Physical interaction with Spo11 mediates the localisation of Mre11 to chromatin in meiosis and promotes its nuclease activity
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
206292/E/17/Z
Wellcome Trust - United Kingdom
PubMed
38407383
PubMed Central
PMC11077076
DOI
10.1093/nar/gkae111
PII: 7614131
Knihovny.cz E-resources
- MeSH
- Chromatin * metabolism MeSH
- DNA-Binding Proteins metabolism genetics MeSH
- DNA Breaks, Double-Stranded * MeSH
- Endodeoxyribonucleases * metabolism genetics MeSH
- Exodeoxyribonucleases metabolism genetics MeSH
- Meiosis * genetics MeSH
- Mutation MeSH
- Saccharomyces cerevisiae Proteins * metabolism genetics MeSH
- Saccharomyces cerevisiae cytology genetics metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chromatin * MeSH
- DNA-Binding Proteins MeSH
- Endodeoxyribonucleases * MeSH
- Exodeoxyribonucleases MeSH
- meiotic recombination protein SPO11 MeSH Browser
- MRE11 protein, S cerevisiae MeSH Browser
- Saccharomyces cerevisiae Proteins * MeSH
- Spo11 protein, S cerevisiae MeSH Browser
Meiotic recombination is of central importance for the proper segregation of homologous chromosomes, but also for creating genetic diversity. It is initiated by the formation of double-strand breaks (DSBs) in DNA catalysed by evolutionarily conserved Spo11, together with additional protein partners. Difficulties in purifying the Spo11 protein have limited the characterization of its biochemical properties and of its interactions with other DSB proteins. In this study, we have purified fragments of Spo11 and show for the first time that Spo11 can physically interact with Mre11 and modulates its DNA binding, bridging, and nuclease activities. The interaction of Mre11 with Spo11 requires its far C-terminal region, which is in line with the severe meiotic phenotypes of various mre11 mutations located at the C-terminus. Moreover, calibrated ChIP for Mre11 shows that Spo11 promotes Mre11 recruitment to chromatin, independent of DSB formation. A mutant deficient in Spo11 interaction severely reduces the association of Mre11 with meiotic chromatin. Consistent with the reduction of Mre11 foci in this mutant, it strongly impedes DSB formation, leading to spore death. Our data provide evidence that physical interaction between Spo11 and Mre11, together with end-bridging, promote normal recruitment of Mre11 to hotspots and DSB formation.
Department of Biology Masaryk University Brno Czech Republic
Department of Chromosome Biology Center for Molecular Biology University of Vienna
Max Perutz Labs Vienna Biocenter Campus Dr Bohr Gasse 9 1030Vienna Austria
National Centre for Biomolecular Research Masaryk University Brno Czech Republic
See more in PubMed
Keeney S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 2001; 52:1–53. PubMed
Gerton J.L., DeRisi J., Shroff R., Lichten M., Brown P.O., Petes T.D.. Global mapping of meiotic recombination hotspots and coldspots in the yeast saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:11383–11390. PubMed PMC
Petes T.D. Meiotic recombination hot spots and cold spots. Nat. Rev. Genet. 2001; 2:360–369. PubMed
Haring S.J., Lautner L.J., Comeron J.M., Malone R.E.. A test of the CoHR motif associated with meiotic double-strand breaks in Saccharomyces cerevisiae. EMBO Rep. 2004; 5:41–46. PubMed PMC
Johnson D., Crawford M., Cooper T., Claeys Bouuaert C., Keeney S., Llorente B., Garcia V., Neale M.J.. Concerted cutting by Spo11 illuminates meiotic DNA break mechanics. Nature. 2021; 594:572–576. PubMed PMC
Prieler S., Chen D., Huang L., Mayrhofer E., Zsótér S., Vesely M., Mbogning J., Klein F.. Spo11 generates gaps through concerted cuts at sites of topological stress. Nature. 2021; 594:577–582. PubMed
Koehn D.R., Haring S.J., Williams J.M., Malone R.E.. Tethering recombination initiation proteins in Saccharomyces cerevisiae promotes double strand break formation. Genetics. 2009; 182:447–458. PubMed PMC
Neale M.J., Pan J., Keeney S.. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature. 2005; 436:1053–1057. PubMed PMC
Garcia V., Phelps S.E.L., Gray S., Neale M.J.. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature. 2011; 479:241–244. PubMed PMC
Cannavo E., Cejka P.. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature. 2014; 514:122–125. PubMed
Borde V. The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2007; 15:551–563. PubMed
Paull T.T., Gellert M.. The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell. 1998; 1:969–979. PubMed
Trujillo K.M., Sung P.. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J. Biol. Chem. 2001; 276:35458–35464. PubMed
Nairz K., Klein F.. mre11S–a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 1997; 11:2272–2290. PubMed PMC
Furuse M., Nagase Y., Tsubouchi H., Murakami-Murofushi K., Shibata T., Ohta K.. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 1998; 17:6412–6425. PubMed PMC
Usui T., Ohta T., Oshiumi H., Tomizawa J., Ogawa H., Ogawa T.. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell. 1998; 95:705–716. PubMed
Tsubouchi H., Ogawa H.. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 1998; 18:260–268. PubMed PMC
