The influence of biological relatedness on sexual dimorphism and sex classification based on external morphology of the frontal bone
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
1590218
Grantová Agentura, Univerzita Karlova
1276217
Grantová Agentura, Univerzita Karlova
DKRVO 2024-2028/7.I.a
Ministerstvo Kultury
00023272
Ministerstvo Kultury
PubMed
38400922
DOI
10.1007/s00414-024-03185-4
PII: 10.1007/s00414-024-03185-4
Knihovny.cz E-zdroje
- Klíčová slova
- Forensic anthropology, Genealogical documented sample, Geometric morphometrics, Kinship,
- MeSH
- čelní kost * diagnostické zobrazování anatomie a histologie MeSH
- dospělí MeSH
- lidé MeSH
- počítačová rentgenová tomografie MeSH
- pohlavní dimorfismus MeSH
- soudní antropologie * metody MeSH
- určení pohlaví podle kostry * metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The most significant sexual differences in the human skull are located in the upper third of the face (the frontal bone), which is a useful research object, mainly in combination with virtual anthropology methods. However, the influence of biological relatedness on sexual dimorphism and frontal bone variability remains unknown. This study was directed at sexual difference description and sex classification using the form and shape of the external surface of the frontal bones from a genealogically documented Central European osteological sample (nineteenth to twentieth centuries). The study sample consisted of 47 cranial CT images of the adult members of several branches of one family group over 4 generations. Three-dimensional virtual models of the frontal bones were analyzed using geometric morphometrics and multidimensional statistics. Almost the entire external frontal surface was significantly different between males and females, especially in form. Significant differences were also found between this related sample and an unrelated one. Sex estimation of the biologically related individuals was performed using the classification models developed on a sample of unrelated individuals from the recent Czech population (Čechová et al. in Int J Legal Med 133: 1285 1294, 2019), with a result of 74.46% and 63.83% in form and shape, respectively. Failure of this classifier was caused by the existence of typical traits found in the biologically related sample different from the usual manifestation of sexual dimorphism. This can be explained as due to the increased degree of similarity and the reduction of variability in biologically related individuals. The results show the importance of testing previously published methods on genealogical data.
Zobrazit více v PubMed
Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117:157–168. https://doi.org/10.1002/ajpa.10012 PubMed DOI
Özer BK, Özer I, Sagir M, Gülec E (2014) Sex determination using the tibia in an ancient anatolian population. Mediter Archeol Archaom 14:329–336
Walker PL (2008) Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol 136:39–50. https://doi.org/10.1002/ajpa.20776 PubMed DOI
Bigoni L, Velemínská J, Brůžek J (2010) Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a Central European sample of known sex. Homo 61:16–32. https://doi.org/10.1016/j.jchb.2009.09.004 PubMed DOI
Dempf R, Eckert AW (2010) Contouring the forehead and rhinoplasty in the feminization of the face in male-to-female transsexuals. J Cranio-Maxillo-Facial Surgery 38:416–422. https://doi.org/10.1016/j.jcms.2009.11.003 DOI
Shearer BM, Sholts SB, Garvin HM, Wärmländer SKTS (2012) Sexual dimorphism in human browridge volume measured from 3D models of dry crania: a new digital morphometrics approach. Forensic Sci Int 222:400.e1-400.e5. https://doi.org/10.1016/j.forsciint.2012.06.013 PubMed DOI
