Effects of Oral Iron Supplementation on Blood Iron Status in Athletes: A Systematic Review, Meta-Analysis and Meta-Regression of Randomized Controlled Trials
Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články, systematický přehled, metaanalýza
PubMed
38407751
PubMed Central
PMC11127818
DOI
10.1007/s40279-024-01992-8
PII: 10.1007/s40279-024-01992-8
Knihovny.cz E-zdroje
- MeSH
- anemie z nedostatku železa farmakoterapie krev MeSH
- aplikace orální MeSH
- ferritiny krev MeSH
- hemoglobiny analýza metabolismus MeSH
- lidé MeSH
- potravní doplňky * MeSH
- randomizované kontrolované studie jako téma * MeSH
- sportovci MeSH
- sportovní výkon fyziologie MeSH
- železo * aplikace a dávkování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
- Názvy látek
- ferritiny MeSH
- hemoglobiny MeSH
- železo * MeSH
BACKGROUND: Iron deficiency in athletes is initially treated with a nutritional intervention. If negative iron balance persists, oral iron supplementation (OIS) can be used. Despite the recent proposal for a refinement of treatment strategies for iron-deficient athletes, there is no general consensus regarding the actual efficiency, dosage, or optimal regimen of OIS. OBJECTIVE: The aim of this meta-analysis was to evaluate to what extent OIS affects blood iron parameters and physical performance in healthy adult athletes. METHODS: PubMed, Web of Science, PEDro, CINAHL, SPORTDiscus, and Cochrane were searched from inception to 2 November 2022. Articles were eligible if they satisfied the following criteria: recruited subjects were healthy, adult and physically active individuals, who used exclusively OIS, irrespective of sex and sports discipline. EXCLUSION CRITERIA: simultaneous supplementation with iron and any other micronutrient(s), intravenous iron supplementation or recent exposure to altitude acclimatisation. The methodological quality of included studies was assessed with the PEDro scale, the completeness of intervention reporting with the TIDieR scale, while the GRADE scale was used for quality of evidence synthesis. The present study was prospectively registered in PROSPERO online registry (ID: CRD42022330230). RESULTS: From 638 articles identified through the search, 13 studies (n = 449) were included in the quantitative synthesis. When compared to the control group, the results demonstrated that OIS increases serum ferritin (standardized mean difference (SMD) = 1.27, 95% CI 0.44-2.10, p = 0.006), whereas blood haemoglobin (SMD = 1.31, 95% CI - 0.29 to 2.93, p = 0.099), serum transferrin receptor concentration (SMD = - 0.74, 95% CI - 1.89 to 0.41, p = 0.133), and transferrin saturation (SMD = 0.69, 95% CI - 0.84 to 2.22, p = 0.330) remained unaltered. Following OIS, a trend of small positive effect on VO2max (SMD = 0.49, 95% CI - 0.09 to 1.07, p = 0.086) was observed in young healthy athletes. The quality of evidence for all outcomes ranged from moderate to low. CONCLUSIONS: Increase in serum ferritin concentration after OIS was evident in subjects with initial pre-supplementation serum ferritin concentration ≤ 12 µg/l, while only minimal, if any effect, was observed in subjects with higher pre-supplementation serum ferritin concentration. The doses of OIS, that induced a beneficial effect on hematological parameters differed from 16 to 100 mg of elementary iron daily, over the period between 6 and 8 weeks. Shorter supplementation protocols have been shown to be ineffective.
Biotechnical Faculty University of Ljubljana Jamnikarjeva ulica 101 1000 Ljubljana Slovenia
Faculty of Sport University of Ljubljana Gortanova ulica 22 1000 Ljubljana Slovenia
Faculty of Sports Studies Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Chatard JC, Mujika I, Guy C, Lacour JR. Anaemia and iron deficiency in athletes—practical recommendations for treatment. Sports Med. 1999;27(4):229–240. doi: 10.2165/00007256-199927040-00003. PubMed DOI
McCormick R, Sim M, Dawson B, Peeling P. Refining treatment strategies for iron deficient athletes. Sports Med. 2020;50(12):2111–2123. doi: 10.1007/s40279-020-01360-2. PubMed DOI
Hirani R, Mondy P. Review of full blood count reference interval using a large cohort of first-time plasmapheresis blood donors. Pathology. 2020;53(4):498–502. doi: 10.1016/j.pathol.2020.08.013. PubMed DOI
Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dieticians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–528. doi: 10.1016/j.jand.2015.12.006. PubMed DOI
Peeling P, et al. Effect of iron injections on aerobic-exercise performance of iron-depleted female athletes. Int J Sport Nutr Exerc Metab. 2007;17(3):221–231. doi: 10.1123/ijsnem.17.3.221. PubMed DOI
