org/10.1016/j.biomaterials.2005.08.033 PubMed DOI

Montufar EB, Tkachenko S, Casas-Luna M et al (2020) Benchmarking of additive manufacturing technologies for commercially-pure-titanium bone-tissue-engineering scaffolds: processing-microstructure-property relationship. Addit Manuf 36:101516. https://doi.org/10.1016/j.addma.2020.101516 DOI

Diez-Escudero A, Andersson B, Carlsson E et al (2022) 3D-printed porous Ti6Al4V alloys with silver coating combine osteocompatibility and antimicrobial properties. Mater Sci Eng C 133:112629. https://doi.org/10.1016/j.msec.2021.112629 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...