Bulut O, Petaros A, Hizliol I, Wärmländer SKTS, Hekimoglu B (2016) Sexual dimorphism in frontal bone roundness quantified by a novel 3D-based and landmar-free method. Forensic Sci Int 261:162.e1-162.e5. https://doi.org/10.1016/j.forsciint.2016.01.028 PubMed DOI
Čechová M, Dupej J, Brůžek J, Bejdová Š, Velemínská JA et al (2021) A test of the Bulut et al. (2016) landmark-free method of quantifying sex differences in frontal bone roundness in a contemporary Czech sample. J Forensic Sci 66:694–699. https://doi.org/10.1111/1556-4029.14603 PubMed DOI
Gapert R, Black S, Last J (2009) Sex detrmination from the foramen magnum: discriminant function analysis in an eighteenth and nineteenth century British sample. Int J Legal Med 123:25–33. https://doi.org/10.1007/s00414-008-0256-0 PubMed DOI
Gapert R, Black S, Last J (2009) Sex determination from the occipital condyle: discriminant function analysis in an eighteenth and nineteenth century British sample. Am J Phys Anthropol 138:384–394. https://doi.org/10.1002/ajpa.20946 PubMed DOI
Giles E (1964) Sex determination by discriminant function analysis of the mandible. Am J Phys Anthropol 22:129–136. https://doi.org/10.1002/ajpa.1330220212 PubMed DOI
Gamba TDO, Alves MC, Haiter-Neto F (2016) Mandibular sexual dimorphism analysis in CBCT scans. J Forensic Legal Med 38:106–110. https://doi.org/10.1016/j.jflm.2015.11.024 DOI
Kemkes A, Göbel T (2006) Metric assessment of the Bmastoid triangle^ for sex determination: a validation study. J Forensic Sci 51:985–989. https://doi.org/10.1111/j.1556-4029.2006.00232.x PubMed DOI
Madadin M, Menezes RG, Al Dhafeeri O, Kharoshah MA, Al Ibrahim R, Nagesh KR, Ramadan SU (2015) Evaluation of the mastoid triangle for determining sexual dimorphism: a Saudi population based study. Forensic Sci Int 254:244.e1-244.e4. https://doi.org/10.1016/j.forsciint.2015.06.019 PubMed DOI
von Cramon-Taubadel N (2014) Evolutionary insights into global patterns of human cranial diversity: population history, climatic and dietary effects. J Anthropol Sci 92:43–77. https://doi.org/10.4436/jass.91010 DOI
Moss ML (1962) The functional matrix. In: Kraus B, Riedel R (eds) Vistas in orthodontics. Lea & Febiger, Philadelphia, pp 85–98
Moss ML (1972) Twenty years of functional cranial analysis. Am J Orthod 61:479–485 PubMed DOI
Relethford JH (2002) Apportionment of global human genetic diversity based on craniometrics and skin color. Am J Phys Anthropol 118:393–398. https://doi.org/10.1002/ajpa.10079 PubMed DOI
Šešelj M, Duren DL, Sherwood RJ (2015) Heritability of the human craniofacial complex. Anat Rec 298:1535–1547. https://doi.org/10.1002/ar.23186 DOI
Relethford JH (2001) Global analysis of regional differences in craniometric diversity and population substructure. Human Biol 73:629–636 PubMed DOI
Gonzalez-Jose R, Van der Molen S, Gonzalez-Perez E, Hernandez M (2004) Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. Am J Phys Anthropol 123:69–77. https://doi.org/10.1002/ajpa.10302 PubMed DOI
Roseman CC (2004) Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc Natl Acad Sci 101:12824–12829. https://doi.org/10.1073/pnas.0402637101 PubMed DOI PMC
Wescott DJ, Jantz RL (2005) Assessing craniofacial secular change in American blacks and whites using geometric morphometry. In: Academic K (ed) Slice DE. Publishers-Plenum Publishers, New York, pp 231–245
Weisensee KE, Jantz RL (2011) Secular changes in craniofacial morphology of the portuguese using geometric morphometrics. Am J Phys Anthropol 145:548–559. https://doi.org/10.1002/ajpa.21531 PubMed DOI