Cappellini MD, et al. Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol. 2017;92(10):1068–1078. doi: 10.1002/ajh.24820. PubMed DOI PMC
Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017;47(9):1721–1737. doi: 10.1007/s40279-017-0706-2. PubMed DOI
Coates A, Mountjoy M, Burr J. Incidence of iron deficiency and iron deficient anemia in elite runners and triathletes. Clin J Sport Med. 2017;27(5):493–498. doi: 10.1097/Jsm.0000000000000390. PubMed DOI
Hinton PS. Iron and the endurance athlete. Appl Physiol Nutr Me. 2014;39(9):1012–1018. doi: 10.1139/apnm-2014-0147. PubMed DOI
Suedekum NA, Dimeff RJ. Iron and the athlete. Curr Sport Med Rep. 2005;4(4):199–202. doi: 10.1097/01.CSMR.0000306207.79809.7f. PubMed DOI
Newhouse IJ, Clement DB. Iron status in athletes. Sports Med. 1988;5(6):337–352. doi: 10.2165/00007256-198805060-00001. PubMed DOI
Lippi G, Sanchis-Gomar F. Influence of chronic training workload on the hematological profile: a pilot study in sedentary people, amateur and professional cyclists. Acta Bio-Medica: Atenei Parmensis. 2020;91:e2020104. doi: 10.23750/abm.v91i4.8460. PubMed DOI PMC
Sim M, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–1478. doi: 10.1007/s00421-019-04157-y. PubMed DOI
Holtzman B, Ackerman KE. Recommendations and nutritional considerations for female athletes: health and performance. Sports Med. 2021;51(Suppl 1):43–57. doi: 10.1007/s40279-021-01508-8. PubMed DOI PMC
Charlton BT, Forsyth S, Clarke DC. Low energy availability and relative energy deficiency in sport: what coaches should know. Int J Sports Sci Coach. 2022;17(2):445–460. doi: 10.1177/17479541211054458. DOI
Clenin GE, et al. Iron deficiency in sports—definition, influence on performance and therapy consensus statement of the Swiss Society of Sports Medicine. Swiss Med Wkly. 2015 doi: 10.4414/smw.2015.14196. PubMed DOI
Ohira Y, Simpson DR, Edgerton VR, Gardner GW, Senewiratne B. Characteristics of blood-gas in response to iron treatment and exercise in iron-deficient and anemic subjects. J Nutr Sci Vitaminol. 1983;29(2):129–139. doi: 10.3177/jnsv.29.129. PubMed DOI
Dellavalle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sport Exer. 2014;46(6):1204–1215. doi: 10.1249/MSS.0000000000000208. PubMed DOI
Haas JD, Brownlie TT. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131(2):676S–688S. doi: 10.1093/jn/131.2.676S. PubMed DOI
Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461s–1467s. doi: 10.3945/ajcn.2010.28674F. PubMed DOI
Cook JD. Diagnosis and management of iron-deficiency anaemia. Best Pract Res Clin Haematol. 2005;18(2):319–332. doi: 10.1016/j.beha.2004.08.022. PubMed DOI
Ishibashi A, Maeda N, Kamei A, Goto K. Iron supplementation during three consecutive days of endurance training augmented hepcidin levels. Nutrients. 2017 doi: 10.3390/nu9080820. PubMed DOI PMC
Pasiakos SM, et al. Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiol Rep. 2016 doi: 10.14814/phy2.12820. PubMed DOI PMC
Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006;26:323–342. doi: 10.1146/annurev.nutr.26.061505.111303. PubMed DOI
Wright AJ, Southon S, Fairweather-Tait SJ. Measurement of non-haem iron absorption in non-anaemic rats using 59Fe: can the Fe content of duodenal mucosal cells cause lumen or mucosal radioisotope dilution, or both, thus resulting in the underestimation of Fe absorption? Br J Nutr. 1989;62(3):719–727. doi: 10.1079/bjn19890072. PubMed DOI
Frazer DM, et al. A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut. 2003;52(3):340–346. doi: 10.1136/gut.52.3.340. PubMed DOI PMC
Tolkien Z, Stecher L, Mander AP, Pereira DI, Powell JJ. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS ONE. 2015;10(2):e0117383. doi: 10.1371/journal.pone.0117383. PubMed DOI PMC
McKay AKA, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–331. doi: 10.1123/ijspp.2021-0451. PubMed DOI
Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61(1):30–39. doi: 10.1038/sj.ejcn.1602479. PubMed DOI
Powell PD, Tucker A. Iron supplementation and running performance in female cross-country runners. Int J Sports Med. 1991;12(5):462–467. doi: 10.1055/s-2007-1024714. PubMed DOI
Burden RJ, Morton K, Richards T, Whyte GP, Pedlar CR. Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? A systematic review and meta-analysis. Brit J Sport Med. 2015;49(21):1389–1397. doi: 10.1136/bjsports-2014-093624. PubMed DOI
Page MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj-Brit Med J. 2021 doi: 10.1136/bmj.n71. PubMed DOI PMC
PEDro scale. https://pedro.org.au/english/resources/pedro-scale accessed.
