Negative Charge-Carrying Glycans Attached to Exosomes as Novel Liquid Biopsy Marker
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-21-0329 and APVV-22-0345
Slovak Research and Development Agency
VEGA 2/0164/24
Slovak Grant Agency
IRCC-2024-429
Qatar University and Institute of Chemistry, Slovak Academy of Sciences
22-26590
V4-Korea 2023 Joint Call and Czech Science Foundation
TM03000033
TACOM
CZ.02.01.01/00/22_008/0004596
MEYS project
PubMed
38400284
PubMed Central
PMC10892626
DOI
10.3390/s24041128
PII: s24041128
Knihovny.cz E-resources
- Keywords
- exosomes, microscopy techniques, nanoparticle tracking analysis, prostate cancer, self-assembled monolayer, surface plasmon resonance,
- MeSH
- Exosomes * chemistry MeSH
- Carcinoma * metabolism pathology MeSH
- Lectins analysis metabolism MeSH
- Humans MeSH
- Polysaccharides analysis metabolism MeSH
- Liquid Biopsy MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lectins MeSH
- Polysaccharides MeSH
Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.
Biomedical Research Centre Slovak Academy of Sciences Dubravska cesta 9 845 05 Bratislava Slovakia
Centre for Advanced Materials Qatar University Doha P O Box 2713 Qatar
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61200 Brno Czech Republic
Institute of Chemistry Slovak Academy of Sciences Dubravska cesta 5807 9 845 38 Bratislava Slovakia
Polymer Institute Slovak Academy of Sciences Dubravska cesta 9 845 41 Bratislava Slovakia
See more in PubMed
Bertok T., Jane E., Chrenekova N., Hroncekova S., Bertokova A., Hires M., Vikartovska A., Kubanikova P., Sokol R., Fillo J., et al. Analysis of serum glycome by lectin microarrays for prostate cancer patients—A search for aberrant glycoforms. Glycoconj. J. 2020;37:703–711. doi: 10.1007/s10719-020-09958-4. PubMed DOI
Narimatsu Y., Joshi H.J., Nason R., Van Coillie J., Karlsson R., Sun L., Ye Z., Chen Y.-H., Schjoldager K.T., Steentoft C., et al. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Mol. Cell. 2019;75:394–407.e395. doi: 10.1016/j.molcel.2019.05.017. PubMed DOI PMC
Molejon M.I., Weiz G., Breccia J.D., Vaccaro M.I. Glycoconjugation: An approach to cancer therapeutics. World J. Clin. Oncol. 2020;11:110–120. doi: 10.5306/wjco.v11.i3.110. PubMed DOI PMC
Gao Y., Luan X., Melamed J., Brockhausen I. Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells. 2021;10:1252. doi: 10.3390/cells10051252. PubMed DOI PMC
Paul A., Segal D., Zacco E. Glycans to improve efficacy and solubility of protein aggregation inhibitors. Neural Regen. Res. 2021;16:2215–2216. doi: 10.4103/1673-5374.310688. PubMed DOI PMC
Lee H.S., Qi Y., Im W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci. Rep. 2015;5:8926. doi: 10.1038/srep08926. PubMed DOI PMC
Sarkar A., Wintrode P.L. Effects of glycosylation on the stability and flexibility of a metastable protein: The human serpin α(1)-antitrypsin. Int. J. Mass Spectrom. 2011;302:69–75. doi: 10.1016/j.ijms.2010.08.003. PubMed DOI PMC
Bertok T., Bertokova A., Hroncekova S., Chocholova E., Svecova N., Lorencova L., Kasak P., Tkac J. Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. Chemosensors. 2021;9:205. doi: 10.3390/chemosensors9080205. DOI
