• This record comes from PubMed

Negative Charge-Carrying Glycans Attached to Exosomes as Novel Liquid Biopsy Marker

. 2024 Feb 08 ; 24 (4) : . [epub] 20240208

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-21-0329 and APVV-22-0345 Slovak Research and Development Agency
VEGA 2/0164/24 Slovak Grant Agency
IRCC-2024-429 Qatar University and Institute of Chemistry, Slovak Academy of Sciences
22-26590 V4-Korea 2023 Joint Call and Czech Science Foundation
TM03000033 TACOM
CZ.02.01.01/00/22_008/0004596 MEYS project

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.

See more in PubMed

Bertok T., Jane E., Chrenekova N., Hroncekova S., Bertokova A., Hires M., Vikartovska A., Kubanikova P., Sokol R., Fillo J., et al. Analysis of serum glycome by lectin microarrays for prostate cancer patients—A search for aberrant glycoforms. Glycoconj. J. 2020;37:703–711. doi: 10.1007/s10719-020-09958-4. PubMed DOI

Narimatsu Y., Joshi H.J., Nason R., Van Coillie J., Karlsson R., Sun L., Ye Z., Chen Y.-H., Schjoldager K.T., Steentoft C., et al. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Mol. Cell. 2019;75:394–407.e395. doi: 10.1016/j.molcel.2019.05.017. PubMed DOI PMC

Molejon M.I., Weiz G., Breccia J.D., Vaccaro M.I. Glycoconjugation: An approach to cancer therapeutics. World J. Clin. Oncol. 2020;11:110–120. doi: 10.5306/wjco.v11.i3.110. PubMed DOI PMC

Gao Y., Luan X., Melamed J., Brockhausen I. Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells. 2021;10:1252. doi: 10.3390/cells10051252. PubMed DOI PMC

Paul A., Segal D., Zacco E. Glycans to improve efficacy and solubility of protein aggregation inhibitors. Neural Regen. Res. 2021;16:2215–2216. doi: 10.4103/1673-5374.310688. PubMed DOI PMC

Lee H.S., Qi Y., Im W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci. Rep. 2015;5:8926. doi: 10.1038/srep08926. PubMed DOI PMC

Sarkar A., Wintrode P.L. Effects of glycosylation on the stability and flexibility of a metastable protein: The human serpin α(1)-antitrypsin. Int. J. Mass Spectrom. 2011;302:69–75. doi: 10.1016/j.ijms.2010.08.003. PubMed DOI PMC

Bertok T., Bertokova A., Hroncekova S., Chocholova E., Svecova N., Lorencova L., Kasak P., Tkac J. Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. Chemosensors. 2021;9:205. doi: 10.3390/chemosensors9080205. DOI

Bertok T., Bertokova A., Jane E., Hires M., Aguedo J., Potocarova M., Lukac L., Vikartovska A., Kasak P., Borsig L., et al. Identification of Whole-Serum Glycobiomarkers for Colorectal Carcinoma Using Reverse-Phase Lectin Microarray. Front. Oncol. 2021;11:735338. doi: 10.3389/fonc.2021.735338. PubMed DOI PMC

Bertok T., Pinkova Gajdosova V., Bertokova A., Svecova N., Kasak P., Tkac J. Breast cancer glycan biomarkers: Their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev. Proteom. 2021;18:881–910. doi: 10.1080/14789450.2021.1996231. PubMed DOI

Vrablova V., Kosutova N., Blsakova A., Bertokova A., Kasak P., Bertok T., Tkac J. Glycosylation in extracellular vesicles: Isolation, characterization, composition, analysis and clinical applications. Biotechnol. Adv. 2023;67:108196. doi: 10.1016/j.biotechadv.2023.108196. PubMed DOI

Gurung S., Perocheau D., Touramanidou L., Baruteau J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021;19:47. doi: 10.1186/s12964-021-00730-1. PubMed DOI PMC

Zhu L., Sun H.T., Wang S., Huang S.L., Zheng Y., Wang C.Q., Hu B.Y., Qin W., Zou T.T., Fu Y., et al. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol. 2020;13:152. doi: 10.1186/s13045-020-00987-y. PubMed DOI PMC

Lorencova L., Bertok T., Bertokova A., Gajdosova V., Hroncekova S., Vikartovska A., Kasak P., Tkac J. Exosomes as a Source of Cancer Biomarkers: Advances in Electrochemical Biosensing of Exosomes. ChemElectroChem. 2020;7:1956–1973. doi: 10.1002/celc.202000075. DOI

Bertokova A., Svecova N., Kozics K., Gabelova A., Vikartovska A., Jane E., Hires M., Bertok T., Tkac J. Exosomes from prostate cancer cell lines: Isolation optimisation and characterisation. Biomed. Pharmacother. 2022;151:113093. doi: 10.1016/j.biopha.2022.113093. PubMed DOI

