Do phylogenetic community metrics reveal the South African quartz fields as terrestrial-habitat islands?

. 2024 May 10 ; 133 (5-6) : 833-850.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38401154

Grantová podpora
404519812 German Research Foundation
136337 South African National Research Foundation

BACKGROUND AND AIMS: The quartz fields of the Greater Cape Floristic Region (GCFR) are arid and island-like special habitats, hosting ~142 habitat-specialized plant species, of which 81 % are local endemics, characterized by a rapid turnover of species between and among sites. We use several phylogenetic community metrics: (1) to examine species diversity and phylogenetic structure within and among quartz fields; (2) to investigate whether quartz field specialists are evolutionarily drawn from local species pools, whereas the alternative hypothesis posits that there is no significant evolutionary connection between quartz field specialists and the local species pools; and (3) to determine whether there is an association between certain traits and the presence of species in quartz fields. METHODS: We sampled and developed dated phylogenies for six species-rich angiosperm families (Aizoaceae, Asteraceae, Crassulaceae, Cyperaceae, Fabaceae and Santalaceae) represented in the quartz field floras of southern Africa. Specifically, we focused on the flora of three quartz field regions in South Africa (Knersvlakte, Little Karoo and Overberg) and their surrounding species pools to address our research questions by scoring traits associated with harsh environments. KEY RESULTS: We found that the Overberg and Little Karoo had the highest level of species overlap for families Aizoaceae and Fabaceae, whereas the Knersvlakte and the Overberg had the highest species overlap for families Asteraceae, Crassulaceae and Santalaceae. Although our phylogenetic community structure and trait analyses showed no clear patterns, relatively low pairwise phylogenetic distances between specialists and their local species pools for Aizoaceae suggest that quartz species could be drawn evolutionarily from their surrounding areas. We also found that families Aizoaceae and Crassulaceae in Knersvlakte and Little Karoo were phylogenetically even. CONCLUSIONS: Despite their proximity to one another within the GCFR, the studied areas differ in their species pools and the phylogenetic structure of their specialists. Our work provides further justification for increased conservation focus on these unique habitats under future scenarios of global change.

Zobrazit více v PubMed

Bennett  JA, Lamb  EG, Hall  JC, Cardinal-McTeague  WM, Cahill  JF.  2013. Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecology Letters  16: 1168–1176. PubMed

Bouckaert  R, Heled  J, Kühnert  D, et al.. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology  10: e1003537. PubMed PMC

Cadotte  MW, Davies  TJ, Peres-Neto  PR.  2017. Why phylogenies do not always predict ecological differences. Ecological Monographs  84: 535–551.

Cavender-Bares  J, Ackerly  DD, Baum  DA, Bazzaz  FA.  2004. Phylogenetic overdispersion in Floridian oak communities. The American Naturalist  163: 823–843. PubMed

Cavender‐Bares  J, Kozak  KH, Fine  PVA, Kembel  SW.  2009. The merging of community ecology and phylogenetic biology. Ecology Letters  12: 693–715. PubMed

Chamberlain  S, Szoecs  E, Foster  Z, et al.  2020. taxize: taxonomic information from around the web. R package version 0.9.98. https://github.com/ropensci/taxize (12 June 2023, date last accessed).

Chen  C, Yan  X, Tan  X, Wang  Y.  2020. The role of habitat diversity in generating the small‐island effect. Ecography  43: 1241–1249.

Cramer  MD, Wootton  LM, van Mazijk  R, Verboom  GA.  2019. New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models. Diversity and Distributions  25: 1736–1750.

Curtis  OE, Stirton  CH, Muasya  AM.  2013. A conservation and floristic assessment of poorly known species rich quartz–silcrete outcrops within Rûens Shale Renosterveld (Overberg, Western Cape), with taxonomic descriptions of five new species. South African Journal of Botany  87: 99–111.

Curtis-Scott  O, Goulding  M, Helme  N, McMaster  SP, Stirton  C.  2020. Field guide to Renosterveld of the Overberg. Cape Town: Struik Nature, 2376–2381.

Darriba  D, Posada  D, Kozlov  AM, Stamatakis  A, Morel  B, Flouri  T.  2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution  37: 291–294. PubMed PMC

Davies  TJ.  2021. Ecophylogenetics redux. Ecology Letters  24: 1073–1088. PubMed

Desmet  PG, Barret  T, Cowling  RM, et al.  2004. A systematic plan for a protected area system in the Knersvlakte region of Namaqualand. Cape Town: Institute for Plant Conservation, University of Cape Town.

Díaz  S, Kattge  J, Cornelissen  JHC, et al.. 2016. The global spectrum of plant form and function. Nature  529: 167–171. PubMed

Doyle  JJ, Doyle  JL.  1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Bulletin of the Botanical Society of America  19: 11–15.