Bertok T., Bertokova A., Jane E., Hires M., Aguedo J., Potocarova M., Lukac L., Vikartovska A., Kasak P., Borsig L., et al. Identification of Whole-Serum Glycobiomarkers for Colorectal Carcinoma Using Reverse-Phase Lectin Microarray. Front. Oncol. 2021;11:735338. doi: 10.3389/fonc.2021.735338. PubMed DOI PMC
Bertok T., Pinkova Gajdosova V., Bertokova A., Svecova N., Kasak P., Tkac J. Breast cancer glycan biomarkers: Their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev. Proteom. 2021;18:881–910. doi: 10.1080/14789450.2021.1996231. PubMed DOI
Vrablova V., Kosutova N., Blsakova A., Bertokova A., Kasak P., Bertok T., Tkac J. Glycosylation in extracellular vesicles: Isolation, characterization, composition, analysis and clinical applications. Biotechnol. Adv. 2023;67:108196. doi: 10.1016/j.biotechadv.2023.108196. PubMed DOI
Gurung S., Perocheau D., Touramanidou L., Baruteau J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021;19:47. doi: 10.1186/s12964-021-00730-1. PubMed DOI PMC
Zhu L., Sun H.T., Wang S., Huang S.L., Zheng Y., Wang C.Q., Hu B.Y., Qin W., Zou T.T., Fu Y., et al. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol. 2020;13:152. doi: 10.1186/s13045-020-00987-y. PubMed DOI PMC
Lorencova L., Bertok T., Bertokova A., Gajdosova V., Hroncekova S., Vikartovska A., Kasak P., Tkac J. Exosomes as a Source of Cancer Biomarkers: Advances in Electrochemical Biosensing of Exosomes. ChemElectroChem. 2020;7:1956–1973. doi: 10.1002/celc.202000075. DOI
Bertokova A., Svecova N., Kozics K., Gabelova A., Vikartovska A., Jane E., Hires M., Bertok T., Tkac J. Exosomes from prostate cancer cell lines: Isolation optimisation and characterisation. Biomed. Pharmacother. 2022;151:113093. doi: 10.1016/j.biopha.2022.113093. PubMed DOI
Gil B., Keshavarz M., Wales D., Darzi A., Yeatman E. Orthogonal Surface-Enhanced Raman Scattering/Field-Effect Transistor Detection of Breast and Colorectal Cancer-Derived Exosomes using Graphene as a Tag-Free Diagnostic Template. Adv. NanoBiomed Res. 2023;3:2300055. doi: 10.1002/anbr.202300055. DOI
Michela B. Liquid Biopsy: A Family of Possible Diagnostic Tools. Diagnostics. 2021;11:1391. doi: 10.3390/diagnostics11081391. PubMed DOI PMC
Mitchell A., Pickering C., Xu G., Rice R., Castellanos A., Bhadra R., Brcic L., Lindenmann J., Smolle F., Lindpaintner K., et al. Glycoproteomics as a powerful liquid biopsy-based screening tool for non-small cell lung cancer. J. Clin. Oncol. 2022;40:e21148. doi: 10.1200/JCO.2022.40.16_suppl.e21148. DOI
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Nordström T., Vickers A., Assel M., Lilja H., Grönberg H., Eklund M. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur. Urol. 2015;68:139–146. doi: 10.1016/j.eururo.2014.08.010. PubMed DOI PMC
Narain T.A., Sooriakumaran P. Beyond Prostate Specific Antigen: New Prostate Cancer Screening Options. World J. Men’s Health. 2022;40:66–73. doi: 10.5534/wjmh.210076. PubMed DOI PMC
Penzkofer T., Tempany-Afdhal C.M. Prostate cancer detection and diagnosis: The role of MR and its comparison with other diagnostic modalities—A radiologist’s perspective. NMR Biomed. 2014;27:3–15. doi: 10.1002/nbm.3002. PubMed DOI PMC
Salciccia S., Capriotti A.L., Laganà A., Fais S., Logozzi M., De Berardinis E., Busetto G.M., Di Pierro G.B., Ricciuti G.P., Del Giudice F., et al. Biomarkers in Prostate Cancer Diagnosis: From Current Knowledge to the Role of Metabolomics and Exosomes. Int. J. Mol. Sci. 2021;22:4367. doi: 10.3390/ijms22094367. PubMed DOI PMC