Bejdová Š, Dupej J, Velemínský P, Poláček L, Velemínská J (2021) Facial skeleton morphology: does it reflect social stratification in an Early Mediaeval population from Great Moravia (ninth–tenth century AD, Czech Republic)?. Archeol Anthropol Sci 13. https://doi.org/10.1007/s12520-021-01298-0
Beals KL, Smith CL, Dodd SM (1983) Climate and the evolution of brachycephalization. Am J Phys Anthropol 62:425–437. https://doi.org/10.1002/ajpa.1330620407 PubMed DOI
Beals KL, Smith CL, Dodd SM, Angel JL, Armstrong E, Blumenberg B et al (1984) Brain size, cranial morphology, climate, and time machines [and comments and reply]. Current Anthropol 25:301–330. https://doi.org/10.1086/203138 DOI
Franciscus RG, Long JC (1991) Variation in human nasal height and breadth. Am J Phys Anthropol 85:419–427. https://doi.org/10.1002/ajpa.1330850406 PubMed DOI
Bruzek J, Murail P (2006) Methodology and reliability of sex determination from the skeleton. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic Anthropology and Medicine: Complementary Sciences From Recovery to Cause of Death. Humana Press Inc., New Jersey, pp 225–242 DOI
Tise ML, Kimmerle EH, Spradley MK (2014) Craniometric variation of diverse populations in Florida: identification challenges within a border state. Annals of Antrhopological Practise 38:111–123. https://doi.org/10.1111/napa.12046 DOI
Krüger GC, L’Abbé EN, Stull KE et al (2015) Sexual dimorphism in cranial morphology among modern South Africans. Int J Legal Med 129:869–875. https://doi.org/10.1007/s00414-014-1111-0 PubMed DOI
Murphy RE, Garvin HM (2018) A morphometric outline analysis of ancestry and sex differences in cranial shape. J Forensic Sci 63:1001–1009. https://doi.org/10.1111/1556-4029.13699 PubMed DOI
Musilová B, Dupej J, Velemínská J, Chaumoitre K, Bružek J (2016) Exocranial surfaces for sex assessment of the human cranium. Forensic Sci Int 269:70–77. https://doi.org/10.1016/j.forsciint.2016.11.006 PubMed DOI
Plavcan JM (2001) Sexual dimorphism in primate evolution. Am J Phys Anthropol 116:25–53. https://doi.org/10.1002/ajpa.100114 DOI
Noble J, Cardini A, Flavel A, Franklin D (2019) Geometric morphometrics on juvenile crania: exploring age and sex variation in an Australian population. Forensic Sci Int 294:57–68. https://doi.org/10.1016/j.forsciint.2018.10.022 PubMed DOI
Enlow DH, Hans M (2008) Essentials of facial growth, 2nd edn. Needham, Ann Arbor
Ross AH, Williams SE (2010) Craniofacial growth, maturation, and change: teens to midadulthood. J Craniofac Surg 21:458–461. https://doi.org/10.1097/SCS.0b013e3181cfea34 PubMed DOI
Mendelson B, Wong CH (2012) Changes in the facial skeleton with aging: implications and clinical applications in facial rejuvenation. Aesthet Plast Surg 36:753–760. https://doi.org/10.1007/s00266-020-01823-x DOI
Atkinson M (2013) Anatomy for dental students, 4th edn. University Press, Oxford DOI
Pessa JE (2000) An algorithm of facial aging: verification of lambros’s theory by three-dimensional stereolithography, with reference to the pathogenesis of midfacial aging, scleral show, and the lateral suborbital trough deformity. Plast Reconstr Surg 106:479–488 PubMed DOI
Velemínská J, Fleischmannová N, Suchá B et al (2021) Age-related differences in cranial sexual dimorphism in contemporary Europe. Int J Legal Med 135:2033–2044. https://doi.org/10.1007/s00414-021-02547-6 PubMed DOI
Frank K, Gotkin RH, Pavicic T, Morozov SP et al (2018) Age and gender differences of the frontal bone: a computed tomographic (CT)-based study. Aesthet Surg J 39:699–710. https://doi.org/10.1093/asj/sjy270 DOI
