Solid-state fermentation of brown seaweeds for the production of alginate lyase using marine bacterium Enterobacter tabaci RAU2C

. 2024 Oct ; 69 (5) : 1083-1093. [epub] 20240224

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38401040

Grantová podpora
KARE/VC/R&D/SMPG/2023-2024/01 Kalasalingam Academy of Research and Education

Odkazy

PubMed 38401040
DOI 10.1007/s12223-024-01150-7
PII: 10.1007/s12223-024-01150-7
Knihovny.cz E-zdroje

Alginate lyases have countless potential for application in industries and medicine particularly as an appealing biocatalyst for the production of biofuels and bioactive oligosaccharides. Solid-state fermentation (SSF) allows improved production of enzymes and consumes less energy compared to submerged fermentation. Seaweeds can serve as the most promising biomass for the production of biochemicals. Alginate present in the seaweed can be used by alginate lyase-producing bacteria to support growth and can secrete alginate lyase. In this perspective, the current study was directed on the bioprocessing of brown seaweeds for the production of alginate lyase using marine bacterial isolate. A novel alginate-degrading marine bacterium Enterobacter tabaci RAU2C which was previously isolated in the laboratory was used for the production of alginate lyase using Sargassum swartzii as a low-cost solid substrate. Process parameters such as inoculum incubation period and moisture content were optimized for alginate lyase production. SSF resulted in 33.56 U/mL of alginate lyase under the static condition maintained with 75% moisture after 4 days. Further, the effect of different buffers, pH, and temperature on alginate lyase activity was also analyzed. An increase in alginate lyase activity was observed with an increase in moisture content from 60 to 75%. Maximum enzyme activity was perceived with phosphate buffer at pH 7 and 37 °C. Further, the residual biomass after SSF could be employed as biofertilizer for plant growth promotion based on the preliminary analysis. To our knowledge, this is the first report stating the usage of seaweed biomass as a substrate for the production of alginate lyase using solid-state fermentation.

Zobrazit více v PubMed

Aarstad OA, Tondervik A, Sletta H, Skjak-Braek G (2012) Alginate sequencing: an analysis of block distribution in alginates using specific alginate degrading enzymes. Biomacromol 13:106–116. https://doi.org/10.1021/bm201302622 DOI

Aramwit P (2016) Introduction to biomaterials for wound healing. Wound Healing Biomaterials 3–38. https://doi.org/10.1016/B978-1-78242-456-7.00001-5 DOI

Aslamyah S, Karim, MY, Badraeni (2017) Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients. JAI 16(1):8 https://doi.org/10.19027/jai.16.1.8-14

Boyd J, Turvey JR (1978) Structural studies of alginic acid, using a bacterial poly-alpha-l-guluronate lyase. Carbohydr Res 66(187–94):23. https://doi.org/10.1016/S0008-6215(00)83251-6 DOI

Chapla D, Patel H, Singh A, Madamwar D, Shah A (2011) Production, purification and properties of a cellulase-free thermostable endoxylanase from newly isolated Paenibacillus sp. ASCD2. Ann Microbiol 62(2):825–834. https://doi.org/10.1007/s13213-011-0323-5 DOI

Chen P, Zhu Y, Men Y, Zeng Y, Sun Y (2018) Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07. Mar Drugs 16:86. https://doi.org/10.3390/md16030086 PubMed DOI PMC

Chu YJ, Kim HS, Kim MS, Lee EY, Kim HS (2020) Functional characterization of a novel oligoalginate lyase of Stenotrophomonas maltophilia KJ-2 using site-specific mutation reveals bifunctional mode of action, possessing both endolytic and exolytic degradation activity toward alginate in seaweed biomass. Front Mar Sci 7:420. https://doi.org/10.3389/fmars.2020.00420 DOI

Daboor SM, Rohde JR, Cheng Z (2021) Disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate lyase enhances pathogen eradication by antibiotics. J Cyst Fibros 20:264–270. https://doi.org/10.1016/j.jcf.2020.04.006 PubMed DOI

Darabzadeh N, Hamidi-Esfahani Z, Hejazi P (2018) Optimization of cellulase production under solid-state fermentation by a new mutant strain of Trichoderma reesei. Food Sci Nutr 297(2):572–578. https://doi.org/10.1002/fsn3.852 DOI

Deepika C, Ravishankar GA, Rao AR (2022) Potential products from macroalgae: an overview. In: Ranga Rao, A., Ravishankar, G.A. (eds) Sustainable global resources of seaweeds, Springer, Cham. 1:17–44 https://doi.org/10.1007/978-3-030-91955-92

Dou W, Wei D, Li H, Li H, Rahman MM, Shi J, Xu Z, Ma Y (2013) Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydr Polym 98:1476–1482. https://doi.org/10.1016/j.carbpol.2013.07.050 PubMed DOI

Dubois M, Gilles K, Hamilton J et al (1951) A colorimetric method for the determination of sugars. Nature 168(4265):167. https://doi.org/10.1038/168167a0 PubMed DOI

