Do phylogenetic community metrics reveal the South African quartz fields as terrestrial-habitat islands?
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
404519812
German Research Foundation
136337
South African National Research Foundation
PubMed
38401154
PubMed Central
PMC11082514
DOI
10.1093/aob/mcae027
PII: 7613802
Knihovny.cz E-zdroje
- Klíčová slova
- Aizoaceae, Asteraceae, Crassulaceae, Cyperaceae, Fabaceae, Santalaceae, community phylogenetics, phylogenetic diversity, specialized taxa,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- fylogeneze * MeSH
- Magnoliopsida * genetika MeSH
- ostrovy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Jihoafrická republika MeSH
- ostrovy MeSH
BACKGROUND AND AIMS: The quartz fields of the Greater Cape Floristic Region (GCFR) are arid and island-like special habitats, hosting ~142 habitat-specialized plant species, of which 81 % are local endemics, characterized by a rapid turnover of species between and among sites. We use several phylogenetic community metrics: (1) to examine species diversity and phylogenetic structure within and among quartz fields; (2) to investigate whether quartz field specialists are evolutionarily drawn from local species pools, whereas the alternative hypothesis posits that there is no significant evolutionary connection between quartz field specialists and the local species pools; and (3) to determine whether there is an association between certain traits and the presence of species in quartz fields. METHODS: We sampled and developed dated phylogenies for six species-rich angiosperm families (Aizoaceae, Asteraceae, Crassulaceae, Cyperaceae, Fabaceae and Santalaceae) represented in the quartz field floras of southern Africa. Specifically, we focused on the flora of three quartz field regions in South Africa (Knersvlakte, Little Karoo and Overberg) and their surrounding species pools to address our research questions by scoring traits associated with harsh environments. KEY RESULTS: We found that the Overberg and Little Karoo had the highest level of species overlap for families Aizoaceae and Fabaceae, whereas the Knersvlakte and the Overberg had the highest species overlap for families Asteraceae, Crassulaceae and Santalaceae. Although our phylogenetic community structure and trait analyses showed no clear patterns, relatively low pairwise phylogenetic distances between specialists and their local species pools for Aizoaceae suggest that quartz species could be drawn evolutionarily from their surrounding areas. We also found that families Aizoaceae and Crassulaceae in Knersvlakte and Little Karoo were phylogenetically even. CONCLUSIONS: Despite their proximity to one another within the GCFR, the studied areas differ in their species pools and the phylogenetic structure of their specialists. Our work provides further justification for increased conservation focus on these unique habitats under future scenarios of global change.
Zobrazit více v PubMed
Bennett JA, Lamb EG, Hall JC, Cardinal-McTeague WM, Cahill JF. 2013. Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecology Letters 16: 1168–1176. PubMed
Bouckaert R, Heled J, Kühnert D, et al.. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537. PubMed PMC
Cadotte MW, Davies TJ, Peres-Neto PR. 2017. Why phylogenies do not always predict ecological differences. Ecological Monographs 84: 535–551.
Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA. 2004. Phylogenetic overdispersion in Floridian oak communities. The American Naturalist 163: 823–843. PubMed
Cavender‐Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693–715. PubMed
Chamberlain S, Szoecs E, Foster Z, et al. 2020. taxize: taxonomic information from around the web. R package version 0.9.98. https://github.com/ropensci/taxize (12 June 2023, date last accessed).
Chen C, Yan X, Tan X, Wang Y. 2020. The role of habitat diversity in generating the small‐island effect. Ecography 43: 1241–1249.
Cramer MD, Wootton LM, van Mazijk R, Verboom GA. 2019. New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models. Diversity and Distributions 25: 1736–1750.
Curtis OE, Stirton CH, Muasya AM. 2013. A conservation and floristic assessment of poorly known species rich quartz–silcrete outcrops within Rûens Shale Renosterveld (Overberg, Western Cape), with taxonomic descriptions of five new species. South African Journal of Botany 87: 99–111.
Curtis-Scott O, Goulding M, Helme N, McMaster SP, Stirton C. 2020. Field guide to Renosterveld of the Overberg. Cape Town: Struik Nature, 2376–2381.
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37: 291–294. PubMed PMC
Davies TJ. 2021. Ecophylogenetics redux. Ecology Letters 24: 1073–1088. PubMed
Desmet PG, Barret T, Cowling RM, et al. 2004. A systematic plan for a protected area system in the Knersvlakte region of Namaqualand. Cape Town: Institute for Plant Conservation, University of Cape Town.