Gil B., Keshavarz M., Wales D., Darzi A., Yeatman E. Orthogonal Surface-Enhanced Raman Scattering/Field-Effect Transistor Detection of Breast and Colorectal Cancer-Derived Exosomes using Graphene as a Tag-Free Diagnostic Template. Adv. NanoBiomed Res. 2023;3:2300055. doi: 10.1002/anbr.202300055. DOI

Michela B. Liquid Biopsy: A Family of Possible Diagnostic Tools. Diagnostics. 2021;11:1391. doi: 10.3390/diagnostics11081391. PubMed DOI PMC

Mitchell A., Pickering C., Xu G., Rice R., Castellanos A., Bhadra R., Brcic L., Lindenmann J., Smolle F., Lindpaintner K., et al. Glycoproteomics as a powerful liquid biopsy-based screening tool for non-small cell lung cancer. J. Clin. Oncol. 2022;40:e21148. doi: 10.1200/JCO.2022.40.16_suppl.e21148. DOI

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Nordström T., Vickers A., Assel M., Lilja H., Grönberg H., Eklund M. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur. Urol. 2015;68:139–146. doi: 10.1016/j.eururo.2014.08.010. PubMed DOI PMC

Narain T.A., Sooriakumaran P. Beyond Prostate Specific Antigen: New Prostate Cancer Screening Options. World J. Men’s Health. 2022;40:66–73. doi: 10.5534/wjmh.210076. PubMed DOI PMC

Penzkofer T., Tempany-Afdhal C.M. Prostate cancer detection and diagnosis: The role of MR and its comparison with other diagnostic modalities—A radiologist’s perspective. NMR Biomed. 2014;27:3–15. doi: 10.1002/nbm.3002. PubMed DOI PMC

Salciccia S., Capriotti A.L., Laganà A., Fais S., Logozzi M., De Berardinis E., Busetto G.M., Di Pierro G.B., Ricciuti G.P., Del Giudice F., et al. Biomarkers in Prostate Cancer Diagnosis: From Current Knowledge to the Role of Metabolomics and Exosomes. Int. J. Mol. Sci. 2021;22:4367. doi: 10.3390/ijms22094367. PubMed DOI PMC

Li X., Corbett A.L., Taatizadeh E., Tasnim N., Little J.P., Garnis C., Daugaard M., Guns E., Hoorfar M., Li I.T.S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3:011503. doi: 10.1063/1.5087122. PubMed DOI PMC

Görgens A., Corso G., Hagey D.W., Jawad Wiklander R., Gustafsson M.O., Felldin U., Lee Y., Bostancioglu R.B., Sork H., Liang X., et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles. 2022;11:e12238. doi: 10.1002/jev2.12238. PubMed DOI PMC

Han L., Zhao Z., He C., Li J., Li X., Lu M. Removing the stumbling block of exosome applications in clinical and translational medicine: Expand production and improve accuracy. Stem Cell Res. Ther. 2023;14:57. doi: 10.1186/s13287-023-03288-6. PubMed DOI PMC

Logozzi M., Di Raimo R., Mizzoni D., Fais S. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzym. 2020;645:155–180. doi: 10.1016/bs.mie.2020.06.011. PubMed DOI PMC

Logozzi M., Angelini D.F., Giuliani A., Mizzoni D., Di Raimo R., Maggi M., Gentilucci A., Marzio V., Salciccia S., Borsellino G., et al. Increased Plasmatic Levels of PSA-Expressing Exosomes Distinguish Prostate Cancer Patients from Benign Prostatic Hyperplasia: A Prospective Study. Cancers. 2019;11:1449. doi: 10.3390/cancers11101449. PubMed DOI PMC

van der Pol E., Coumans F.A.W., Sturk A., Nieuwland R., van Leeuwen T.G. Refractive Index Determination of Nanoparticles in Suspension Using Nanoparticle Tracking Analysis. Nano Lett. 2014;14:6195–6201. doi: 10.1021/nl503371p. PubMed DOI

Rutherford D., Kolářová K., Čech J., Haušild P., Kuliček J., Ukraintsev E., Stehlík Š., Dao R., Neuman J., Rezek B. Correlative Atomic Force Microscopy and Scanning Electron Microscopy of Bacteria-Diamond-Metal Nanocomposites. Ultramicroscopy. 2023;258:113909. doi: 10.1016/j.ultramic.2023.113909. PubMed DOI

Neuman J., Novacek Z., Pavera M., Novotna V. Correlative Probe and Electron Microscopy CPEM™–The Novel Technology for 3D Material Surface Analysis. Microsc. Microanal. 2019;25:430–431. doi: 10.1017/S1431927619002885. DOI