Li X., Corbett A.L., Taatizadeh E., Tasnim N., Little J.P., Garnis C., Daugaard M., Guns E., Hoorfar M., Li I.T.S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3:011503. doi: 10.1063/1.5087122. PubMed DOI PMC
Görgens A., Corso G., Hagey D.W., Jawad Wiklander R., Gustafsson M.O., Felldin U., Lee Y., Bostancioglu R.B., Sork H., Liang X., et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles. 2022;11:e12238. doi: 10.1002/jev2.12238. PubMed DOI PMC
Han L., Zhao Z., He C., Li J., Li X., Lu M. Removing the stumbling block of exosome applications in clinical and translational medicine: Expand production and improve accuracy. Stem Cell Res. Ther. 2023;14:57. doi: 10.1186/s13287-023-03288-6. PubMed DOI PMC
Logozzi M., Di Raimo R., Mizzoni D., Fais S. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzym. 2020;645:155–180. doi: 10.1016/bs.mie.2020.06.011. PubMed DOI PMC
Logozzi M., Angelini D.F., Giuliani A., Mizzoni D., Di Raimo R., Maggi M., Gentilucci A., Marzio V., Salciccia S., Borsellino G., et al. Increased Plasmatic Levels of PSA-Expressing Exosomes Distinguish Prostate Cancer Patients from Benign Prostatic Hyperplasia: A Prospective Study. Cancers. 2019;11:1449. doi: 10.3390/cancers11101449. PubMed DOI PMC
van der Pol E., Coumans F.A.W., Sturk A., Nieuwland R., van Leeuwen T.G. Refractive Index Determination of Nanoparticles in Suspension Using Nanoparticle Tracking Analysis. Nano Lett. 2014;14:6195–6201. doi: 10.1021/nl503371p. PubMed DOI
Rutherford D., Kolářová K., Čech J., Haušild P., Kuliček J., Ukraintsev E., Stehlík Š., Dao R., Neuman J., Rezek B. Correlative Atomic Force Microscopy and Scanning Electron Microscopy of Bacteria-Diamond-Metal Nanocomposites. Ultramicroscopy. 2023;258:113909. doi: 10.1016/j.ultramic.2023.113909. PubMed DOI
Neuman J., Novacek Z., Pavera M., Novotna V. Correlative Probe and Electron Microscopy CPEM™–The Novel Technology for 3D Material Surface Analysis. Microsc. Microanal. 2019;25:430–431. doi: 10.1017/S1431927619002885. DOI
Švecová E., Ostatná V., Fojt L., Hermannová M., Velebný V., Ondreáš F. Adsorption/desorption behavior of hyaluronic acid fragments at charged hydrophobic surface. Carbohydr. Polym. 2022;277:118831. doi: 10.1016/j.carbpol.2021.118831. PubMed DOI
Vestad B., Llorente A., Neurauter A., Phuyal S., Kierulf B., Kierulf P., Skotland T., Sandvig K., Haug K.B.F., Øvstebø R. Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: A variation study. J. Extracell. Vesicles. 2017;6:1344087. doi: 10.1080/20013078.2017.1344087. PubMed DOI PMC
Soo C.Y., Song Y., Zheng Y., Campbell E.C., Riches A.C., Gunn-Moore F., Powis S.J. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136:192–197. doi: 10.1111/j.1365-2567.2012.03569.x. PubMed DOI PMC
Li Y., Li Q., Li D., Gu J., Qian D., Qin X., Chen Y. Exosome carrying PSGR promotes stemness and epithelial-mesenchymal transition of low aggressive prostate cancer cells. Life Sci. 2021;264:118638. doi: 10.1016/j.lfs.2020.118638. PubMed DOI
Ukraintsev E., Hematian H., Neuman J., Rezek B. AFM-in-SEM analyses of thiorphan as-sembly on ZnO polar and nonpolar surfaces; Proceedings of the Nanocon 2023 Conference; Brno, Czech Republic. 18–20 October 2023; accepted .