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–721. doi: 10.1093/ptj/83.8.713. PubMed DOI
Hoffmann TC, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ-Brit Med J. 2014 doi: 10.1136/bmj.g1687. PubMed DOI
Guyatt GH, et al. GRADE guidelines: 8. Rating the quality of evidence-indirectness. J Clin Epidemiol. 2011;64(12):1303–1310. doi: 10.1016/j.jclinepi.2011.04.014. PubMed DOI
Langan D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83–98. doi: 10.1002/jrsm.1316. PubMed DOI
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Brit Med J. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557. PubMed DOI PMC
Hinton P, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Med Sci Sport Exer. 2005;37:S445–S445. doi: 10.1097/00005768-200505001-02297. PubMed DOI
Nasser M. Cochrane Handbook for Systematic Reviews of Interventions. Am J Public Health. 2020;110(6):753–754. doi: 10.2105/Ajph.2020.305609. DOI
Radjen S, Radjen G, Zivotic-Vanovic M, Radakovic S, Vasiljevic N, Stojanovic D. Effect of iron supplementation on maximal oxygen uptake in female athletes. Vojnosanit Pregl. 2011;68(2):130–135. doi: 10.2298/Vsp1102130r. PubMed DOI
Kang HS, Matsuo T. Effects of 4 weeks iron supplementation on haematological and immunological status in elite female soccer players. Asia Pac J Clin Nutr. 2004;13(4):353–358. PubMed
DellaValle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sports Exerc. 2014;46(6):1204–1215. doi: 10.1249/MSS.0000000000000208. PubMed DOI
McClung JP, et al. Randomized, double-blind, placebo-controlled trial of iron supplementation in female soldiers during military training: effects on iron status, physical performance, and mood. Am J Clin Nutr. 2009;90(1):124–131. doi: 10.3945/ajcn.2009.27774. PubMed DOI
Hinton PS, Giordano C, Brownlie T, Haas JD. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol. 2000;88(3):1103–1111. doi: 10.1152/jappl.2000.88.3.1103. PubMed DOI
LaManca JJ, Haymes EM. Effects of iron repletion on VO2max, endurance, and blood lactate in women. Med Sci Sports Exerc. 1993;25(12):1386–1392. doi: 10.1249/00005768-199312000-00012. PubMed DOI
Klingshirn LA, Pate RR, Bourque SP, Davis JM, Sargent RG. Effect of iron supplementation on endurance capacity in iron-depleted female runners. Med Sci Sports Exerc. 1992;24(7):819–824. doi: 10.1249/00005768-199207000-00013. PubMed DOI
Magazanik A, et al. Effect of an iron supplement on body iron status and aerobic capacity of young training women. Eur J Appl Physiol Occup Physiol. 1991;62(5):317–323. doi: 10.1007/BF00634966. PubMed DOI
Yoshida T, Udo M, Chida M, Ichioka M, Makiguchi K. Dietary iron supplement during severe physical training in competitive female distance runners. Sports Med, Train Rehabil. 1990;1(4):279–285. doi: 10.1080/15438629009511885. DOI
Masison J, Mendes P. Modeling the iron storage protein ferritin reveals how residual ferrihydrite iron determines initial ferritin iron sequestration kinetics. PLoS ONE. 2023 doi: 10.1371/journal.pone.0281401. PubMed DOI PMC
Dignass AA-OX, Farrag K, Stein JA-O. Limitations of serum ferritin in diagnosing iron deficiency in inflammatory conditions. Int J Chronic Dis. 2018;2018(2356–6981):9394060. doi: 10.1155/2018/9394060. PubMed DOI PMC
Cerqueira E, Marinho DA, Neiva HP, Lourenco O. Inflammatory effects of high and moderate intensity exercise—a systematic review. Front Physiol. 2020 doi: 10.3389/fphys.2019.01550. PubMed DOI PMC
McKay AKA, et al. Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Med Sci Sports Exerc. 2019;51(3):548–555. doi: 10.1249/mss.0000000000001816. PubMed DOI
Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Bba-Mol Basis Dis. 2015;1852(7):1347–1359. doi: 10.1016/j.bbadis.2015.03.011. PubMed DOI
Chatard JC, Mujika I, Guy C, Lacour JR. Anaemia and iron deficiency in athletes. Practical recommendations for treatment. Sports Med. 1999;27(4):229–240. doi: 10.2165/00007256-199927040-00003. PubMed DOI
Brownlie TT, Utermohlen V, Hinton PS, Haas JD. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr. 2004;79(3):437–443. doi: 10.1093/ajcn/79.3.437. PubMed DOI
Newhouse IJ, Clement DB, Taunton JE, McKenzie DC. The effects of prelatent/latent iron deficiency on physical work capacity. Med Sci Sports Exerc. 1989;21(3):263–268. doi: 10.1249/00005768-198906000-00006. PubMed DOI