Švecová E., Ostatná V., Fojt L., Hermannová M., Velebný V., Ondreáš F. Adsorption/desorption behavior of hyaluronic acid fragments at charged hydrophobic surface. Carbohydr. Polym. 2022;277:118831. doi: 10.1016/j.carbpol.2021.118831. PubMed DOI

Vestad B., Llorente A., Neurauter A., Phuyal S., Kierulf B., Kierulf P., Skotland T., Sandvig K., Haug K.B.F., Øvstebø R. Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: A variation study. J. Extracell. Vesicles. 2017;6:1344087. doi: 10.1080/20013078.2017.1344087. PubMed DOI PMC

Soo C.Y., Song Y., Zheng Y., Campbell E.C., Riches A.C., Gunn-Moore F., Powis S.J. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136:192–197. doi: 10.1111/j.1365-2567.2012.03569.x. PubMed DOI PMC

Li Y., Li Q., Li D., Gu J., Qian D., Qin X., Chen Y. Exosome carrying PSGR promotes stemness and epithelial-mesenchymal transition of low aggressive prostate cancer cells. Life Sci. 2021;264:118638. doi: 10.1016/j.lfs.2020.118638. PubMed DOI

Ukraintsev E., Hematian H., Neuman J., Rezek B. AFM-in-SEM analyses of thiorphan as-sembly on ZnO polar and nonpolar surfaces; Proceedings of the Nanocon 2023 Conference; Brno, Czech Republic. 18–20 October 2023; accepted .

Kamat V., Boutot C., Rafique A., Granados C., Wang J., Badithe A., Torres M., Chatterjee I., Olsen O., Olson W., et al. High affinity human Fc specific monoclonal antibodies for capture kinetic analyses of antibody-antigen interactions. Anal. Biochem. 2022;640:114455. doi: 10.1016/j.ab.2021.114455. PubMed DOI

Sha S., Wang Y., Liu M., Liu G., Fan N., Li Z., Dong W. Phaseolus vulgaris Erythroagglutinin (PHA-E)-Positive Ceruloplasmin Acts as a Potential Biomarker in Pancreatic Cancer Diagnosis. Cells. 2022;11:2453. doi: 10.3390/cells11152453. PubMed DOI PMC

Hagiwara K., Tobisawa Y., Kaya T., Kaneko T., Hatakeyama S., Mori K., Hashimoto Y., Koie T., Suda Y., Ohyama C., et al. Wisteria floribunda Agglutinin and Its Reactive-Glycan-Carrying Prostate-Specific Antigen as a Novel Diagnostic and Prognostic Marker of Prostate Cancer. Int. J. Mol. Sci. 2017;18:261. doi: 10.3390/ijms18020261. PubMed DOI PMC

Dobie C., Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br. J. Cancer. 2021;124:76–90. doi: 10.1038/s41416-020-01126-7. PubMed DOI PMC

Al Saoud R., Hamrouni A., Idris A., Mousa W.K., Abu Izneid T. Recent advances in the development of sialyltransferase inhibitors to control cancer metastasis: A comprehensive review. Biomed. Pharmacother. 2023;165:115091. doi: 10.1016/j.biopha.2023.115091. PubMed DOI

Rodrigues E., Macauley M.S. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers. 2018;10:207. doi: 10.3390/cancers10060207. PubMed DOI PMC

Palecek E., Tkác J., Bartosík M., Bertók T., Ostatná V., Palecek J. Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chem. Rev. 2015;115:2045–2108. doi: 10.1021/cr500279h. PubMed DOI PMC

Jastrząb P., Narejko K., Car H., Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers. 2023;15:5103. doi: 10.3390/cancers15205103. PubMed DOI PMC

Li K., Chen Y., Li A., Tan C., Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int. J. Cancer. 2019;144:1486–1495. doi: 10.1002/ijc.31774. PubMed DOI

Zhou X., Yang G., Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells. 2020;9:273. doi: 10.3390/cells9020273. PubMed DOI PMC

Büll C., den Brok M.H., Adema G.J. Sweet escape: Sialic acids in tumor immune evasion. Biochim. Biophys. Acta (BBA)—Rev. Cancer. 2014;1846:238–246. doi: 10.1016/j.bbcan.2014.07.005. PubMed DOI

Steinbichler T.B., Dudás J., Riechelmann H., Skvortsova I.I. The role of exosomes in cancer metastasis. Semin. Cancer Biol. 2017;44:170–181. doi: 10.1016/j.semcancer.2017.02.006. PubMed DOI

Ludwig N., Hong C.S., Ludwig S., Azambuja J.H., Sharma P., Theodoraki M.N., Whiteside T.L. Isolation and Analysis of Tumor-Derived Exosomes. Curr. Protoc. Immunol. 2019;127:e91. doi: 10.1002/cpim.91. PubMed DOI PMC