Guyomarch P, Velemínská J, Sedlak P (2016) Impact of secular trends on sex assessment evaluated through femoral dimensions of the Czech population. Forensic Sci Int 262:284e1-284e6. https://doi.org/10.1016/j.forsciint.2016.02.042 DOI
Jantz RL, Meadows Jantz L (2000) Secular change in craniofacial morphology. Am J Hum Biol 12:327–338. https://doi.org/10.1002/(SICI)1520-6300(200005/06)12:3%3c327::AID-AJHB3%3e3.0.CO;2-1 PubMed DOI
Manthey L, Jantz RL, Bohnert M, Jellinghaus K (2017) Secular change of sexually dimorphic cranial variables in Euro-Americans and Germans. Int J Legal Med 131:1113–1118. https://doi.org/10.1007/s00414-016-1469-2 PubMed DOI
Jellinghaus K, Hoeland K, Hachmann C, Prescher A, Bohnert M, Jantz R (2018) Cranial secular change from the nineteenth to the twentieth century inmodern German individuals compared to modern Euro-American individuals. Int J Legal Med 132:1477–1484. https://doi.org/10.1007/s00414-018-1809-5 PubMed DOI
Scheuer L (2002) Application of osteology to forensic medicine. Clin Anat 15:297–312. https://doi.org/10.1002/ca.10028 PubMed DOI
Galeta P, Brůžek J (2020) Sex estimation using continuous variables: problems and principles of sex classification in the zone of uncertainty. In: Statistics and probability in forensic anthropology. Academic Press, pp 155–182. https://doi.org/10.1016/B978-0-12-815764-0.00016-2 DOI
Marino R, Tanganelli V, Pietrobelli A, Belcastro MG (2020) Evaluation of the auricular surface method for subadult sex estimation on Italian modern (19th to 20th century) identified skeletal collections. Am J Phys Anthropol 174:792–803. https://doi.org/10.1002/ajpa.24146 PubMed DOI
Avent PR, Hughes CE, Garvin HM (2022) Applying posterior probability informed thresholds to traditional cranial trait sex estimation methods. J Forensic Sci 67:440–449. https://doi.org/10.1111/1556-4029.14947 PubMed DOI
Keen JA (1950) A study of differences between male and female skulls. Am J Phys Anthropol 8:65–80. https://doi.org/10.1002/ajpa.1330080113 PubMed DOI
Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains: procceedings of a seminar at the field museum of natural history, organized by Jonathan Haas. Arkansas Archeological Survey, Fayetteville
Garvin HM, Ruff CB (2012) Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am J Phys Anthropol 147:661–670. https://doi.org/10.1002/ajpa.22036 PubMed DOI
Rosas A, Bastir M (2002) Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am J Phys Anthropol 117:236–245. https://doi.org/10.1002/ajpa.10023 PubMed DOI
Čechová M, Dupej J, Brůžek J, Bejdová Š, Horák M, Velemínská J (2019) Sex estimation using external morphology of the frontal bone and frontal sinuses in a contemporary Czech population. Int J Legal Med 133:1285–1294. https://doi.org/10.1007/s00414-019-02063-8 PubMed DOI
Del Bove A, Profico A, Riga A, Bucchi A, Lorenzo C (2020) A geometric morphometric approach to the study of sexual dimorphism in the modern human frontal bone. Am J Phys Anthropol 173:643–654. https://doi.org/10.1002/ajpa.24154 PubMed DOI
Cameriere R, Ferrante L, Molleson T, Brown B (2008) Frontal sinus accuracy in identification as measured by false positives in kin groups. J Forensic Sci 53:1280–1282. https://doi.org/10.1111/j.1556-4029.2008.00851.x PubMed DOI
Cvrček J, Rmoutilová R, Čechová M, Jor T et al (2020) Biological relationships and frontal sinus similarity in skeletal remains with known genealogical data. J Anat 237:798–809. https://doi.org/10.1111/joa.13246 PubMed DOI PMC