Elyakova LA, Favorov VV (1974) Isolation and certain properties of alginate lyase VI from the mollusk Littorina sp. Biochim Biophys Acta (BBA)-Enzymol 358:341–354. https://doi.org/10.1016/0005-2744(74)90464-1 DOI

Falkeborg M, Cheong LZ, Gianfico C, Sztukiel KM, Kristensen K, Glasius M, Xu X, Guo Z (2014) Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 164:185–194. https://doi.org/10.1016/j.foodchem.2014.05.053 PubMed DOI

Gacesa P (1988) Alginates. Carbohyd Polym 8:161–182. https://doi.org/10.1016/0144-8617(88)90001-X DOI

Gazulla MF, Rodrigo M, Orduña M, Gómez CM (2012) Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analysers. Geostand Geoanal Res 36(2):201–217. https://doi.org/10.1111/j.1751-908x.2011.00140.x . Portico DOI

Hien NQ, Nagasawa N, Tham LX, Yoshii F, Dang VH, Mitomo H, Makuuchi K, Kume T (2000) Growth promotion of plants with depolymerized alginates by irradiation. Radiat Phys Chem 59:97–101. https://doi.org/10.1016/S0969-806X(99)00522-8 DOI

Hu X, Jiang X, Hwang H, Liu S, Guan H (2004) Promotive effects of alginate-derived oligosaccharide on maize seed germination. J Appl Phycol 16:73–76. https://doi.org/10.1023/B:JAPH.0000019139.35046.0c DOI

Inoue A, Mashino C, Kodama T, Ojima T (2011) Protoplast preparation from Laminaria japonica with recombinant alginate lyase and cellulase. Marine Biotechnol 13:256–263. https://doi.org/10.1007/s10126-010-9290-2 DOI

Inoue A, Ojima T (2019) Functional identification of alginate lyase from the brown alga Saccharina japonica. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-41351-6 DOI

Jamal P, Olorunnisola KS, Jaswir I, Tijani IDR, Ansari AH (2017) Bioprocessing of seaweed into protein-enriched feedstock: process optimization and validation in the reactor. Int Food Res J 24:382–386

Khan N, Mishra A, Chauhan PS, Nautiyal CS (2011) Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl DOI

Khan S, Tondervik A, Sletta H, Klinkenberg G, Emanuel C, Onsoyen E, Myrvold R, Howe RA, Walsh TR, Hill KE, Thomas DW (2012) Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother 56:5134–5141. https://doi.org/10.1128/AAC.00525-12 PubMed DOI PMC

Li L, Jiang X, Guan H, Wang P (2011) Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydr Res 346:794–800. https://doi.org/10.1016/j.carres.2011.01.023 PubMed DOI

Lu W, Li D, Wu Y (2003) Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzym Microbiol Technol 32:305–311 DOI

Luan LQ, Hien NQ, Nagasawa N, Kume T, Yoshii F, Nakanishi TM (2003) Biological effect of radiation-degraded alginate on flower plants in tissue culture. Biotechnol Appl Biochem 38:283–288. https://doi.org/10.1042/BA20030058 DOI

Ma LJ, Zhang Y, Bu N, Wang SH (2010) Alleviation effect of alginate-derived oligosaccharides on Vicia faba root tip cells damaged by cadmium. Bull Environ Contam Toxicol 84:161–164. https://doi.org/10.1007/s00128-009-9914-2 PubMed DOI

Ma Y, Li J, Zhang X-Y, Ni H-D, Wang F-B, Wang H-Y, Wang Z-P (2020) Characterization of a new intracellular alginate lyase with metal ions-tolerant and pH-stable properties. Mar Drugs 18(8):416. https://doi.org/10.3390/md18080416 PubMed DOI PMC

Manan MA, Webb C (2017) Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng 4:511–532

Maurya DP, Singh D, Pratap D, Maurya JP (2012) Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J Environ Biol 33(1):5–8 PubMed

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Journal of Analy Chem 31:426–428. https://doi.org/10.1021/ac60147a030 DOI

Okafor UA, Emezue TN, Okochi VI, Onyegeme-Okerenta BN, Nwodo-Chinedu S (2007) Xylanase production by Penicillium chrysogenum (PCL501) fermented on cellulosic wastes. Afr J Biochem Res 48–53

Ostgaard K (1993) Determination of alginate composition by a simple enzymatic assay. Hydrobiologia 261:513–520 DOI

Pandey A (1992) Recent process development in solid-state fermentation. Process Biochem 27:109–117. https://doi.org/10.1016/0032-9592(92)80017-W DOI

Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3 DOI

Park HJ, Ahn JM, Park RM, Lee SH, Sekhon SS, Kim SY, Wee JH, Kim YH, Min J (2016) Effects of alginate oligosaccharide mixture on the bioavailability of lysozyme as an antimicrobial agent. J Nanosci Nanotechnol 16:1445–1449 PubMed DOI

Ramya P, Selvaraj K, Suthendran K, Sundar K, Vanavil B (2023) Optimization of alginate lyase production using Enterobacter tabaci RAU2C isolated from marine environment by RSM and ANFIS modelling. Aquacult Int 31(6):3207–3237. https://doi.org/10.1007/s10499-023-01302-5 DOI