Borde V., Lin W., Novikov E., Petrini J.H., Lichten M., Nicolas A.. Association of Mre11p with double-strand break sites during yeast meiosis. Mol. Cell. 2004; 13:389–401. PubMed
Prieler S., Penkner A., Borde V., Klein F.. The control of Spo11’s interaction with meiotic recombination hotspots. Genes Dev. 2005; 19:255–269. PubMed PMC
Bergerat A., de Massy B., Gadelle D., Varoutas P.C., Nicolas A., Forterre P.. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature. 1997; 386:414–417. PubMed
Hu B., Petela N., Kurze A., Chan K.-L., Chapard C., Nasmyth K.. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Res. 2015; 43:e132. PubMed PMC
Mendoza M.A., Panizza S., Klein F.. Analysis of protein-DNA interactions during meiosis by quantitative chromatin immunoprecipitation (qChIP). Methods Mol. Biol. Clifton NJ. 2009; 557:267–283. PubMed
Arora C., Kee K., Maleki S., Keeney S.. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol. Cell. 2004; 13:549–559. PubMed
Ghodke I., Muniyappa K.. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins. J. Biol. Chem. 2013; 288:11273–11286. PubMed PMC
Johzuka K., Ogawa H.. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics. 1995; 139:1521–1532. PubMed PMC
Mohibullah N., Keeney S.. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Res. 2017; 27:278–288. PubMed PMC
Hu J., Donahue G., Dorsey J., Govin J., Yuan Z., Garcia B.A., Shah P.P., Berger S.L.. H4K44 Acetylation facilitates chromatin accessibility during meiosis. Cell Rep. 2015; 13:1772–1780. PubMed PMC
Rousová D., Nivsarkar V., Altmannova V., Raina V.B., Funk S.K., Liedtke D., Janning P., Müller F., Reichle H., Vader G.et al. .. Novel mechanistic insights into the role of Mer2 as the keystone of meiotic DNA break formation. eLife. 2021; 10:e72330. PubMed PMC
Zickler D., Kleckner N.. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 1999; 33:603–754. PubMed
Borde V., de Massy B.. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr. Opin. Genet. Dev. 2013; 23:147–155. PubMed
Hollingsworth N.M., Goetsch L., Byers B.. The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell. 1990; 61:73–84. PubMed
Smith A.V., Roeder G.S.. The yeast Red1 protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 1997; 136:957–967. PubMed PMC
Klein F., Mahr P., Galova M., Buonomo S.B., Michaelis C., Nairz K., Nasmyth K.. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell. 1999; 98:91–103. PubMed
Storlazzi A., Tesse S., Ruprich-Robert G., Gargano S., Pöggeler S., Kleckner N., Zickler D.. Coupling meiotic chromosome axis integrity to recombination. Genes Dev. 2008; 22:796–809. PubMed PMC
Mao-Draayer Y., Galbraith A.M., Pittman D.L., Cool M., Malone R.E.. Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae. Genetics. 1996; 144:71–86. PubMed PMC
Xu L., Weiner B.M., Kleckner N.. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 1997; 11:106–118. PubMed
Blat Y., Protacio R.U., Hunter N., Kleckner N.. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell. 2002; 111:791–802. PubMed
Panizza S., Mendoza M.A., Berlinger M., Huang L., Nicolas A., Shirahige K., Klein F.. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell. 2011; 146:372–383. PubMed
Sun X., Huang L., Markowitz T.E., Blitzblau H.G., Chen D., Klein F., Hochwagen A.. Transcription dynamically patterns the meiotic chromosome-axis interface. eLife. 2015; 4:e07424. PubMed PMC
Sym M., Engebrecht J.A., Roeder G.S.. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell. 1993; 72:365–378. PubMed
Edlinger B., Schlögelhofer P.. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. J. Exp. Bot. 2011; 62:1545–1563. PubMed
de Jager M., van Noort J., van Gent D.C., Dekker C., Kanaar R., Wyman C.. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell. 2001; 8:1129–1135. PubMed
Williams R.S., Moncalian G., Williams J.S., Yamada Y., Limbo O., Shin D.S., Groocock L.M., Cahill D., Hitomi C., Guenther G.et al. .. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell. 2008; 135:97–109. PubMed PMC
Schiller C.B., Lammens K., Guerini I., Coordes B., Feldmann H., Schlauderer F., Möckel C., Schele A., Strässer K., Jackson S.P.et al. .. Structure of Mre11–Nbs1 complex yields insights into ataxia-telangiectasia–like disease mutations and DNA damage signaling. Nat. Struct. Mol. Biol. 2012; 19:693–700. PubMed PMC
Murakami H., Keeney S.. Temporospatial coordination of meiotic DNA replication and recombination via DDK recruitment to replisomes. Cell. 2014; 158:861–873. PubMed PMC
Wan L., Niu H., Futcher B., Zhang C., Shokat K.M., Boulton S.J., Hollingsworth N.M.. Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes Dev. 2008; 22:386–397. PubMed PMC
Claeys Bouuaert C., Pu S., Wang J., Oger C., Daccache D., Xie W., Patel D.J., Keeney S.. DNA-driven condensation assembles the meiotic DNA break machinery. Nature. 2021; 592:144–149. PubMed PMC
Liu J., Wu T.C., Lichten M.. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 1995; 14:4599–4608. PubMed PMC
Pan J., Sasaki M., Kniewel R., Murakami H., Blitzblau H.G., Tischfield S.E., Zhu X., Neale M.J., Jasin M., Socci N.D.et al. .. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell. 2011; 144:719–731. PubMed PMC