Kamat V., Boutot C., Rafique A., Granados C., Wang J., Badithe A., Torres M., Chatterjee I., Olsen O., Olson W., et al. High affinity human Fc specific monoclonal antibodies for capture kinetic analyses of antibody-antigen interactions. Anal. Biochem. 2022;640:114455. doi: 10.1016/j.ab.2021.114455. PubMed DOI
Sha S., Wang Y., Liu M., Liu G., Fan N., Li Z., Dong W. Phaseolus vulgaris Erythroagglutinin (PHA-E)-Positive Ceruloplasmin Acts as a Potential Biomarker in Pancreatic Cancer Diagnosis. Cells. 2022;11:2453. doi: 10.3390/cells11152453. PubMed DOI PMC
Hagiwara K., Tobisawa Y., Kaya T., Kaneko T., Hatakeyama S., Mori K., Hashimoto Y., Koie T., Suda Y., Ohyama C., et al. Wisteria floribunda Agglutinin and Its Reactive-Glycan-Carrying Prostate-Specific Antigen as a Novel Diagnostic and Prognostic Marker of Prostate Cancer. Int. J. Mol. Sci. 2017;18:261. doi: 10.3390/ijms18020261. PubMed DOI PMC
Dobie C., Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br. J. Cancer. 2021;124:76–90. doi: 10.1038/s41416-020-01126-7. PubMed DOI PMC
Al Saoud R., Hamrouni A., Idris A., Mousa W.K., Abu Izneid T. Recent advances in the development of sialyltransferase inhibitors to control cancer metastasis: A comprehensive review. Biomed. Pharmacother. 2023;165:115091. doi: 10.1016/j.biopha.2023.115091. PubMed DOI
Rodrigues E., Macauley M.S. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers. 2018;10:207. doi: 10.3390/cancers10060207. PubMed DOI PMC
Palecek E., Tkác J., Bartosík M., Bertók T., Ostatná V., Palecek J. Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chem. Rev. 2015;115:2045–2108. doi: 10.1021/cr500279h. PubMed DOI PMC
Jastrząb P., Narejko K., Car H., Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers. 2023;15:5103. doi: 10.3390/cancers15205103. PubMed DOI PMC
Li K., Chen Y., Li A., Tan C., Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int. J. Cancer. 2019;144:1486–1495. doi: 10.1002/ijc.31774. PubMed DOI
Zhou X., Yang G., Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells. 2020;9:273. doi: 10.3390/cells9020273. PubMed DOI PMC
Büll C., den Brok M.H., Adema G.J. Sweet escape: Sialic acids in tumor immune evasion. Biochim. Biophys. Acta (BBA)—Rev. Cancer. 2014;1846:238–246. doi: 10.1016/j.bbcan.2014.07.005. PubMed DOI
Steinbichler T.B., Dudás J., Riechelmann H., Skvortsova I.I. The role of exosomes in cancer metastasis. Semin. Cancer Biol. 2017;44:170–181. doi: 10.1016/j.semcancer.2017.02.006. PubMed DOI
Ludwig N., Hong C.S., Ludwig S., Azambuja J.H., Sharma P., Theodoraki M.N., Whiteside T.L. Isolation and Analysis of Tumor-Derived Exosomes. Curr. Protoc. Immunol. 2019;127:e91. doi: 10.1002/cpim.91. PubMed DOI PMC
Suthar J., Taub M., Carney R.P., Williams G.R., Guldin S. Recent developments in biosensing methods for extracellular vesicle protein characterization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023;15:e1839. doi: 10.1002/wnan.1839. PubMed DOI PMC
Ståhl A.L., Johansson K., Mossberg M., Kahn R., Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr. Nephrol. 2019;34:11–30. doi: 10.1007/s00467-017-3816-z. PubMed DOI PMC