Saigusa M, Nishizawa M, Shimizu Y, Saeki H (2015) In vitro and in vivo anti-inflammatory activity of digested peptides derived from salmon myofibrillar protein conjugated with a small quantity of alginate oligosaccharide. Biosci Biotechnol Biochem 79:1518–1527. https://doi.org/10.1080/09168451.2015.1031075 PubMed DOI

Sarkar G, Jatar N, Goswami P, Cyriac R, Suthindhiran K, Jayasri MA (2018) Combination of different marine algal extracts as bio-stimulant and bio-fungicide. J Plant Nutr 41:1163–1171. https://doi.org/10.1080/01904167.2018.1434201 DOI

Schaumann K, Weide G (1990) Enzymatic degradation of alginate by marine fungi. Thirteenth International Seaweed Symposium, Hydrobiologia 204(205):589–596 DOI

Shelar PS, Reddy SVK, Shelar GS, Kavitha M, Kumar GP, Reddy GVS (2012) Medicinal value of seaweeds and its applications- a review. CJPTR 5(2):1–22

Singh RS, Chauhan K, Jindal A (2018) Response surface optimization of solid state fermentation for inulinase production from Penicillium oxalicum using corn bran. J Food Sci Technol 55(7):2533–2540. https://doi.org/10.1007/s13197-018-3173-3 PubMed DOI PMC

Suda K, Tanji Y, Hori K, Unno H (1999) Evidence for a novel Chlorella virus-encoded alginate lyase. FEMS Microbiol Lett 180:45–53. https://doi.org/10.1111/j.1574-6968.1999.tb08776.x PubMed DOI

Viniegra-González G, Favela-Torres E, Aguilar CN, de Jesus R-G, Dıaz-Godınez G, Augur C (2003) Advantages of fungal enzyme production in solid-state over liquid fermentation systems. Biochem Eng J 13:157–167. https://doi.org/10.1016/S1369-703X(02)00128-6 DOI

Wan LS, Heng PW, Chan LW (1992) Drug encapsulation in alginate microspheres by emulsification. J Microencapsul 9:309–316. https://doi.org/10.3109/02652049209021245 PubMed DOI

Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annual Review Microbiol 54:289–340. https://doi.org/10.1146/annurev.micro.54.1.289 DOI

Xu X, Bi D, Wan M (2015) Characterization and immunological evaluation of low-molecular-weight alginate derivatives. Curr Top Med Chem 16:874–887. https://doi.org/10.2174/1568026615666150827101239 DOI

Yagi H, Fujise A, Itabashi N, Ohshiro T (2016) Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae. Biosci Biotechnol Biochem 80:2338–2346. https://doi.org/10.1080/09168451.2016.1232154 PubMed DOI

Yang JH, Bang MA, Jang CH, Jo GH, Jung SK, Ki SH (2015) Alginate oligosaccharide enhances LDL uptake via regulation of LDLR and PCSK9 expression. J Nutr Biochem 26:1393–1400. https://doi.org/10.1016/j.jnutbio.2015.07.009 PubMed DOI

Ye M, Sun L, Yang R, Wang Z, Qi K (2017) The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. R Soc Open Sci 4(10):171012. https://doi.org/10.1098/rsos.171012 PubMed DOI PMC

Yin R, Yi YJ, Chen Z, Wang BX, Li XH, Zhou YX (2021) Characterization of a new biofunctional, exolytic alginate lyase from Tamlana sp. s12 with high catalytic activity and cold-adapted features. Mar Drugs 19(4):191. https://doi.org/10.3390/md19040191 PubMed DOI PMC

Yu Z, Zhu B, Wang W, Tan H, Yin H (2018) Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp. Int J Biol Macromol 112:937–942. https://doi.org/10.1016/j.ijbiomac.2018.02.046 PubMed DOI

Zhang YH, Shao Y, Jiao C, Yang QM, Weng HF, Xiao AF (2020) Characterization and application of an alginate lyase, Aly1281 from marine bacterium Pseudoalteromonas carrageenovora ASY5. Mar Drugs 18(2):95. https://doi.org/10.3390/md18020095 PubMed DOI PMC

Zhang W, Xia X, Zhang Z (2019) Alginate lyase of a novel algae fermentation strain. Chem Biochem Eng Q 33:125–131. https://doi.org/10.15255/CABEQ.2018.1291 DOI

Zhou R, Shi XY, Bi DC, Fang WS, Wei GB, Xu X (2015) Alginate-derived oligosaccharide inhibits neuroinflammation and promotes microglial phagocytosis of beta-amyloid. Mar Drugs 13:5828–5846. https://doi.org/10.3390/md13095828 PubMed DOI PMC

Zhu Y, Wu L, Yanhong Chen Y, Ni H, Xiao A, Cai H (2016) Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates. Microbiol Res 182:49–58. https://doi.org/10.1016/j.micres.2015.09.004 PubMed DOI

Zhu B, Yin H (2015) Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6:125–131 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...