Drummond  AJ, Rambaut  A.  2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology  7: 214. PubMed PMC

Drummond  AJ, Suchard  MA, Xie  D, Rambaut  A.  2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution  29: 1969–1973. PubMed PMC

Duarte  LDS, Debastiani  VJ, Freitas  AVL, Pillar  VD.  2016. Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetics. Methods in Ecology and Evolution  7: 937–946.

Eibes  PM, Oldeland  J, Irl  SDH, Twerski  A, Kühne  N, Schmiedel  U.  2021. Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands. Journal of Vegetation Science  32: e13036.

Eibes  PM, Schaffrath  F, Oldeland  J, Thormählen  W, Schmiedel  U, Irl  SDH.  2022. Testing the concept of edaphism for the quartz island flora of the Knersvlakte, South Africa. South African Journal of Botany  151: 555–564.

Elliott  TL, Muasya  AM, Bureš  P.  2023. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Annals of Botany  131: 143–156. PubMed PMC

Ellis  AG, Weis  AE, Gaut  BS.  2006. Evolutionary radiation of “stone plants” in the genus Argyroderma (Aizoaceae): unraveling the effects of landscape, habitat, and flowering time. Evolution  60: 39–55. PubMed

Faith  DP.  1992. Conservation evaluation and phylogenetic diversity. Biological Conservation  61: 1–10.

Faith  DP.  2015. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philosophical Transactions of the Royal Society B: Biological Sciences  370: 2014001. PubMed PMC

Faith  DP.  2021. Valuation and appreciation of biodiversity: the ‘maintenance of options’ provided by the variety of life. Frontiers in Ecology and Evolution  9: 635670.

Flouri  T, Izquierdo-Carrasco  F, Darriba  D, et al.. 2014. The phylogenetic likelihood library. Systematic Biology  64: 356–362. PubMed PMC

Forest  F, Grenyer  R, Rouget  M, et al.. 2007. Preserving the evolutionary potential of flora in biodiversity hotspots. Nature  445: 757–760. PubMed

Fritz  SA, Purvis  A.  2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology  24: 1042–1051. PubMed

GBIF.org. 2023. Global Biodiversity Information Facility. https://www.gbif.org/en/ (12 April 2023, date last accessed).

Gerhold  P, Cahill  JF, Winter  M, Bartish  IV, Prinzing  A.  2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology  29: 600–614.

Godoy  O, Kraft  NJB, Levine  JM.  2014. Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters  17: 836–844. PubMed

GonzálezOrozco  CE, ParraQuijano  M.  2023. Comparing species and evolutionary diversity metrics to inform conservation. Diversity and Distributions  29: 224–231.

Graham  CH, Fine  PVA.  2018. Phylogenetic beta diversity: linking ecological and evolutionary processes across space and time. Ecology Letters  11: 1265–1277. PubMed

Grubb  PJ.  1992. A positive distrust in simplicity - lessons from plant defences and from competition among plants and among animals. Journal of Ecology  80: 585–610.

Gumbs  R, Chaudhary  A, Daru  BH, et al.. 2021. The post‐2020 global biodiversity framework must safeguard the tree of life. BioRxiv: 1–16 (preprint: not peer reviewed).

Ho  LST, Ané  C.  2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology  63: 397–408. PubMed

Itescu  Y.  2019. Are island‐like systems biologically similar to islands? A review of the evidence. Ecography  42: 1298–1314.

Ives  AR, Helmus  MR.  2011. Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs  81: 511–525.

Janssens  SB, Couvreur  TLP, Mertens  A, et al.. 2020. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodiversity Data Journal  8: e39677. PubMed PMC

JSTOR.  2023. Global Plants on JSTOR.  https://plants.jstor.org/compilation/ (7 April 2023, date last accessed).

Katoh  K, Standley  DM.  2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution  30: 772–780. PubMed PMC

Kattge  J, Bönisch  G, Díaz  S, et al.; Nutrient Network. 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biology  26: 119–188. PubMed

KBA Standards Appeals Committee.  2020. Guidelines for using a global standard for the identification of key biodiversity areas: version 1.1. Switzerland: IUCN Gland.

Kembel  S, Cowan  P, Helmus  M, et al.. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics  26: 1463–1464. PubMed

Klak  C, Reeves  G, Hedderson  T.  2004. Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature  427: 63–65. PubMed

Kontopanou  A, Panitsa  M.  2020. Habitat Islands on the Aegean Islands (Greece): elevational gradient of chasmophytic diversity, endemism, phytogeographical patterns and need for monitoring and conservation. Diversity  12: 33.

Kraft  NJB, Valencia  R, Ackerly  DD.  2008. Functional traits and niche-based tree community assembly in an Amazonian Forest. Science  322: 580–582. PubMed

Kraft  NJB, Adler  PB, Godoy  O, James  EC, Fuller  S, Levine  JM.  2015a. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology  29: 592–599.