Díaz S, Kattge J, Cornelissen JHC, et al.. 2016. The global spectrum of plant form and function. Nature 529: 167–171. PubMed
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Bulletin of the Botanical Society of America 19: 11–15.
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. PubMed PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. PubMed PMC
Duarte LDS, Debastiani VJ, Freitas AVL, Pillar VD. 2016. Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetics. Methods in Ecology and Evolution 7: 937–946.
Eibes PM, Oldeland J, Irl SDH, Twerski A, Kühne N, Schmiedel U. 2021. Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands. Journal of Vegetation Science 32: e13036.
Eibes PM, Schaffrath F, Oldeland J, Thormählen W, Schmiedel U, Irl SDH. 2022. Testing the concept of edaphism for the quartz island flora of the Knersvlakte, South Africa. South African Journal of Botany 151: 555–564.
Elliott TL, Muasya AM, Bureš P. 2023. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Annals of Botany 131: 143–156. PubMed PMC
Ellis AG, Weis AE, Gaut BS. 2006. Evolutionary radiation of “stone plants” in the genus Argyroderma (Aizoaceae): unraveling the effects of landscape, habitat, and flowering time. Evolution 60: 39–55. PubMed
Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1–10.
Faith DP. 2015. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philosophical Transactions of the Royal Society B: Biological Sciences 370: 2014001. PubMed PMC
Faith DP. 2021. Valuation and appreciation of biodiversity: the ‘maintenance of options’ provided by the variety of life. Frontiers in Ecology and Evolution 9: 635670.
Flouri T, Izquierdo-Carrasco F, Darriba D, et al.. 2014. The phylogenetic likelihood library. Systematic Biology 64: 356–362. PubMed PMC
Forest F, Grenyer R, Rouget M, et al.. 2007. Preserving the evolutionary potential of flora in biodiversity hotspots. Nature 445: 757–760. PubMed
Fritz SA, Purvis A. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24: 1042–1051. PubMed
GBIF.org. 2023. Global Biodiversity Information Facility. https://www.gbif.org/en/ (12 April 2023, date last accessed).
Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29: 600–614.
Godoy O, Kraft NJB, Levine JM. 2014. Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters 17: 836–844. PubMed
GonzálezOrozco CE, ParraQuijano M. 2023. Comparing species and evolutionary diversity metrics to inform conservation. Diversity and Distributions 29: 224–231.
Graham CH, Fine PVA. 2018. Phylogenetic beta diversity: linking ecological and evolutionary processes across space and time. Ecology Letters 11: 1265–1277. PubMed
Grubb PJ. 1992. A positive distrust in simplicity - lessons from plant defences and from competition among plants and among animals. Journal of Ecology 80: 585–610.
Gumbs R, Chaudhary A, Daru BH, et al.. 2021. The post‐2020 global biodiversity framework must safeguard the tree of life. BioRxiv: 1–16 (preprint: not peer reviewed).
Ho LST, Ané C. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63: 397–408. PubMed
Itescu Y. 2019. Are island‐like systems biologically similar to islands? A review of the evidence. Ecography 42: 1298–1314.
Ives AR, Helmus MR. 2011. Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs 81: 511–525.
Janssens SB, Couvreur TLP, Mertens A, et al.. 2020. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodiversity Data Journal 8: e39677. PubMed PMC
JSTOR. 2023. Global Plants on JSTOR. https://plants.jstor.org/compilation/ (7 April 2023, date last accessed).
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. PubMed PMC
Kattge J, Bönisch G, Díaz S, et al.; Nutrient Network. 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26: 119–188. PubMed
KBA Standards Appeals Committee. 2020. Guidelines for using a global standard for the identification of key biodiversity areas: version 1.1. Switzerland: IUCN Gland.
Kembel S, Cowan P, Helmus M, et al.. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464. PubMed
Klak C, Reeves G, Hedderson T. 2004. Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427: 63–65. PubMed
Kontopanou A, Panitsa M. 2020. Habitat Islands on the Aegean Islands (Greece): elevational gradient of chasmophytic diversity, endemism, phytogeographical patterns and need for monitoring and conservation. Diversity 12: 33.
Kraft NJB, Valencia R, Ackerly DD. 2008. Functional traits and niche-based tree community assembly in an Amazonian Forest. Science 322: 580–582. PubMed
Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. 2015a. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592–599.