Suthar J., Taub M., Carney R.P., Williams G.R., Guldin S. Recent developments in biosensing methods for extracellular vesicle protein characterization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023;15:e1839. doi: 10.1002/wnan.1839. PubMed DOI PMC

Ståhl A.L., Johansson K., Mossberg M., Kahn R., Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr. Nephrol. 2019;34:11–30. doi: 10.1007/s00467-017-3816-z. PubMed DOI PMC

Logozzi M., Mizzoni D., Di Raimo R., Giuliani A., Maggi M., Sciarra A., Fais S. Plasmatic Exosome Number and Size Distinguish Prostate Cancer Patients from Healthy Individuals: A Prospective Clinical Study. Front. Oncol. 2021;11:727317. doi: 10.3389/fonc.2021.727317. PubMed DOI PMC

Hood J.L., Scott M.J., Wickline S.A. Maximizing exosome colloidal stability following electroporation. Anal. Biochem. 2014;448:41–49. doi: 10.1016/j.ab.2013.12.001. PubMed DOI PMC

Brunetti J., Depau L., Falciani C., Gentile M., Mandarini E., Riolo G., Lupetti P., Pini A., Bracci L. Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe. Sci. Rep. 2016;6:27174. doi: 10.1038/srep27174. PubMed DOI PMC

Pomin V.H., Mulloy B. Current structural biology of the heparin interactome. Curr. Opin. Struct. Biol. 2015;34:17–25. doi: 10.1016/j.sbi.2015.05.007. PubMed DOI

Walkowiak J.J., Ballauff M., Zimmermann R., Freudenberg U., Werner C. Thermodynamic Analysis of the Interaction of Heparin with Lysozyme. Biomacromolecules. 2020;21:4615–4625. doi: 10.1021/acs.biomac.0c00780. PubMed DOI

Rodriguez E., Boelaars K., Brown K., Eveline Li R.J., Kruijssen L., Bruijns S.C.M., van Ee T., Schetters S.T.T., Crommentuijn M.H.W., van der Horst J.C., et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat. Commun. 2021;12:1270. doi: 10.1038/s41467-021-21550-4. PubMed DOI PMC

Guo X., Elkashef S.M., Loadman P.M., Patterson L.H., Falconer R.A. Recent advances in the analysis of polysialic acid from complex biological systems. Carbohydr. Polym. 2019;224:115145. doi: 10.1016/j.carbpol.2019.115145. PubMed DOI

Kawakami K., Fujita Y., Kato T., Horie K., Koie T., Umezawa K., Tsumoto H., Miura Y., Katagiri Y., Miyazaki T., et al. Diagnostic potential of serum extracellular vesicles expressing prostate-specific membrane antigen in urologic malignancies. Sci. Rep. 2021;11:15000. doi: 10.1038/s41598-021-94603-9. PubMed DOI PMC

Øverbye A., Skotland T., Koehler C.J., Thiede B., Seierstad T., Berge V., Sandvig K., Llorente A. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget. 2015;6:30357–30376. doi: 10.18632/oncotarget.4851. PubMed DOI PMC

Skotland T., Ekroos K., Kauhanen D., Simolin H., Seierstad T., Berge V., Sandvig K., Llorente A. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur. J. Cancer. 2017;70:122–132. doi: 10.1016/j.ejca.2016.10.011. PubMed DOI

Kretschmer A., Kajau H., Margolis E., Tutrone R., Grimm T., Trottmann M., Stief C., Stoll G., Fischer C.A., Flinspach C., et al. Validation of a CE-IVD, urine exosomal RNA expression assay for risk assessment of prostate cancer prior to biopsy. Sci. Rep. 2022;12:4777. doi: 10.1038/s41598-022-08608-z. PubMed DOI PMC

Ho W.-L., Hsu W.-M., Huang M.-C., Kadomatsu K., Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J. Hematol. Oncol. 2016;9:100. doi: 10.1186/s13045-016-0334-6. PubMed DOI PMC

Zhou Y., Liu Y., Wang Y., Hu X., Koh K., Chen H. Tunable Au@SiO2/Au Film Metasurface as Surface Plasmon Resonance Enhancer for Direct and Ultrasensitive Detection of Exosomes. Anal. Chem. 2023;95:9663–9671. doi: 10.1021/acs.analchem.3c01451. PubMed DOI

Haizan I., Park D.H., Choi M.Y., Lee H., Choi J.-H. Nanomaterials-Based Exosomes for the Diagnostics and Drug Deliveries of Central Nervous System Diseases. BioChip J. 2023;17:293–307. doi: 10.1007/s13206-023-00112-4. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...