Logozzi M., Mizzoni D., Di Raimo R., Giuliani A., Maggi M., Sciarra A., Fais S. Plasmatic Exosome Number and Size Distinguish Prostate Cancer Patients from Healthy Individuals: A Prospective Clinical Study. Front. Oncol. 2021;11:727317. doi: 10.3389/fonc.2021.727317. PubMed DOI PMC
Hood J.L., Scott M.J., Wickline S.A. Maximizing exosome colloidal stability following electroporation. Anal. Biochem. 2014;448:41–49. doi: 10.1016/j.ab.2013.12.001. PubMed DOI PMC
Brunetti J., Depau L., Falciani C., Gentile M., Mandarini E., Riolo G., Lupetti P., Pini A., Bracci L. Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe. Sci. Rep. 2016;6:27174. doi: 10.1038/srep27174. PubMed DOI PMC
Pomin V.H., Mulloy B. Current structural biology of the heparin interactome. Curr. Opin. Struct. Biol. 2015;34:17–25. doi: 10.1016/j.sbi.2015.05.007. PubMed DOI
Walkowiak J.J., Ballauff M., Zimmermann R., Freudenberg U., Werner C. Thermodynamic Analysis of the Interaction of Heparin with Lysozyme. Biomacromolecules. 2020;21:4615–4625. doi: 10.1021/acs.biomac.0c00780. PubMed DOI
Rodriguez E., Boelaars K., Brown K., Eveline Li R.J., Kruijssen L., Bruijns S.C.M., van Ee T., Schetters S.T.T., Crommentuijn M.H.W., van der Horst J.C., et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat. Commun. 2021;12:1270. doi: 10.1038/s41467-021-21550-4. PubMed DOI PMC
Guo X., Elkashef S.M., Loadman P.M., Patterson L.H., Falconer R.A. Recent advances in the analysis of polysialic acid from complex biological systems. Carbohydr. Polym. 2019;224:115145. doi: 10.1016/j.carbpol.2019.115145. PubMed DOI
Kawakami K., Fujita Y., Kato T., Horie K., Koie T., Umezawa K., Tsumoto H., Miura Y., Katagiri Y., Miyazaki T., et al. Diagnostic potential of serum extracellular vesicles expressing prostate-specific membrane antigen in urologic malignancies. Sci. Rep. 2021;11:15000. doi: 10.1038/s41598-021-94603-9. PubMed DOI PMC
Øverbye A., Skotland T., Koehler C.J., Thiede B., Seierstad T., Berge V., Sandvig K., Llorente A. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget. 2015;6:30357–30376. doi: 10.18632/oncotarget.4851. PubMed DOI PMC
Skotland T., Ekroos K., Kauhanen D., Simolin H., Seierstad T., Berge V., Sandvig K., Llorente A. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur. J. Cancer. 2017;70:122–132. doi: 10.1016/j.ejca.2016.10.011. PubMed DOI
Kretschmer A., Kajau H., Margolis E., Tutrone R., Grimm T., Trottmann M., Stief C., Stoll G., Fischer C.A., Flinspach C., et al. Validation of a CE-IVD, urine exosomal RNA expression assay for risk assessment of prostate cancer prior to biopsy. Sci. Rep. 2022;12:4777. doi: 10.1038/s41598-022-08608-z. PubMed DOI PMC
Ho W.-L., Hsu W.-M., Huang M.-C., Kadomatsu K., Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J. Hematol. Oncol. 2016;9:100. doi: 10.1186/s13045-016-0334-6. PubMed DOI PMC
Zhou Y., Liu Y., Wang Y., Hu X., Koh K., Chen H. Tunable Au@SiO2/Au Film Metasurface as Surface Plasmon Resonance Enhancer for Direct and Ultrasensitive Detection of Exosomes. Anal. Chem. 2023;95:9663–9671. doi: 10.1021/acs.analchem.3c01451. PubMed DOI
Haizan I., Park D.H., Choi M.Y., Lee H., Choi J.-H. Nanomaterials-Based Exosomes for the Diagnostics and Drug Deliveries of Central Nervous System Diseases. BioChip J. 2023;17:293–307. doi: 10.1007/s13206-023-00112-4. DOI