Kraft NJB, Godoy O, Levine JM. 2015b. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America 112: 797–802. PubMed PMC
Kress WJ, García-Robledo C, Uriarte M, Erickson DL. 2015. DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution 30: 25–35. PubMed
Kühn N, Tovar C, Carretero J, Vandvik V, Enquist BJ, Willis KJ. 2021. Globally important plant functional traits for coping with climate change. Frontiers of Biogeography 13: e53774.
Laity T, Laffan SW, González-Orozco CE, et al.. 2015. Phylodiversity to inform conservation policy: an Australian example. Science of the Total Environment 534: 131–143. PubMed
Laliberte E, Zemunik G, Turner BL. 2014. Environmental filtering explains variation in plant diversity along resource gradients. Science 345: 1602–1605. PubMed
Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276–3278. PubMed PMC
le Roux A. 2015. Namaqualand: South African wildflower guide 1 (a Botanical Society Guide). South Africa: Struik Nature.
Li D. 2018. The plant functional traits of arid and semiarid grassland plants under warming and precipitation change. In: Ratnadewi D, Hamim, eds. Plant growth and regulation – alterations to sustain unfavorable conditions. London, UK: IntechOpen. 10.5772/intechopen.79744. DOI
Li S, Wang H, Gou W, et al.. 2021. Leaf functional traits of dominant desert plants in the Hexi Corridor, Northwestern China: trade-off relationships and adversity strategies. Global Ecology and Conservation 28: e01666.
Lourenço‐de‐Moraes R, Campos FS, Ferreira RB, et al.. 2020. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. Journal of Biogeography 47: 275–287. PubMed PMC
Lu M, Fradera‐Soler M, Forest F, Barraclough TG, Grace OM. 2022. Evidence linking life‐form to a major shift in diversification rate in Crassula. American Journal of Botany 109: 272–290. PubMed
Manning J, Goldblatt P. 2012. Plants of the Greater Cape Floristic Region, Vol. 1, The core Cape Flora. Strelitzia 29. Pretoria: South African National Biodiversity Institute.
Martin AP. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Applied and Environmental Microbiology 68: 3673–3682. PubMed PMC
Matthews TJ, Rigal F, Kougioumoutzis K, Trigas P, Triantis KA. 2020. Unravelling the small‐island effect through phylogenetic community ecology. Journal of Biogeography 47: 2341–2352.
Moncrieff GR. 2021. Locating and dating land cover change events in the Renosterveld, a Critically Endangered shrubland ecosystem. Remote Sensing 13: 834.
Mota JF, Garrido-Becerra JA, Merlo ME, Medina-Cazorla JM, Sanchez-Gomez P. 2017. The edaphism: gypsum, dolomite and serpentine flora and vegetation. In: Loidi J, ed. The vegetation of the Iberian Peninsula: volume 2. Cham: Springer International Publishing, 277–354. doi:10.1007/978-3-319-54867-8_6 DOI
Mucina L, Rutherford MC. 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.
Müller NF, Bouckaert RR. 2020. Adaptive metropolis-coupled MCMC for BEAST 2. PeerJ 8: e9473. PubMed PMC
Musker SD, Ellis AG, Schlebusch SA, Verboom GA. 2021. Niche specificity influences gene flow across fine‐scale habitat mosaics in Succulent Karoo plants. Molecular Ecology 30: 175–192. PubMed
Oksanen J, Guillaume Blanchet F, Friendly M, et al. 2022. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (April 2023, date last accessed)
Oldeland J, Eibes PM, Irl SDH, Schmiedel U. 2022. Do image resolution and classifier choice impact island biogeographical parameters of terrestrial islands? Transactions in GIS 26: 2004–2022.
Ordonez A. 2014. Functional and phylogenetic similarity of alien plants to co-occurring natives. Ecology 95: 1191–1202. PubMed
Orme D, Freckleton R, Thomas G, et al.. 2018. caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1. https://CRAN.R-project.org/package=caper (12 April 2023, date last accessed).
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884. PubMed
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. PubMed
Perino A, Pereira HM, Felipe‐Lucia M, et al.. 2021. Biodiversity post‐2020: closing the gap between global targets and national‐level implementation. Conservation Letters 15: e12848.
Pinheiro J, Bates D, R Core Team. 2023. nlme: linear and nonlinear mixed effects models. R package version 3.1-164. https://CRAN.R-project.org/package=nlme.