Kraft  NJB, Godoy  O, Levine  JM.  2015b. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America  112: 797–802. PubMed PMC

Kress  WJ, García-Robledo  C, Uriarte  M, Erickson  DL.  2015. DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution  30: 25–35. PubMed

Kühn  N, Tovar  C, Carretero  J, Vandvik  V, Enquist  BJ, Willis  KJ.  2021. Globally important plant functional traits for coping with climate change. Frontiers of Biogeography  13: e53774.

Laity  T, Laffan  SW, González-Orozco  CE, et al.. 2015. Phylodiversity to inform conservation policy: an Australian example. Science of the Total Environment  534: 131–143. PubMed

Laliberte  E, Zemunik  G, Turner  BL.  2014. Environmental filtering explains variation in plant diversity along resource gradients. Science  345: 1602–1605. PubMed

Larsson  A.  2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics  30: 3276–3278. PubMed PMC

le Roux  A.  2015. Namaqualand: South African wildflower guide 1 (a Botanical Society Guide). South Africa: Struik Nature.

Li  D.  2018. The plant functional traits of arid and semiarid grassland plants under warming and precipitation change. In: Ratnadewi  D, Hamim, eds. Plant growth and regulation – alterations to sustain unfavorable conditions. London, UK: IntechOpen. 10.5772/intechopen.79744. DOI

Li  S, Wang  H, Gou  W, et al.. 2021. Leaf functional traits of dominant desert plants in the Hexi Corridor, Northwestern China: trade-off relationships and adversity strategies. Global Ecology and Conservation  28: e01666.

Lourenço‐de‐Moraes  R, Campos  FS, Ferreira  RB, et al.. 2020. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. Journal of Biogeography  47: 275–287. PubMed PMC

Lu  M, Fradera‐Soler  M, Forest  F, Barraclough  TG, Grace  OM.  2022. Evidence linking life‐form to a major shift in diversification rate in Crassula. American Journal of Botany  109: 272–290. PubMed

Manning  J, Goldblatt  P.  2012. Plants of the Greater Cape Floristic Region, Vol. 1, The core Cape Flora. Strelitzia 29. Pretoria: South African National Biodiversity Institute.

Martin  AP.  2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Applied and Environmental Microbiology  68: 3673–3682. PubMed PMC

Matthews  TJ, Rigal  F, Kougioumoutzis  K, Trigas  P, Triantis  KA.  2020. Unravelling the small‐island effect through phylogenetic community ecology. Journal of Biogeography  47: 2341–2352.

Moncrieff  GR.  2021. Locating and dating land cover change events in the Renosterveld, a Critically Endangered shrubland ecosystem. Remote Sensing  13: 834.

Mota  JF, Garrido-Becerra  JA, Merlo  ME, Medina-Cazorla  JM, Sanchez-Gomez  P.  2017. The edaphism: gypsum, dolomite and serpentine flora and vegetation. In: Loidi  J, ed. The vegetation of the Iberian Peninsula: volume 2. Cham: Springer International Publishing, 277–354. doi:10.1007/978-3-319-54867-8_6 DOI

Mucina  L, Rutherford  MC.  2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.

Müller  NF, Bouckaert  RR.  2020. Adaptive metropolis-coupled MCMC for BEAST 2. PeerJ  8: e9473. PubMed PMC

Musker  SD, Ellis  AG, Schlebusch  SA, Verboom  GA.  2021. Niche specificity influences gene flow across fine‐scale habitat mosaics in Succulent Karoo plants. Molecular Ecology  30: 175–192. PubMed

Oksanen  J, Guillaume Blanchet  F, Friendly  M, et al.  2022. vegan: Community Ecology Package. R package version 2.5-7.  https://CRAN.R-project.org/package=vegan (April 2023, date last accessed)

Oldeland  J, Eibes  PM, Irl  SDH, Schmiedel  U.  2022. Do image resolution and classifier choice impact island biogeographical parameters of terrestrial islands? Transactions in GIS  26: 2004–2022.

Ordonez  A.  2014. Functional and phylogenetic similarity of alien plants to co-occurring natives. Ecology  95: 1191–1202. PubMed

Orme  D, Freckleton  R, Thomas  G, et al.. 2018. caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1. https://CRAN.R-project.org/package=caper (12 April 2023, date last accessed).

Pagel  M.  1999. Inferring the historical patterns of biological evolution. Nature  401: 877–884. PubMed

Paradis  E, Claude  J, Strimmer  K.  2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics  20: 289–290. PubMed

Perino  A, Pereira  HM, Felipe‐Lucia  M, et al.. 2021. Biodiversity post‐2020: closing the gap between global targets and national‐level implementation. Conservation Letters  15: e12848.