Cvrček J, Kuběna AA, Jor T, Naňka O et al (2023) Does sternal body shape reflect family relationships? A study on a genealogically documented Central European osteological sample (19th–20th centuries). Anat Rec 306:366–377. https://doi.org/10.1002/ar.25091 DOI
Cvrček J, Kuželka V, Jor T, Dupej J et al (2021) Familial occurrence of skeletal developmental anomalies as a reflection of biological relationships in a genealogically documented Central European sample (19th to 20th centuries). J Anat 239:1226–1238. https://doi.org/10.1111/joa.13499 PubMed DOI PMC
Cvrček J, Velemínský P, Dupej J, Jor T, Brůžek J (2021) Kinship and the familial occurrence of skeletal developmental anomalies in the noble Swéerts-Sporck family (Bohemia, 17th to 20th centuries). Int J Paleopathology 34:163–167. https://doi.org/10.1016/j.ijpp.2021.07.005 DOI
Velemínský P, Dobisíková M (2005) Morphological likeness of the skeletal remains in a central European family from 17th to 19th century. Homo 56:173–196. https://doi.org/10.1016/j.jchb.2005.05.005 PubMed DOI
Cvrček J, Velemínský P, Dupej J, Vostrý L, Brůžek J (2018) Kinship and morphological similarity in the skeletal remains of individuals with known genealogical data (Bohemia, 19th to 20th centuries): a new methodological approach. Am J Phys Anthropol 167:541–556. https://doi.org/10.1002/ajpa.23683 PubMed DOI
Vlček E (1997) Atlas kosterních pozůstatků prvních sedmi historicky známých generací Přemyslovců s podrobným komentářem a historickými poznámkami (Atlas of skeletal remains of the first seven historically known generations of Přemyslids with detailed commentary and historical notes. In Czech). Vesmír, Praha
Falconer DS, Mackay TFC (1996) Introduction into quantitative genetics, 4th edn. Longman House, Harlow
VanRaden PM (1992) Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. J Dairy Sci 75:3136–3144. https://doi.org/10.3168/jds.S0022-0302(92)78077-1 DOI
Kotěrová A, Velemínská J, Dupej J, Brzobohatá H, Pilný A, Brůžek J (2016) Disregarding population specificity : its influence on the sex assessment methods from the tibia. Int J Legal Med 131:251–261. https://doi.org/10.1007/s00414-016-1413-5 PubMed DOI
Dupej J, de Lázaro GR, Pereira-Pedro AS, Píšová H, Pelikán J, Bruner E (2018) Comparing endocranial surfaces: mesh superimposition and coherent point drift registration. In: Bruner E, Ogihara N, Tanabe H (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_10 DOI
Dupej J, Krajíček V, Velemínská J, Pelikán J (2014) Statistical mesh shape analysis with nonlandmark nonrigid registration. Poster presented at 12th Symposium on Geometry Processing. Cardiff
Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247. https://doi.org/10.1007/s11692-009-9055-x DOI
Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2(4):433–459. https://doi.org/10.1002/wics.101 DOI
Zendlich ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for Biologist. Academic Press
Perlaza NA (2014) Sex determination from the frontal bone: a geometric morphometric study. J Forensic Sci 59:1330–1332. https://doi.org/10.1111/1556-4029.12467 PubMed DOI
Hochstein LAE (2014) The frontal bone as a proxy for sex estimation in humans: a geometric morphometric analysis. Master Thesis, Louisiana State University and Agricultural and Mechanical College
Fatah A, Shirley N, Jantz R, Mahfouz M (2014) Improving sex estimation from crania using a novel three-dimensional quantitative method. J Forensic Sci 59:590–600. https://doi.org/10.1111/1556-4029.12379 PubMed DOI
Krogman WM (1962) The human skeleton in forensic medicine. Charles C Thomas Publisher, Illinois
Russell MD, Brown T, Garn SM, Giris F et al (1985) The supraorbital torus: a most remarkable peculiariny. Current Antropol 26:337–360 DOI