POWO. 2023. Plants of the World online. Kew: Facilitated by the Royal Botanic Gardens. http://www.plantsoftheworldonline.org/ (13 March 2023, date last accessed).
R Core Team. 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Rajakaruna N. 2018. Lessons on evolution from the study of edaphic specialization. The Botanical Review 84: 39–78.
Rodrigues AS, Gaston KJ. 2002. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation 105: 103–111.
Schmiedel U. 2004. The phytogeography of the obligate quartz field flora of southern Africa. Schumannia 4: 181–205.
Schmiedel U, Mucina L. 2006. Vegetation of quartz fields in the Little Karoo, Tanqua Karoo and eastern Overberg (Western Cape Province, South Africa). Phytocoenologia 36: 1–44.
Schmiedel U, Jürgens N. 1999. Community structure on unusual habitat island: quartz-fields in the Succulent Karoo, South Africa. Plant Ecology 142: 57–69.
Schmiedel U, Jürgens N. 2004. Habitat ecology of southern African quartz fields: studies on the thermal properties near the ground. Plant Ecology 170: 153–166.
Schmiedel U, Kühne N, Twerski A, Oldeland J. 2015. Small-scale soil patterns drive sharp boundaries between succulent ‘dwarf’ biomes (or habitats) in the arid Succulent Karoo, South Africa. South African Journal of Botany 101: 129–138.
Schmiedel U, Siemen S-E, Dludlu MN, Oldeland J. 2021. Germination success of habitat specialists from the Succulent Karoo and Renosterveld on different soil types. South African Journal of Botany 137: 320–330.
Slingsby JA, Verboom GA. 2006. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. The American Naturalist 168: 14–27. PubMed
Smith GF, Figueiredo E, Victor J, Klopper RR. 2023. Plant poaching in southern Africa is aided by taxonomy: is a return to Caput bonae spei inevitable? Taxon 72: 717–723. doi:10.1002/tax.12882 DOI
Snijman DA. ed. 2013. Plants of the Greater Cape Floristic Region, Vol. 2, The extra Cape flora. Strelitzia 30. Pretoria: South African National Biodiversity Institute.
Swenson NG. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS One 6: e21264. PubMed PMC
Technelysium. 2017. ChromasPro, version 2.1.5 [software]. South Brisbane: Technelysium. http://technelysium.com.au/wp/.
Thompson J, Ramírez-Barahona S, Priest N, Hernández-Hernández T. 2023. Did succulents diversify in response to aridity? Evolutionary analyses of major succulent lineages around the world. BioRxiv https://doi.org/10.1101/2023.05.23.541957 (preprint: not peer reviewed).
Tolley KA, da Silva JM, Jansen van Vuuren B. 2019. South African National biodiversity assessment 2018 technical report volume 7: genetic diversity. Pretoria: South African National Biodiversity Institute.
Tukey JW. 1949. Comparing individual means in the analysis of variance. Biometrics 5: 99–114. PubMed
van der Valk AG. 1981. Succession in wetlands – a Gleasonian approach. Ecology 62: 688–696.
van Mazijk R, Cramer MD, Verboom GA. 2021. Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography 48: 1875–1888.
Verboom AG, Archibald JK, Bakker FT, et al.. 2009. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? Molecular Phylogenetics and Evolution 51: 44–53. PubMed
Verboom GA, Linder HP, Forest F, Hoffmann V, Bergh NG, Cowling RM. 2014. Cenozoic assembly of the Greater Cape flora. In: Allsopp N, Colville JC, Verboom GA, eds. Fynbos: ecology, evolution, and conservation of a megadiverse region. Oxford: Oxford University Press, 93–118.
Vlok J, Schutte-Vlok AL. 2010. Plants of the Klein Karoo. Hatfield: Umdaus Press.
Warwick R, Clarke K. 1995. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series 129: 301–305.
Webb CO. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist 156: 145–155. PubMed
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.
Webb CO, Gilbert GS, Donoghue MJ. 2006. Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87: S123–S131. PubMed
Yu G. 2020. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics 69: e96. PubMed
Zhang A, Cadotte MW, Wu D, Yu M. 2023. What drives phylogenetic and trait clustering on islands? Landscape Ecology 38: 1339–1350.
Zhigila DA, Verboom GA, Muasya AM. 2020. An infrageneric classification of Thesium (Santalaceae) based on molecular phylogenetic data. Taxon 69: 100–123.