Pinheiro  J, Bates  D, R Core Team. 2023. nlme: linear and nonlinear mixed effects models. R package version 3.1-164. https://CRAN.R-project.org/package=nlme.

POWO.  2023. Plants of the World online. Kew: Facilitated by the Royal Botanic Gardens. http://www.plantsoftheworldonline.org/ (13 March 2023, date last accessed).

R Core Team.  2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rajakaruna  N.  2018. Lessons on evolution from the study of edaphic specialization. The Botanical Review  84: 39–78.

Rodrigues  AS, Gaston  KJ.  2002. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation  105: 103–111.

Schmiedel  U.  2004. The phytogeography of the obligate quartz field flora of southern Africa. Schumannia  4: 181–205.

Schmiedel  U, Mucina  L.  2006. Vegetation of quartz fields in the Little Karoo, Tanqua Karoo and eastern Overberg (Western Cape Province, South Africa). Phytocoenologia  36: 1–44.

Schmiedel  U, Jürgens  N.  1999. Community structure on unusual habitat island: quartz-fields in the Succulent Karoo, South Africa. Plant Ecology  142: 57–69.

Schmiedel  U, Jürgens  N.  2004. Habitat ecology of southern African quartz fields: studies on the thermal properties near the ground. Plant Ecology  170: 153–166.

Schmiedel  U, Kühne  N, Twerski  A, Oldeland  J.  2015. Small-scale soil patterns drive sharp boundaries between succulent ‘dwarf’ biomes (or habitats) in the arid Succulent Karoo, South Africa. South African Journal of Botany  101: 129–138.

Schmiedel  U, Siemen  S-E, Dludlu  MN, Oldeland  J.  2021. Germination success of habitat specialists from the Succulent Karoo and Renosterveld on different soil types. South African Journal of Botany  137: 320–330.

Slingsby  JA, Verboom  GA.  2006. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. The American Naturalist  168: 14–27. PubMed

Smith  GF, Figueiredo  E, Victor  J, Klopper  RR.  2023. Plant poaching in southern Africa is aided by taxonomy: is a return to Caput bonae spei inevitable? Taxon  72: 717–723. doi:10.1002/tax.12882 DOI

Snijman  DA. ed. 2013. Plants of the Greater Cape Floristic Region, Vol. 2, The extra Cape flora. Strelitzia 30. Pretoria: South African National Biodiversity Institute.

Swenson  NG.  2011. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS One  6: e21264. PubMed PMC

Technelysium. 2017. ChromasPro, version 2.1.5 [software]. South Brisbane: Technelysium. http://technelysium.com.au/wp/.

Thompson  J, Ramírez-Barahona  S, Priest  N, Hernández-Hernández  T.  2023. Did succulents diversify in response to aridity? Evolutionary analyses of major succulent lineages around the world. BioRxiv https://doi.org/10.1101/2023.05.23.541957 (preprint: not peer reviewed).

Tolley  KA, da Silva  JM, Jansen van Vuuren  B.  2019. South African National biodiversity assessment 2018 technical report volume 7: genetic diversity. Pretoria: South African National Biodiversity Institute.

Tukey  JW.  1949. Comparing individual means in the analysis of variance. Biometrics  5: 99–114. PubMed

van der Valk  AG.  1981. Succession in wetlands – a Gleasonian approach. Ecology  62: 688–696.

van Mazijk  R, Cramer  MD, Verboom  GA.  2021. Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography  48: 1875–1888.

Verboom  AG, Archibald  JK, Bakker  FT, et al.. 2009. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? Molecular Phylogenetics and Evolution  51: 44–53. PubMed

Verboom  GA, Linder  HP, Forest  F, Hoffmann  V, Bergh  NG, Cowling  RM.  2014. Cenozoic assembly of the Greater Cape flora. In: Allsopp  N, Colville  JC, Verboom  GA, eds. Fynbos: ecology, evolution, and conservation of a megadiverse region. Oxford: Oxford University Press, 93–118.

Vlok  J, Schutte-Vlok  AL.  2010. Plants of the Klein Karoo. Hatfield: Umdaus Press.

Warwick  R, Clarke  K.  1995. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series  129: 301–305.

Webb  CO.  2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist  156: 145–155. PubMed

Webb  CO, Ackerly  DD, McPeek  MA, Donoghue  MJ.  2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics  33: 475–505.

Webb  CO, Gilbert  GS, Donoghue  MJ.  2006. Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology  87: S123–S131. PubMed

Yu  G.  2020. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics  69: e96. PubMed

Zhang  A, Cadotte  MW, Wu  D, Yu  M.  2023. What drives phylogenetic and trait clustering on islands?  Landscape Ecology  38: 1339–1350.

Zhigila  DA, Verboom  GA, Muasya  AM.  2020. An infrageneric classification of Thesium (Santalaceae) based on molecular phylogenetic data. Taxon  69: 100–123.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...